小升初奥数—排列组合问题

合集下载

小升初专题-组合问题

小升初专题-组合问题
排列公式
$A_n^m = n(n-1)(n-2)...(n-m+1)$
组合公式
$C_n^m = frac{n!}{m!(n-m)!}$
排列与组合的关系
$A_n^m = n times C_n^m$
组合数的性质
组合数的对称性
$C_n^m = C_n^(n-m)$
组合数的递推关系
$C_n^m = C_n^(m-1) + C_n^(m-2)$
组合问题在计算机科学中的解题技巧
解决组合问题需要掌握一些计算机科学的特有方法和技巧,如递归、分治、贪心算法等, 这些技巧能够帮助学生快速找到问题的解决方案。
组合问题在日常生活中的应用
日常生活中的应用场景
01
组合问题在日常生活中应用广泛,如物品的排列组合、概率统
计的应用、决策问题的选择等。
组合问题在日常生活中的应用实例
02
例如在购物时选择不同的优惠方案、在旅行时选择不同的路线
和住宿方案等,都需要运用组合问题的知识和方法。
组合问题在日常生活中的应用价值
03
解决组合问题能够帮助人们更好地规划和管理自己的生活,提高决策的质量和效率。 Nhomakorabea04
组合问题的练习与思考
基础练习题
总结词
这些题目是组合问题的入门级题目,适合初学者进行基础练 习。
解决组合问题需要掌握一些常用的数学方法和技巧,如分治策略、数理
逻辑等,这些技巧能够帮助学生快速找到问题的解决方案。
组合问题在计算机科学中的应用
计算机科学中的组合问题
计算机科学中经常涉及到数据结构和算法的设计,其中很多问题可以归结为组合问题,如 动态规划、图论等。
组合问题在计算机科学中的重要性

奥数题排列组合问题附答案

奥数题排列组合问题附答案

奥数题排列组合问题附答案
奥数题排列组合问题附答案
小学生想要学好数学,做题是最好的办法,但想要奏效,还得靠自己的积累。

多做些典型题,并记住一些题的解题方法。

以下是小学频道为大家提供的二年级奥数题排列组合问题附答案,供大家复习时使用!
1、有10把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,最多要试多少次?
2、上体育课时,同学们站好了队,1、2报数,然后让报1的学生退出队列;再1、2报数,让报1的学生退出队列;从第三次开始每次报数后,一律让报2的学生退出队列,直到最后一个人为止,问剩下的一个人最初在队列的第几位?
1、解析:
第1把锁,试9次可以确定所配的`钥匙;第2把锁,试8次可以确定所配的钥匙;第3把锁,试7次可以确定所配的钥匙……第9把锁,试1次可以确定所配的钥匙;第10把锁不用试。

9+8+7+6+5+4+3+2+1=45次。

2、解析:
1、2、3、4、5、6、7、8、9、10、11、12、13、14……
第1次:留下的是2、4、6、8、10、12……
第2次:留下的是4、8、12、16……
第3次:留下的是4、12、20、28……
第4次:留下的是4、20、……
第5次:留下的是4……
从第3次开始,报2的退出,那么最后一个人总是第4位。

小升初数学解决问题系列——排列组合

小升初数学解决问题系列——排列组合

小升初解决问题系列《排列组合》专题专练1.乐乐有3件衬衫、2条短裙、2双皮鞋,用它们一共可以搭配() 种不同的穿法。

A.6B.8C.9D.12解:3×2×2=12(种)用它们一共可以搭配12种不同的穿法。

故答案为:D。

2.明明、红红、奇奇、亮亮4名同学站成一排拍照,其中亮亮站在最左边,一共有()种不同的排法。

A.6B.4C.12D.24解:3×2×1=6(种)。

故答案为:A。

3.用2、4、9和小数点组成的两位小数共有()个。

A.3B.4C.6D.12解:用2、4、9和小数点组成的两位小数有:2.49、2.94、4.29、4.92、9.42、9.24共6个。

故答案为:C。

4.从猴山到狮虎山,一共有()条路线。

A.6B.8C.10D.12解:3×2=6(条)故答案为:A。

5.小明想从四本不同的书中任选2 本书,共有()种选法A.3B.4C.5D.6解:,将四本书进行编号,再两两组合,一共有3+2+1=6(种)选法;故答案为:D。

二、填空题6.2023年3月24~26日,第二十八届“CBA全明星周末”在厦门奥林匹克体育中心举办,掀起了一阵篮球风。

某校三年级如火如荼地开展篮球赛,每两班比赛一场,三年级有6个班,一共需要进行场比赛。

解:5+4+3+2+1=15(场)故答案为:15。

7.25支球队参加比赛。

以单场淘汰赛进行到决出冠军,一共要进行场比赛。

解:12+6+3+2+1=24(场)故答案为:24。

8.四年级四个班进行足球比赛,每两个班都要赛一场,已知一班已经赛了3场,二班已经赛了1场,三班已经赛了2场,四班已经赛了场。

解:1+1=2(场)。

故答案为:2。

9.四个小朋友进行兵乓球比赛,每两人之间比一场,一共要比场。

他们用手中的数字卡片组成没有重复数字的两位数,一共可以组成个。

解:3+2+1=6(场);一共可以组成12、13、14、21、23、24、31、32、34、41、42、43,共12个两位数。

小升初数学数的排列组合

小升初数学数的排列组合

小升初数学数的排列组合1. 从数字1到数字5中任取两个不同的数字组成一个两位数,可以组成多少个不同的两位数?2. 一个书架上有6本不同的数学书和4本不同的科学书,如果从中任意取出一本书,共有多少种取法?3. 小华有3件不同颜色的上衣和2条不同款式的裤子,他有多少种不同的穿衣搭配方式?4. 从字母A、B、C、D中选取两个不同的字母进行排列,可以得到多少种不同的排列方式?5. 一个密码锁由数字1至5组成,每次使用需输入3个数字且可以重复,问有多少种不同的密码组合?6. 有7名学生站成一排拍照,其中小明和小红希望站在一起,有多少种不同的站位方式?7. 从6个苹果和4个橙子中任取3个水果,要求至少有一个苹果,有多少种取法?8. 一副扑克牌中去掉大小王,剩余52张牌,从中随机抽取5张牌,有多少种不同的抽法?9. 一个篮子里有8个红球和6个蓝球,从中任意取出3个球,有多少种不同的取球方式?10. 一个小组有4名男生和3名女生,从中选出2名男生和1名女生参加活动,有多少种不同的选法?11. 一个书包里有5本不同的数学书,要从中选出2本带到学校,有多少种选择方法?12. 从数字0到9中选取3个不同的数字组成一个三位数,有多少种可能的组合?13. 一个圆形餐桌周围有7个座位,若主宾已确定位置,其余6人随意就坐,有多少种不同的坐法?14. 一个球队有11名首发球员,其中守门员固定位置,其余10人中选出3名前锋,有多少种选法?15. 从5种不同的饮料中选择2种,有多少种不同的选择方式?16. 一个密码由3个数字组成,每个数字可以是1到7中的任意一个,有多少种不同的密码设置?17. 有4件不同颜色的T恤和3条不同款式的短裤,小李有多少种不同的夏日穿搭方式?18. 从8名候选人中选出正副班长各一名,有多少种不同的选举结果?19. 从数字1到10中任选3个数字(可重复),组成一个无重复数字的三位数,有多少种组合方式?20. 一个音乐会需要从10首歌曲中选择3首进行表演,有多少种不同的选歌方案?21. 有5个不同的景点,小张计划周末去其中的2个,有多少种不同的选择方案?22. 从英文字母A到H中任选3个字母排列,有多少种不同的排列方式?23. 一个班有30名学生,要选出5名学生组成一个学习小组,有多少种不同的选法?24. 从数字1到数字9中选出3个数字(可重复),组成一个三位数,有多少种不同的组合?25. 一个箱子里有3个红球、4个蓝球和2个黄球,从中随机取出2个球,有多少种不同的取法?26. 一个舞蹈队有10名队员,要选出3人作为领舞,有多少种不同的选择方式?27. 一个书架上层放有5本小说,下层放有7本历史书,从中任意取一本书阅读,有多少种取法?28. 从数字0到9中选取4个不同的数字组成一个没有重复数字的四位数,有多少种可能的组合?29. 一个篮子里有3个苹果、4个香蕉和2个橘子,从中任意取出4个水果,要求每种水果至少取一个,有多少种取法?30. 一个足球队有15名队员,其中必须选出1名队长和1名副队长,有多少种不同的选法?31. 从6种不同的早餐食物中选择2种作为明天的早餐,有多少种不同的选择方式?32. 一个圆形花坛周围有10个等距离的花盆位置,若已确定一种花卉种植在第一个位置,其余9个位置种植另外两种花卉,每种至少一盆,有多少种不同的种植方案?33. 从10名学生中选出3人分别担任班长、学习委员和体育委员,有多少种不同的任命方式?34. 一个书架上有3本小说、4本传记和2本科普书,从中任意取出2本书籍,要求两本书种类不同,有多少种取法?35. 一个密码由2个大写字母和3个小写字母组成,有多少种不同的密码组合?36. 一个篮球队有12名队员,要选出5名队员上场比赛,有多少种不同的阵容组合?37. 从数字1到数字7中任选3个数字(不可重复),组成一个无重复数字的三位数,有多少种组合方式?38. 一个班级有20名学生,要选出4人组成一个讨论小组,有多少种不同的选法?39. 从5种不同的水果中选择3种制作水果拼盘,有多少种不同的选择方式?40. 一个音乐会的节目单上共有8首曲目,从中选择4首进行演出,有多少种不同的选择方案?41. 一个棋盘上有8行8列共64个格子,从左上角走到右下角,只能向右或向下走,有多少种不同的走法?42. 从字母A到F中选取3个字母(可以重复)组成一个序列,有多少种不同的序列?43. 一个书架上有8本不同的书,从中选出3本借阅,有多少种不同的借阅方式?44. 从数字1到数字9中选取4个数字(不可重复),组成一个无重复数字的四位数,有多少种不同的组合?45. 一个篮子里有3个红球、3个蓝球和2个绿球,从中随机取出3个球,有多少种不同的取法?46. 一个舞蹈队有8名男生和7名女生,从中选出3男2女参加表演,有多少种不同的选法?47. 从10种不同的菜肴中选择3种作为晚餐,有多少种不同的选择方式?48. 一个篮球队有10名队员,要选出5名队员进行比赛,其中必须包括队长,有多少种不同的选法?49. 从数字1到数字6中任选3个数字(可重复),组成一个无重复数字的三位数,有多少种不同的组合?50. 一个会议有12位参与者,要从中选出3位分别担任主席、秘书和财务,有多少种不同的选举结果?。

小学奥数之排列组合问题

小学奥数之排列组合问题
题目:有五本不同的书分给甲、乙、丙三人,其中一人一本,另两人各两本,不同的分配方法有 _______ 种. 答案:90
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。

小升初复习排列组合

小升初复习排列组合

去掉的数字只能是3或9。

去掉的数字为3时,即选2,5,7,9四个数字,能排出4×3×2×1=24(个)符合要求的数,去掉的数字为9时也能排出24个符合要求得数,因此这样的四位数一共有24+24=48(个)【变式4-1】在1,2,3,4,5这五个数字中,选出四个数字组成被3除余2的四位数,这样的四位数有多少个?【变式4-2】在1,2,3,4,5这五个数字中,选出四个数字组成能被3整除的四位数,这样的四位数有多少个?【例5】从学校到少年宫有4条东西方向的马路和3条南北方向的马路相通(如图),小明从学校出发到少年宫(只许向东或向南行进),最后有多少种走法?解:为了方便解答,把图中各点用字母表示如图。

根据小明步行规则,显然可知由A到T通过AC边上的各点和AN边上的各点只有一条路线,通过E点有两条路线(即从B点、D点来各一条路线),通过H点有3条路线(即从E点来有二条路线,从G点来有一条路线),这样推断可知通过任何一个交叉点的路线总数等于通过该点左边、上方的两邻接交叉点的路线的总和,因此,可求得通过S点有4条路线,通过F点有3条路线……由此可见,由A点通过T点有10条不同的路线,所以小明从学校到少年宫最多有10种走法。

【变式5-1】从学校到图书馆有5条东西的马路和5条南北的马路相通(如图)。

李菊从学校出发步行到图书馆(只许向东或向南行进),最多有多少种走法?【变式5-2】某区的街道非常整齐(如图),从西南角A处走到东北角B处,要求走最近的路,一共有多少种不同的走法?5、在1,4,5,6,7这五个数字中,选出四个数字组成被3除余1的四位数,这样的四位数有多少个?6、如图有6个点,9条线段,一只小虫从A 点出发,要沿着某几条线段爬到F 点。

行进中,同一个点或同一条线段只能经过一次,这只小虫最多有多少种不同的走法?1、今年父亲36岁,儿子8岁, 年后儿子的年龄是爸爸年龄的125。

2、一片草地,草每天生长量相同,17头牛30天可将草吃完,19头年24天可将草吃完。

小升初奥数排列组合

排列组合教学目标1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。

5.根据不同题目灵活运用计数方法进行计数。

知识点拨:一.加法原理:做一件事情,完成它有N类办法,在第一类办法中有M1中不同的方法,在第二类办法中有M2中不同的方法,……,在第N类办法中有M n种不同的方法,那么完成这件事情共有M1+M2+……+M n种不同的方法。

二.乘法原理:如果完成某项任务,可分为k个步骤,完成第一步有n1种不同的方法,完成第二步有n2种不同的方法,……完成第k步有nk种不同的方法,那么完成此项任务共有n1×n2×……×nk种不同的方法。

三.两个原理的区别⏹做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。

每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)⏹做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.四.排列及组合基本公式1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 P mn表示.P mn=n(n-1)(n-2)……(n-m+1)=n!(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m个元素的组合数.用符号C mn表示.C mn = P mn/m!=n!(n-m)!×m!一般当遇到m比较大时(常常是m>0.5n时),可用C mn = C n-mn来简化计算。

小升初数学排列组合练习及答案

小升初数学排列组合练习及答案小升初数学排列组合练习及答案1、将A,B,C,D,E,F分成三组,共有多少种不同的分法解:要将A,B,C,D,E,F分成三组,可以分为三类办法:(1-1-4)分法,(1-2-3)分法,(2-2-2)分法下面分别计算每一类的方法数:第一类(1-1-4)分法,这是一类整体不等分局部等分的问题,可以采用两种解法解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个元素各作为一个组,有种不同的分法解法二:从六个元素中先取出一个元素作为一个组有种选法,再从余下的五个元素中取出一个元素作为一个组有种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以所以共有=15种不同的分组方法第二类(1-2-3)分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有种不同的选法,余下的.最后三个元素自然作为一个组,根据乘法原理共有=60种不同的分组方法第三类(2-2-2)分法,这是一类整体"等分"的问题,首先从六个不同元素中选取出两个不同元素作为一个组有种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有种不同的取法,最后余下的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以,因此共有=15种不同的分组方法根据加法原理,将A,B,C,D,E,F六个元素分成三组共有:15+60+15=90种不同的方法2、一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有种不同的坐法,再将三个空坐位"插入"到坐好的六个人之间的五个"间隙"(不包括两端)之中的三个不同的位置上有种不同的"插入"方法根据乘法原理共有=7200种不同的坐法。

小学奥数精讲:排列组合常见解题方法

小学奥数精讲:排列组合常见解题方法小学奥数精讲:排列组合问题常见解题方法方法一:捆绑法“相邻问题”——捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序的解题策略。

例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“A,B”、C、D、E“四个人”进行排列,有在一起的A、B两人也要排序,有种。

例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。

若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种?【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有法,2本外语书有种排法;根据分步乘法原理共有排法种排法;又3本数学书有种排种。

种排法。

又因为捆绑种排法。

根据分步乘法原理,总的排法有【提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题。

解题过程是“先捆绑,再排列”。

方法二:插空法“不邻问题”——插空法,即在解决关于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。

例3.若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?【解析】:题目要求A和B两个人必须隔开。

第一将C、D、E三个人排列,有种排法;若排成D C E,则D、C、E“中央”和“两端”共有四个空位置,也等于:︺D︺C︺E︺,此时可将A、B两人插到四个空位置中的任意两个位置,有共有排队方法:。

种插法。

由乘法原理,例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有8个空位,有种方法;用末了一个节目去插9个空位,有=504种。

小升初奥数—排列组合问题

小升初奥数—排列组合问题一、排列组合的应用【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。

【解析】 (1)775040P =(种)。

(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。

【例 2】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种。

第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312⨯=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次.【例 3】 一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?【解析】 设A :BC DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有26P 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有27P 种选法,所以共有26P ×27P =1260种选法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初奥数—排列组合问题一、 排列组合的应用【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。

【解析】 (1)775040P =(种)。

(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。

【例 2】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种。

第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312⨯=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次.【例 3】 一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?【解析】 设A :BC DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有26P 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有27P 种选法,所以共有26P ×27P =1260种选法。

从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个。

【例 4】 4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法:⑴ 甲不在中间也不在两端; ⑵ 甲、乙两人必须排在两端;⑷男女相间.【解析】⑴先排甲,9个位置除了中间和两端之外的6个位置都可以,有6种选择,剩下的8个人随意排,也就是8个元素全排列的问题,有888765432140320P=⨯⨯⨯⨯⨯⨯⨯=(种)选择.由乘法原理,共有640320241920⨯=(种)排法.⑵甲、乙先排,有22212P=⨯=(种)排法;剩下的7个人随意排,有7 776543215040P=⨯⨯⨯⨯⨯⨯=(种)排法.由乘法原理,共有2504010080⨯=(种)排法.⑶分别把男生、女生看成一个整体进行排列,有22212P=⨯=(种)不同排列方法,再分别对男生、女生内部进行排列,分别是4个元素与5个元素的全排列问题,分别有4 4432124P=⨯⨯⨯=(种)和5554321120P=⨯⨯⨯⨯=(种)排法.由乘法原理,共有2241205760⨯⨯=(种)排法.⑷先排4名男生,有44432124P=⨯⨯⨯=(种)排法,再把5名女生排到5个空档中,有5 554321120P=⨯⨯⨯⨯=(种)排法.由乘法原理,一共有241202880⨯=(种)排法。

【例 5】一台晚会上有6个演唱节目和4个舞蹈节目.求:⑴当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?⑵当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序?【解析】⑴先将4个舞蹈节目看成1个节目,与6个演唱节目一起排,则是7个元素全排列的问题,有7 77!76543215040P==⨯⨯⨯⨯⨯⨯=(种)方法.第二步再排4个舞蹈节目,也就是4个舞蹈节目全排列的问题,有444!432124P==⨯⨯⨯=(种)方法.根据乘法原理,一共有504024120960⨯=(种)方法.⑵首先将6个演唱节目排成一列(如下图中的“□”),是6个元素全排列的问题,一共有6 66!654321720P==⨯⨯⨯⨯⨯=(种)方法.×□×□×□×□×□×□×第二步,再将4个舞蹈节目排在一头一尾或2个演唱节目之间(即上图中“×”的位置),这相当于从7个“×”中选4个来排,一共有477654840P=⨯⨯⨯=(种)方法.根据乘法原理,一共有720840604800⨯=(种)方法。

【例 6】⑴从1,2,…,8中任取3个数组成无重复数字的三位数,共有多少个?(只要求列式)⑵从8位候选人中任选三位分别任团支书,组织委员,宣传委员,共有多少种不同的选法?⑶3位同学坐8个座位,每个座位坐1人,共有几种坐法?⑷8个人坐3个座位,每个座位坐1人,共有多少种坐法?⑸一火车站有8股车道,停放3列火车,有多少种不同的停放方法?⑹8种不同的菜籽,任选3种种在不同土质的三块土地上,有多少种不同的种法?【解析】⑴按顺序,有百位、十位、个位三个位置,8个数字(8个元素)取出3个往上排,有38P种.⑵3种职务3个位置,从8位候选人(8个元素)任取3位往上排,有38P种.⑶3位同学看成是三个位置,任取8个座位号(8个元素)中的3个往上排(座号找人),每确定一种号码即对应一种坐法,有38P种.⑷3个坐位排号1,2,3三个位置,从8人中任取3个往上排(人找座位),有38P种.⑸3列火车编为1,2,3号,从8股车道中任取3股往上排,共有38P种.⑹土地编1,2,3号,从8种菜籽中任选3种往上排,有38P种。

【例 7】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛?【解析】第一阶段中,每个小组内部的6个人每2人要赛一场,组内赛266515 21C⨯==⨯场,共8个小组,有243⨯组,有6424⨯=场;第三阶段赛224+=场.根据加法原理,整个赛程一共有120244148++=场比赛。

【例 8】 8个人站队,冬冬必须站在小悦和阿奇的中间(不一定相邻),小慧和大智不能相邻,小光和大亮必须相邻,满足要求的站法一共有多少种?【解析】 冬冬要站在小悦和阿奇的中间,就意味着只要为这三个人选定了三个位置,中间的位置就一定要留给冬冬,而两边的位置可以任意地分配给小悦和阿奇. 小慧和大智不能相邻的互补事件是小慧和大智必须相邻 小光和大亮必须相邻,则可以将两人捆绑考虑只满足第一、三个条件的站法总数为:3212372423P P P 3360C C ⨯⨯⨯⨯=(种) 同时满足第一、三个条件,满足小慧和大智必须相邻的站法总数为:3222262322P P P P 960C ⨯⨯⨯⨯=(种)因此同时满足三个条件的站法总数为:33609602400-=(种)。

【例 9】 某池塘中有A B C 、、三只游船,A 船可乘坐3人,B 船可乘坐2人,C 船可乘坐1人,今有3个成人和2个儿童要分乘这些游船,为安全起见,有儿童乘坐的游船上必须至少有个成人陪同,那么他们5人乘坐这三支游船的所有安全乘船方法共有多少种?【解析】 由于有儿童乘坐的游船上必须至少有1个成人陪同,所以儿童不能乘坐C 船.⑴若这5人都不乘坐C 船,则恰好坐满A B 、两船,①若两个儿童在同一条船上,只能在A 船上,此时A 船上还必须有1个成人,有133C =种方法;②若两个儿童不在同一条船上,即分别在A B 、两船上,则B 船上有1个儿童和1个成人,1个儿童有122C =种选择,1个成人有133C =种选择,所以有236⨯=种方法.故5人都不乘坐C 船有369+=种安全方法;⑵若这5人中有1人乘坐C 船,这个人必定是个成人,有133C =种选择.其余的2个成人与2个儿童,①若两个儿童在同一条船上,只能在A 船上,此时A 船上还必须有1个成人,有122C =种方法,所以此时有326⨯=种方法;②若两个儿童不在同一条船上,那么B 船上有1个儿童和1个成人,此时1个儿童和1个成人均有122C =种选择,所以此种情况下有32212⨯⨯=种方法;故5人中有1人乘坐C 船有61218+=种安全方法.所以,共有91827+=种安全乘法.【例 10】 从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?⑴恰有3名女生入选;⑵至少有两名女生入选;⑶某两名女生,某两名男生必须入选; ⑷某两名女生,某两名男生不能同时入选;⑸某两名女生,某两名男生最多入选两人。

【解析】 ⑴恰有3名女生入选,说明男生有5人入选,应为3581014112C C ⨯=种; ⑵要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871181010843758C C C C --⨯=;⑶4人必须入选,则从剩下的14人中再选出另外4人,有4141001C =种; ⑷从所有的选法818C 种中减去这4个人同时入选的414C 种: 84181443758100142757C C -=-=.⑸分三类情况:4人无人入选;4人仅有1人入选;4人中有2人入选,共:817261441441434749C C C C C +⨯+⨯=。

【例 11】 在10名学生中,有5人会装电脑,有3人会安装音响设备,其余2人既会安装电脑,又会安装音响设备,今选派由6人组成的安装小组,组内安装电脑要3人,安装音响设备要3人,共有多少种不同的选人方案?【解析】 按具有双项技术的学生分类:⑴ 两人都不选派,有3554310321C ⨯⨯==⨯⨯(种)选派方法;若此人要安装电脑,则还需2人安装电脑,有25541021C ⨯==⨯(种)选法,而另外会安装音响设备的3人全选派上,只有1种选法.由乘法原理,有10110⨯=(种)选法;若此人安装音响设备,则还需从3人中选2人安装音响设备,有2332321C ⨯==⨯(种)选法,需从5人中选3人安装电脑,有3554310321C ⨯⨯==⨯⨯(种)选法.由乘法原理,有31030⨯=(种)选法.根据加法原理,有103040+=(种)选法; 综上所述,一共有24080⨯=(种)选派方法. ⑶ 两人全派,针对两人的任务可分类讨论如下:①两人全安装电脑,则还需要从5人中选1人安装电脑,另外会安装音响设备的3人全选上安装音响设备,有515⨯=(种)选派方案; ②两人一个安装电脑,一个安装音响设备,有22535432602121C C ⨯⨯⨯=⨯=⨯⨯(种)选派方案; ③两人全安装音响设备,有355433330321C ⨯⨯⨯=⨯=⨯⨯(种)选派方案.根据加法原理,共有5603095++=(种)选派方案.综合以上所述,符合条件的方案一共有108095185++=(种).【例 12】 有11名外语翻译人员,其中5名是英语翻译员,4名是日语翻译员,另外两名英语、日语都精通.从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作.问这样的分配名单共可以开出多少张?【解析】 针对两名英语、日语都精通人员(以下称多面手)的参考情况分成三类:⑴ 多面手不参加,则需从5名英语翻译员中选出4人,有41555C C ==种选择,需从4名日语翻译员中选出4人,有1种选择.由乘法原理,有515⨯=种选择.⑵ 多面手中有一人入选,有2种选择,而选出的这个人又有参加英文或日文翻译两种可能:如果参加英文翻译,则需从5名英语翻译员中再选出3人,有3554310321C ⨯⨯==⨯⨯种选择,需从4名日语翻译员中选出4人,有1种选择.由乘法原理,有210120⨯⨯=种选择;如果参加日文翻译,则需从5名英语翻译员中选出4人,有41555C C ==种选择,需从4名日语翻译员中再选出3名,有31444C C ==种选择.由乘法原理,有25440⨯⨯=种选择.根据加法原理,多面手中有一人入选,有204060+=种选择.⑶ 多面手中两人均入选,对应一种选择,但此时又分三种情况: ①两人都译英文;②两人都译日文;③两人各译一个语种.情况①中,还需从5名英语翻译员中选出2人,有25541021C ⨯==⨯种选择.需从4名日语翻译员中选4人,1种选择.由乘法原理,有110110⨯⨯=种选择. 情况②中,需从5名英语翻译员中选出4人,有41555C C ==种选择.还需从4名日语翻译员中选出2人,有2443621C ⨯==⨯种选择.根据乘法原理,共有15630⨯⨯=种选择. 情况③中,两人各译一个语种,有两种安排即两种选择.剩下的需从5名英语翻译员中选出3人,有3554310321C ⨯⨯==⨯⨯种选择,需从4名日语翻译员中选出3人,有31444C C ==种选择.由乘法原理,有1210480⨯⨯⨯=种选择.综上所述,由加法原理,这样的分配名单共可以开出560120185++=张.二、 几何计数【例 13】 下图中共有____个正方形。

相关文档
最新文档