热电偶的温度测量工作原理

合集下载

热电偶用于温度测量电路[总结]

热电偶用于温度测量电路[总结]

热电偶用于温度测量电路1.1热电偶工作原理:热电偶是一种感温元件,热电偶由两种不同成份的均质金属导体组成,形成两个热电极端。

温度较高的一端为工作端或热端,温度较低的一端为自由端或冷端,自由端通常处于某个恒定的温度下。

当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在塞贝克电动势—热电动势,这就是所谓的塞贝克效应。

测得热电动势后, 即可知道被测介质的温度。

热电偶温度测量由如图所示三部分组成:⑴ 热电偶⑵ 毫伏测量电路或毫伏测量仪表⑶ 连接热电偶和毫伏测量电路的补偿导线与铜线图1-1热电偶温度测量电路:图1-2原理如图1-2所示,热电偶产生的毫伏信号经放大电路后由VT 端输出。

它可作为A/D 转换接口芯片的模拟量输入。

第1级反相放大电路,根据运算放大器增益公式: 1111012L L O U R U R U ⨯-=⨯-=增益为10。

第2级反相放大电路,根据运算放大器增益公式:11101200561O O O VT U RW R U R RW U V ⨯+-=⨯+-===)( 增益为20。

总增益为200,由于选用的热电偶测温范围为0~200℃变化,热电动势0~10mV 对应放大电路的输出电压为0~2V 。

A/D 转换接口芯片最好用5G14433,它是三位半双积分A/D ,其最大输入电压为1999mV 和1999V 两档(由输入的基准电压VR 决定)。

我们应选择1999V 档,这样5G14433转换结果(BCD 码)和温度值成一一对应关系。

如读到的BCD 码为01、00、01、05,则温度值为101℃。

因此,用5G14433 A/D 芯片的话,你可以将转换好的A/D 结果(BCD 码)右移一位(除以10)后直接作为温度值显示在显示器上。

如果A/D 转换芯片用ADC0809,则在实验前期,应先做两张表格:一、放大电路的输出电压和温度的对应关系,一一测量并记录下来制成表格;二、ADC0809的转换结果(数字量)和输入的模拟电压一一对应关系记录下来并制成表格,然后将这两张表格综合成温度值和数字值的一一对应关系表存入系统内存中,最后,编制并调试实验程序,程序中将读到的A/D 转换结果(数字量)通过查表转换成温度值在显示器上显示。

热电偶测量温度的原理

热电偶测量温度的原理

热电偶测量温度的原理
热电偶是一种常用的测量温度的传感器,它利用热电效应的原理进行测量。

下面就让我们来分步骤了解一下热电偶测量温度的原理。

首先,我们需要了解热电效应的原理。

热电效应是指当两种不同金属连接起来形成一个闭合回路时,当回路中有一个区域的温度不同于其他区域时,回路两端产生的电势差就是热电势,即热电效应。

其次,我们需要知道热电偶的基本组成。

热电偶由两种不同金属的导线焊接在一起构成,其中一根导线被称为热电偶的“热端”,另一根导线被称为热电偶的“冷端”。

接着,我们需要了解热电偶测量温度的原理。

当热电偶的热端和冷端分别接触到不同温度的物体时,由于热电效应的原理,两端之间会产生一个电势差(热电势)。

利用热电势的大小和温度之间的线性关系,我们就可以通过测量热电偶的电势差,推算出热端和冷端所接触的物体温度的差值,从而得到被测温度。

最后,我们需要注意热电偶的使用细节。

由于热电偶的热端需要直接接触被测温度的物体,因此热电偶的使用需要注意物体表面的状况(尽量平整、洁净),以保证测量精度。

此外,热电偶的范围和精度也需要根据实际测量需求选择合适的型号。

总体而言,热电偶测量温度的原理简单易懂,并且测量精度较高,因此被广泛应用于各个领域的温度测量中。

热电偶的四种原理

热电偶的四种原理

热电偶的四种原理热电偶是一种用来测量温度的仪器,它由两个不同的金属接触片组成,一段金属放入环境中,另一段放入表盘。

当金属接触片受热时,根据四种原理可以产生电信号,可以通过测量电信号来确定温度:第一种原理:自发电阻原理这种原理是使用自发电阻原理,即基于物质可以自发电阻的原理来测量温度的方法。

热电偶的作用是利用金属接触片的电阻受温度的影响而发生变化,进而将该变化化为电信号。

当温度变化时,金属接触片的电阻也会随之变化。

这种变化的电阻可以测量出温度变化。

第二种原理:热电效应原理这种原理是基于热电效应原理,特别是Seebeck效应原理,即当两种不同的金属接触片置于不同温度下时,会引起电势差,从而产生一种温度依赖性的电信号,就是热电效应。

根据该原理,接触片之间的温度差异会改变电势差,进而产生温度依赖性的电信号,以此来测量温度。

第三种原理:电热原理这种原理是基于电热原理,即在电流和元件之间存在热损失,这种热损失是可以测量出来的,可以用来测量温度。

热电偶内部会有一根接触片与一根电源绝缘,仅允许电流通过一段接触片,接触片上引出的电热损失流入表盘,从而产生一种温度依赖性的电信号,便可以用来测量温度。

第四种原理:光驱动原理这种原理是基于光驱动原理,即利用光来激发金属接触片上的电子,产生温度依赖性的电信号,从而测量温度。

热电偶内部会有一根接触片固定在光驱动器上,当光驱动器激发接触片上的电子时,便产生了一种温度依赖性的电信号,以此来测量温度。

总之,热电偶是一种常见的温度测量仪器。

热电偶的原理其实很简单,它是利用金属接触片的电阻受温度辐射引起的变化而产生电信号来测量温度的方法,其中包括自发电阻原理、热电效应原理、电热原理和光驱动原理。

它们都是以各种方式将温度的变化化为温度依赖性的电信号,以此来测量温度。

热电偶测温原理

热电偶测温原理

热电偶测温原理
热电偶是一种常用的温度传感器,它利用两种不同金属的导电性能差异产生的热电动势来测量温度。

热电偶测温原理基于热电效应,即当两种不同金属连接成回路时,若两个连接点处于不同温度,就会在回路中产生热电动势,这种现象被称为热电效应。

热电偶的测温原理主要依赖于两个基本规律,温差电动势规律和温度与电动势的关系规律。

首先,根据温差电动势规律,热电偶的工作原理是利用两个不同金属导线连接成回路后,当两个连接点处于不同温度时,就会在回路中产生热电动势。

这是因为金属导体中的自由电子在受热后运动加剧,导致电子在两种金属导体之间形成电子云,从而产生热电动势。

这个热电动势的大小与金属种类、温度差异以及连接点材料的特性有关。

其次,根据温度与电动势的关系规律,热电偶的工作原理是利用热电动势与温度之间的线性关系来测量温度。

一般来说,热电偶的电动势与温度呈线性关系,可以通过标定曲线将电动势与温度一一对应起来,从而实现温度的测量。

热电偶测温原理的核心在于利用热电效应产生的热电动势来测量温度,其测温范围广、响应速度快、结构简单、价格低廉等特点,使其在工业生产中得到广泛应用。

在实际应用中,我们需要注意热电偶的选型、安装位置、温度补偿等因素,以确保测温的准确性和稳定性。

总的来说,热电偶测温原理是基于热电效应的,利用热电动势与温度之间的线性关系来实现温度的测量。

通过合理选型和使用,热电偶可以在工业生产中发挥重要作用,帮助我们实现对温度的准确监测和控制。

热电偶测量温度原理

热电偶测量温度原理

1、2两点的温度不同时,回路中就会产生热电势,因而•就有电流产生,电流表就会•发生偏转,这一现象称为热•电效应(塞贝克效应),产生的电势、电流分别叫热电•势、热电流。

热电偶温度计属于接触式温度测量仪表。

是根据热电效应即塞贝克效应原理来测量温度的,是温度测量仪表中常用的测温元件。

将不同材料的导体A、B接成闭合回路,接触测温点的一端称测量端,一端称参比端。

若测量端和参比端所处温度t和t0 不同,则在回路的A、B之间就产生一热电势EAB(t,t0 ),这种现象称为塞贝克效应,即热电效应。

EAB大小随导体A、B的材料和两端温度t和t0 而变,这种回路称为原型热电偶。

在实际应用中,将A、B的一端焊接在一起作为热电偶的测量端放到被测温度t处,而将参比端分开,用导线接入显示仪表,并保持参比端接点温度t0稳定。

显示仪表所测电势只随被测温度而t变化。

第一节热电偶的测温原理在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。

热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。

可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。

尽管如此,热电偶仍在工业生产和科研活动中起着举足轻重的作用。

下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。

一、塞贝克效应和塞贝克电势热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。

在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1-1)中,如果对接点a加热,那么,a,b两接点的温度就会不同,温度不同,就会有电流产生,使得接在电路中的电流表发生偏转。

热电偶测温电路原理

热电偶测温电路原理

热电偶测温电路原理
热电偶是一种常用的温度传感器,它基于热电效应原理实现温度测量。

热电偶由两种不同材料组成的导线焊接在一起,形成一个闭环热电回路。

热电偶的工作原理基于热电效应,即不同材料之间产生的温差与电压之间存在一定的关系。

当热电偶的两端温度不一致时,材料之间的温差会导致电子在两种材料之间发生扩散,从而产生电势差。

这个电势差可以通过电路进行测量和分析,从而得到热电偶的温度。

热电偶测温电路一般包括一个伏特计(电压测量仪)和一个连接热电偶的电缆。

电缆的一端连接到热电偶的焊接点,并通过螺丝固定。

另一端连接到伏特计上的输入端口。

当热电偶两端的温度不一致时,热电偶会产生一个电势差,此时伏特计会测量到一个相应的电压信号。

伏特计可以将电压信号转换为温度值,并通过显示屏或传输到其他设备进行进一步处理。

为了保证测量的准确性和可靠性,热电偶测温电路通常需要进行冷端补偿。

冷端补偿是通过将一个温度传感器(通常是一个铜-铳热电偶)连接到测量回路的冷端,以便测量环路中的环境温度并进行修正。

总结而言,热电偶测温电路利用热电效应原理,通过检测热电
偶两端的电势差来测量温度。

该电势差可以通过电压测量仪进行检测和转换为温度值。

冷端补偿则可以提高测量的准确性。

热电偶工作原理及简图

热电偶工作原理及简图

热电偶工作原理及简图
热电偶是一种常用的温度测量仪器,它利用热电效应来测量温度。

热电偶由两
种不同金属导线焊接在一起制成,当两种金属导线的焊点处于不同温度时,就会产生热电势差,从而产生电流。

这种电流与焊点的温度差成正比,因此可以通过测量电流来间接测量温度。

热电偶的工作原理主要基于两种热电效应,塞贝克效应和泊松效应。

塞贝克效
应是指当两种不同金属导体形成闭合回路时,如果两个焊点处于不同温度,就会在闭合回路中产生电动势。

而泊松效应则是指当两种不同金属导体形成开路时,如果两个焊点处于不同温度,就会在开路中产生电动势。

热电偶的工作原理可以用一个简单的示意图来说明,两种不同金属导线A和B
焊接在一起,形成闭合回路。

当焊点处于不同温度时,就会在闭合回路中产生电动势,从而产生电流。

通过测量这个电流的大小,就可以间接测量焊点的温度差,进而得知温度。

热电偶的工作原理虽然简单,但是其测量温度的精度很高,可以达到几个小数
点的精度。

因此,在工业生产和科学研究中得到了广泛的应用。

热电偶的优点还包括响应速度快、结构简单、成本低廉等,因此被广泛应用于各种温度测量场合。

总之,热电偶是一种利用热电效应来测量温度的仪器,其工作原理简单而精确,因此在各种工业生产和科学研究中得到了广泛的应用。

通过测量热电偶产生的电流,可以间接测量温度,其测量精度高,响应速度快,结构简单,成本低廉,是一种非常实用的温度测量仪器。

热电偶测温原理是什么

热电偶测温原理是什么

热电偶测温原理是什么热电偶是一种常用的温度传感器,其测温原理是基于热电效应。

热电偶由两种不同金属导线组成,它们的接触点被称为热电接头。

当热电接头处于不同温度时,就会产生热电动势,即温差电动势。

这种温差电动势可以通过测量电压来确定温度,从而实现温度的测量。

热电偶的测温原理基于两种主要效应,塞贝克效应和泊松效应。

塞贝克效应是指当两种不同金属导体的热电接头处于温度差时,会产生电动势。

而泊松效应则是指当电流通过两种不同金属导体时,会产生热量,从而产生温度差。

这两种效应共同作用,使得热电偶成为一种可靠的温度传感器。

热电偶的工作原理可以用一个简单的例子来解释。

假设我们有一根由铁和铜两种金属组成的热电偶,将其两端分别连接到一个电压表上。

当热电偶的接头处于不同温度时,铁和铜之间会产生热电动势,从而在电压表上显示出一个电压值。

通过这个电压值,我们就可以计算出热电偶接头的温差,进而确定被测物体的温度。

热电偶测温原理的优点在于其测量范围广,可以覆盖从极低温度到极高温度的范围。

此外,热电偶还具有响应速度快、结构简单、成本低廉等优点,因此在工业生产和科学研究中得到了广泛的应用。

然而,热电偶也存在一些局限性,例如对温度变化的响应不够灵敏,以及在测量极低温度时易受到环境干扰的影响。

因此,在实际应用中,需要根据具体的测量要求选择合适的温度传感器。

总的来说,热电偶测温原理是基于热电效应,通过测量热电接头产生的电动势来确定温度。

它具有测量范围广、响应速度快、成本低廉等优点,是一种常用的温度传感器。

然而,在实际应用中需要注意其局限性,选择合适的温度传感器以满足具体的测量要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热电偶的温度测量工作原理
————————————————————————————————作者:————————————————————————————————日期:
热电偶的温度测量工作原理
热电偶是一种感温元件,是一种仪表。

它直接测量温度,并把温度信号转换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。

热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。

两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。

根据热电动势与温度的函数关系, 制成热电偶分度表;
K型热电偶分度表
分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。

热电偶测温基本原理:将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

相关文档
最新文档