数字信号的调制传输.ppt
合集下载
通信原理(第八章新型数字带通调制技术)PPT课件

实例分析
QPSK(四相相移键控调制)
在PSK的基础上,将相位划分为四个不同的状态,每个状态表示两个 比特的信息,提高了频谱利用率和传输速率。
16-QAM(十六进制正交幅度调制)
在QAM的基础上,将幅度划分为16个不同的状态,每个状态表示4个 比特的信息,进一步提高了频谱利用率和传输速率。
OFDM(正交频分复用调制)
20世纪70年代,随着数字信号处理技 术的发展,多种新型数字带通调制技 术如QPSK、QAM等开始出现。
02
数字带通调制技术的基本原理
数字信号的调制过程
调制概念
调制是将低频信号(如声音、图像等)转换成高频信号的过程, 以便传输。
数字信号的调制方式
数字信号的调制方式主要有振幅键控(ASK)、频率键控(FSK) 和相位键控(PSK)等。
通信原理(第八章新型数字带 通调制技术)ppt课件
• 引言 • 数字带通调制技术的基本原理 • 新型数字带通调制技术介绍 • 新型数字带通调制技术的应用场景
• 新型数字带通调制技术的优势与挑 战
• 新型数字带通调制技术的实现方法 与实例分析
01
引言
新型数字带通调制技术的定义与重要性
定义
新型数字带通调制技术是指利用数字 信号调制载波的幅度、频率或相位, 以实现信号传输的技术。
光纤通信系统
在光纤通信系统中,新型数字带通调制技术如偏振复用正交频分复用(PD-OFDM) 被用于实现高速、大容量的数据传输,满足不断增长的网络流量需求。
卫星通信系统
广播卫星
在广播卫星中,新型数字带通调制技术如正交频分复用(OFDM)被用于发送多路电视信号和其他多媒 体内容,提供高质量的广播服务。
将高速数据流分割成多个低速数据流,在多个子载波上进行调制,提 高了频谱利用率和抗多径干扰能力。
多进制数字调制系统PPT课件(通信原理)

若各信号状态出现的概率相等,则调制信 号的平均发送功率
13
8PSK信号点
14
在L=8 的5种信号星座图可以看 出,(4) 是最佳的一种方案
在同样的性能下,即在保证信 号状态点之间的最小距离为2 的情况下,(4)方案所用的平 均信号功率最小.
15
1
6.4.1 MASK
L电平的调制信号
可看成由时间上不重叠的L个不同振幅值 的OOK信号的叠加,因而,其功率谱密度便是这L 个信号的功率谱密度之和,尽管叠加后的谱结构 很复杂,但就带宽而言,L电平调制信号的带宽与 二电平的相同.
2
A(t)
×
x(t)
A(t)
BPF
× LPF 抽样判决
… 门限电平
每个四进制码元又被称为双比特码元
ab
(A方式) (B方式)
00 10 11 01
0° 90° 180° 270°
225° 315° 45° 135°
8
10
01
11
11
00
参考相位
参考相位
00
10
01
QPSK信号的矢量图
9
a
×
输入
串/并变换
-π/2
b
×
输出
+
调制
×
LPF
抽样判决
a
-π/2
并/串
×
多进制数字调制系统
特点 1. 在相同的码元传输速率下,信息传输速
率比二进制系统高。 Rb=RBN㏒2N b/s 2. 在相同的信息传输速率下,多进制码元
传输速率比二进制低。增大码元宽度, 会增加码元的能量,并能减少由于信道 特性引起的码间干扰的影响。 3. 在相同的噪声下,多进制数字调制系统 的抗噪声性能低于二进制数字调制系统。
13
8PSK信号点
14
在L=8 的5种信号星座图可以看 出,(4) 是最佳的一种方案
在同样的性能下,即在保证信 号状态点之间的最小距离为2 的情况下,(4)方案所用的平 均信号功率最小.
15
1
6.4.1 MASK
L电平的调制信号
可看成由时间上不重叠的L个不同振幅值 的OOK信号的叠加,因而,其功率谱密度便是这L 个信号的功率谱密度之和,尽管叠加后的谱结构 很复杂,但就带宽而言,L电平调制信号的带宽与 二电平的相同.
2
A(t)
×
x(t)
A(t)
BPF
× LPF 抽样判决
… 门限电平
每个四进制码元又被称为双比特码元
ab
(A方式) (B方式)
00 10 11 01
0° 90° 180° 270°
225° 315° 45° 135°
8
10
01
11
11
00
参考相位
参考相位
00
10
01
QPSK信号的矢量图
9
a
×
输入
串/并变换
-π/2
b
×
输出
+
调制
×
LPF
抽样判决
a
-π/2
并/串
×
多进制数字调制系统
特点 1. 在相同的码元传输速率下,信息传输速
率比二进制系统高。 Rb=RBN㏒2N b/s 2. 在相同的信息传输速率下,多进制码元
传输速率比二进制低。增大码元宽度, 会增加码元的能量,并能减少由于信道 特性引起的码间干扰的影响。 3. 在相同的噪声下,多进制数字调制系统 的抗噪声性能低于二进制数字调制系统。
数字信号调制.ppt

注:在信号检测一章要利用基函数概念。
8.2 数字信号角调制的参数描述
8.2.3 FSK信号的频率参数描述
一、时---频模型
M个相距 f 随时间间隔T 跳变,构成 MFSK信号
二、数学表达式
Smf (t) Re
2 e j2m T
ft
e
j0t
2 T
cos0t
2 m
ft
低频包络
Slmf (t)
图:
方型16QAM , Pav
d2 16
(4 2
8 10
4 18)
10d 2
园形16QAM
,
Pav
d2 16
[8
(2.61)2
8
(4.61)2 ]
14.03d
2
上述两结构相比,方形较好。
例8.1.2
采用256QAM正交幅度信号,载波频率为2.4GHz,信号带宽为800kHz(如
1 图),选用
如取 1 的升余弦信号,有 B 1 ,
Ts 这时有 :
2bit / s / Hz
调整码元波形,可改变16QAM的频带利用率,有:
2bit / s / Hz 4bit / s / Hz
8.1.2 数字信号的正交调幅 (QAM) 三、16QAM信号的星座图
有园形、方形两类,见图:
d
以在码距相同条件下,信号平均功率的大小来评价信号结构的优劣。上
n log2 L log2 16 4
支路比特率为: Rb 4Rp 4 400vkBaud / s 1.6Mb / s
传送的比特总速率: rb 2Rb 3.2Mb / s
(2)频带利用率:
rb
/
F
3.2Mb / s 800kHz
《数字调制解调电路》课件

通过改变信号的频率来实现调制。
数字解调的分类
同步解调
接收端和发送端的时钟同步,解调的过程中需要使 用发送端的时钟信号。
异步解调
接收端和发送端的时钟没有同步,解调的过程中不 需要使用发送端的时钟信号。
数字调制解调电路的设计要点
1
抗噪声性能
降低输入信号与噪声的干扰。
2
频率响应
保证信号的带宽和频率范围。
《数字调制解调电路》 PPT课件
数字调制解调电路的定义,基本原理和分类,涵盖幅度调制(ASK),频率调 制(FSK),相位调制(PSK)以及数字解调的分类,包括同步解调和异步解 调。同时还介绍了数字调制解调电路的设计要点和应用领域。最后,总结了 课件的主要内容。
数字调制解调电路的定义
数字调制解调电路是一种用来将模拟信号转换为数字信号或将数字信号转换为模拟信号的电路。它是数字通信 系统中的率和能量利用率。
数字调制解调电路的应用领域
数字通信
应用于现代通信系统,如手机、互联网等。
无线传输
用于卫星通信、无线电和电视广播等领域。
医疗设备
用于数字医疗设备,如心脏监护仪、血压仪等。
物联网
用于智能家居、智能城市、智能交通等。
课件结论和总结
数字调制解调电路是数字通信系统中不可或缺的部分。通过了解数字调制解 调电路的基本原理、分类、设计要点和应用领域,可以更好地理解和应用于 实际工程中,推动通信技术的发展。
数字调制解调电路的基本原理
1 调制(Modulation)
将低频信号(信息信号)嵌入到高频载波中,以便传输。
2 解调(Demodulation)
从调制信号中恢复原始的低频信号。
数字调制的分类
幅度调制(ASK)
数字解调的分类
同步解调
接收端和发送端的时钟同步,解调的过程中需要使 用发送端的时钟信号。
异步解调
接收端和发送端的时钟没有同步,解调的过程中不 需要使用发送端的时钟信号。
数字调制解调电路的设计要点
1
抗噪声性能
降低输入信号与噪声的干扰。
2
频率响应
保证信号的带宽和频率范围。
《数字调制解调电路》 PPT课件
数字调制解调电路的定义,基本原理和分类,涵盖幅度调制(ASK),频率调 制(FSK),相位调制(PSK)以及数字解调的分类,包括同步解调和异步解 调。同时还介绍了数字调制解调电路的设计要点和应用领域。最后,总结了 课件的主要内容。
数字调制解调电路的定义
数字调制解调电路是一种用来将模拟信号转换为数字信号或将数字信号转换为模拟信号的电路。它是数字通信 系统中的率和能量利用率。
数字调制解调电路的应用领域
数字通信
应用于现代通信系统,如手机、互联网等。
无线传输
用于卫星通信、无线电和电视广播等领域。
医疗设备
用于数字医疗设备,如心脏监护仪、血压仪等。
物联网
用于智能家居、智能城市、智能交通等。
课件结论和总结
数字调制解调电路是数字通信系统中不可或缺的部分。通过了解数字调制解 调电路的基本原理、分类、设计要点和应用领域,可以更好地理解和应用于 实际工程中,推动通信技术的发展。
数字调制解调电路的基本原理
1 调制(Modulation)
将低频信号(信息信号)嵌入到高频载波中,以便传输。
2 解调(Demodulation)
从调制信号中恢复原始的低频信号。
数字调制的分类
幅度调制(ASK)
《调制技术》PPT课件_OK

相位连续的2fsk信号cpfsk的带宽要比一般的2fsk带宽窄频带效率更高但带宽随着调制指数h的增大而加宽hfh太小两频点隔太近又不利于解调最小频移键控minimumshiftkeyingmsk是一种特殊的连续相位的频移键控continuouphasefrequencyshiftkeyingcpfsk是调制指数h05时的cpfsk53最小移频键控msk是一种特殊的cpfsk调制指数为05h05时满足在码元交替点相位连续的条件h05是移频键控为保证良好误码性能所允许的最小调制指数h05时波形相关系数为0信号是正交msk也是一类特殊形式的oqpsk用半正弦脉冲取代oqpsk的基带矩形脉冲54532最小频移键控msk信号的功率谱密度与qpsk信号oqpsk信号相比较msk信号比一般的2fsk信号具有更高的带宽效率但旁瓣的辐射功率仍很大90的功率带宽075r299功率带宽12r2且带外辐射为1相当于20db故msk的频谱仍然不能满足要求旁瓣的功率大是因为数字基带信号含有丰富的高频分量旁瓣的功率大是因为数字基带信号含有丰富的高频分量用低通滤波器去除高频分量便可以减少已调信号的带用低通滤波器去除高频分量便可以减少已调信号的带外辐射外辐射55非相干解调不需复杂的载波提取电路但性能稍差
的带通信号。带通信号叫做已调信号,而基带
信号叫做调制信号。调制可以通过使高频载波
随信号幅度的变化而改变载波的幅度,相位或
者频率来实现。
解调则是将基带信号从载波中提取出来以便预定
的接收者(信宿)处理和理解的过程。
调制
3
移动通信调制解调技术特点
• 移动通信面临的无线信道问题
多径衰落、干扰(自然人为ISI)、频率资源有限
DPSK发射机框图及相关波形
“1”,不
同传“0”
的带通信号。带通信号叫做已调信号,而基带
信号叫做调制信号。调制可以通过使高频载波
随信号幅度的变化而改变载波的幅度,相位或
者频率来实现。
解调则是将基带信号从载波中提取出来以便预定
的接收者(信宿)处理和理解的过程。
调制
3
移动通信调制解调技术特点
• 移动通信面临的无线信道问题
多径衰落、干扰(自然人为ISI)、频率资源有限
DPSK发射机框图及相关波形
“1”,不
同传“0”
信号调制的基本原理ppt课件

应用于中、短波无线电广播系统中,因为普通AM
制式的解调电路简单。
整理版课件
22
• 4.2.2 双边带调幅信号(DSB) • 双边带调幅信号数学表达式为
uD SB(t)K uc(t)u (t)
• •即
K U cm co sctU m co s t
(4-14)
• (4-15) u D S B ( t) 1 2 K m a U c m c o s (c ) t 1 2 K m a U c m c o s (c ) t
了解三种数字调制信号的基本原理和实现方法ppt学习交流第四章信号调制的基本原理ppt学习交流第四章信号调制的基本原理ppt学习交流41概述411信号调制与变换调制信号特点是频率较低频带较宽且相互重叠所谓调制就是将待传输的基带信号加载到高频振荡信号上的过程信号调制实质是将基带信号搬移到高频载波上去也就是频谱搬移的过程412信号调制方式与分类所谓调制就是将调制信号加载在三个参数中的某一个参数上或幅值或频率或相位随调制信号大小成线性变化的过程coscosppt学习交流412信号调制方式与分类一种是把调制信号加载在载波信号的幅值上称为幅度调制简称amamplitudemodulation第二种是把调制信号装载在载波的频率上称为频率调制简称fmfrequencymodulation第三种是把调制信号装载在载波的相位上称为相位调制简称pmphasemodulationppt学习交流412信号调制方式与分类数字量对载波进行调制时根据被调制的参数不同也有三种调制方式被装载的参数为幅度时称为幅移键控调制简称ask调制amplitudeshiftkeying被装载的参数为频率时称为频移键控调制简称为fsk调制frequencyshiftkeying被装载的参数为相位时称为相移键控调制简称为psk调制phaseshiftkeyingppt学习交流412信号调制方式与分类调制方式模拟调制数字调制幅度调制am频率调制fm相位调制pmask频移键控调制fsk相移键控调制psk图43调制方式分类ppt学习交流42幅度调制原理及特性421普通调幅am首先讨论调制信号为单频余弦波时的情况设调制信号为coscos2coscos210ppt学习交流421普通调幅am由幅度调制定义可知幅度调制是用基带信号控制载波的振幅使载波的振幅随基带信号的规律变化因此调制后形成的已调波可表示为cmam11ppt学习交流421普通调幅am由上式可以看出普通调幅信号的电路模型可以由一个乘法器和一个加法器组成
《数字通信原理》课件

信道编码
为了提高数字信号传输的可靠性和稳定性,通过增加冗余信息对数字信号进行 编码。
常见信道编码技术
线性分组码、循环码、卷积码等。
差错控制编码
差错控制编码
通过在数字信号中添加额外的信息,以检测和纠正传输过程中可能出现的错误。
常见差错控制编码技术
奇偶校验码、海明码、循环冗余校验(CRC)等。
加密与解密技术
THANKS
抗干扰能力
抗噪声干扰能力
数字通信系统在存在噪声干扰的情况 下仍能正常工作的能力。
抗多径干扰能力
数字通信系统抵抗多径效应干扰的能 力。
误码率与信噪比
误码率(BER)与信噪比(SNR)的关系
随着信噪比的增加,误码率逐渐降低,通信质量提高。
信噪比优化
通过合理配置信号功率和噪声抑制措施,降低误码率,提高通信性能。
数字信号在传输过程中可能会受到噪声 、干扰和衰减的影响,需要进行相应的 处理和补偿。
数字信号的同步技术
01
载波同步
通过提取载波频率和相位信息 ,使接收端与发射端保持一致
的载波频率和相位。
02
位同步
使接收端的抽样时钟与发送端 的时钟保持一致,以便正确地
进行抽样判决。
03
帧同步
使接收端正确地识别出数字信 号中的帧结构,以便正确地提
物联网与智能家居系统的组成
物联网与智能家居系统由传感器、控制器、智能家电等组成,实现家庭设施的远程控制和 智能化管理。
物联网与智能家居系统的特点
物联网与智能家居系统具有便捷性、智能化、节能环保等特点,能够提高家庭生活的舒适 度和便利性。
未来数字通信技术的发展趋势
01
未来数字通信技术的发展趋势概述
为了提高数字信号传输的可靠性和稳定性,通过增加冗余信息对数字信号进行 编码。
常见信道编码技术
线性分组码、循环码、卷积码等。
差错控制编码
差错控制编码
通过在数字信号中添加额外的信息,以检测和纠正传输过程中可能出现的错误。
常见差错控制编码技术
奇偶校验码、海明码、循环冗余校验(CRC)等。
加密与解密技术
THANKS
抗干扰能力
抗噪声干扰能力
数字通信系统在存在噪声干扰的情况 下仍能正常工作的能力。
抗多径干扰能力
数字通信系统抵抗多径效应干扰的能 力。
误码率与信噪比
误码率(BER)与信噪比(SNR)的关系
随着信噪比的增加,误码率逐渐降低,通信质量提高。
信噪比优化
通过合理配置信号功率和噪声抑制措施,降低误码率,提高通信性能。
数字信号在传输过程中可能会受到噪声 、干扰和衰减的影响,需要进行相应的 处理和补偿。
数字信号的同步技术
01
载波同步
通过提取载波频率和相位信息 ,使接收端与发射端保持一致
的载波频率和相位。
02
位同步
使接收端的抽样时钟与发送端 的时钟保持一致,以便正确地
进行抽样判决。
03
帧同步
使接收端正确地识别出数字信 号中的帧结构,以便正确地提
物联网与智能家居系统的组成
物联网与智能家居系统由传感器、控制器、智能家电等组成,实现家庭设施的远程控制和 智能化管理。
物联网与智能家居系统的特点
物联网与智能家居系统具有便捷性、智能化、节能环保等特点,能够提高家庭生活的舒适 度和便利性。
未来数字通信技术的发展趋势
01
未来数字通信技术的发展趋势概述
数字调制传输(第二部分)

逆调制环(a)
x(t ) U1s(t ) cosc t 1
延迟
U1 cosct 1
逆调制 鉴相
Ud
环路 滤波器 移相
VCO
s (t )
判决
U 2 sin c t 2
90 o
U 2 cos c t 2
U p(t)
相位解调
对载波同步的要求
最小差错概率准则:
在噪声背景下接收的数字信号 的差错概率最小。
条件概率密度函数示意图
r1
r2
f s1 ( y)
f s2 ( y )
Q2
a1 VT
Q1
a2
最小差错准则下最佳接收机结构I
t Ts
比较器
相乘器
积分器
相加器
y(t)
s1 t
相乘器 积分器
1 E1 A1 2
相加器
t Ts
DPSK信号
带通 延迟 Ts
相乘器
c 低通 d
抽样 判决 位定时
二进制信息
e
差分相干解调
FSK的调制I
f0 f1
K 已调信号 控制 数字信息序列{ n} a
. . f M 1 .
键控法
FSK的调制II
数字信息序列 已调信号 模拟的 频率调制
载波
模拟调频法
第四章
数字调制传输
第三讲
FSK的调制I
( k 1)Ts
抽样
判决
输出信息
kTs
位同步提取
2PSK的解调
二进信息 差分 DPSK信号 相乘器 (绝对码) 编码 (相对码) 载波发 生器
2DPSK的调制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、2PSK调制的时域波形 二进制数字信号:
1 0 1 10 0 1
基带信号波形
调制相位: 0 π 0 0 π π 0 调制波形:
三、相位表示——星座图
π
0
四、 2FSK相干解调器
输入 带通
相乘器
cos c t
本地载 波恢复
低通
抽样 输 判决器 出
位定时 恢复
2PSK存在的问题:
• 由于PSK信号的功率谱中无载波分量(直流分 量),所以必须采用相干解调方式
二进制信息 电平 二进制信息 已信号 (单极NRZ) 转换 (双极NRZ)
Acos2 fct
载波发生器
一、2PSK调制器模型
• 调制信号
Acos(wct+0)=Acoswct
S(t)=
ak=1
Acos(wct+π)=-Acoswct
可见:
ak=0
* s(t)的幅度随输入信号的变化而线性变化
* PSK是不连续相位
f(t) 100
1
F (W)
t
F (W)
W
f(t)
t
F (W)
W
f(t)
t W
三、2ASK的频谱图和功率谱图
F (W)
基带信号 频谱图
P (W)
基带信号 功率谱图
W
F (W) 已调信号 频谱图
P (W)
W
W
已调信号 功率谱图
W
四、2ASK信号接收 2PSK解调
1、2ASK信号的非相干解调法(包络检波)
f(t) 1 1
f(t) f(t)
00 10
f(t)
10
f(t)
t 绝对码
相位 0: 相移键控(PSK: Phase_Shift Keying)
6.2 二进制数字调制
6.2.1 二进制幅度键控 (2ASK: Amplitude_shift Keying)
一、ASK调制器模型: f(t) 1 0 0 1
t
基带信号 已调信号 f(t)
t f(t)
载波Acoswct
t
• 二、2ASK的波形图和频谱图
输入 带通 a
滤波器
全波或 b
半波整流
包络 c
检波器
抽样 输出
判决器
d
抽样脉冲
1 a
0
1
b
c
d
2、2ASK信号的相干解调法
输入 BPF1 a
相乘器
c
LPF1
d
抽样 判决器
输 出
cosct b
定时抽样脉冲
1
0
1
a
b
c d
6.2.2 移频键控调制 (2FSK : Frequency_Shift Keying)
一、FSK调制器模型
f1 振荡器
二进制
倒相
信息(NRZ)
f2 振荡器
载波f1
振荡器
载波 f2
振荡器
门
2FSK信号
相加 门
开关
2FSK信号 二进制信息(NRZ)
二、 2FSK的时域波形
载波频率随着基带信号0或1而变化 “0”——频率为f1的正弦波 “1”——频率为f2的正弦波
基带信号
Tb
0
1
0
1
FSK波形 f1 f2 f1 f2
出
输入 a1 b1 c1 d1 a2
b2 c2 d2 e
3、2FSK信号的过零检测法(最常用)
a
限幅
b
微分
c
整流
d 宽脉冲 e 发生
低通
f
a
b
c
d e
f
6.2.3 相移键控调制 (2PSK:Phase_Shift Keying)
• 载波相位随着基带信号1或0而变化
输入“1”:输出为相位为0的正弦波 输入“0”:输出为相位为π(180o)的正弦 波
NRZ
差分
电平
编码
转换
相乘器
2DPSK
载波 发生器
二、2DPSK调制的时域波形图 (传号差分)
f(t) 1 0 0 1 0 1 1 0
f(t)
t 绝对码
传号差分码(单极性)
f(t)
t
传号差分码(双极性) t f(t)
载波信号
t f(t)
t 2DPSK信号
二、2DPSK调制的时域波形图 (空号差分)
6.1 概述
高频载波的一般形式:
数字调制,载波的参数改 变只能取有限个取值,称
键值
u(t) U c cos(wct 0 )
• 改变三参数对应三种不同的调制:
幅度 Uc : 振幅键控(ASK: Amplitude_Shift Keying) 频率 Wc:频移键控(FSK: Frequency_Shift Keying)
h=1.5
f1-fs f1 f0 f2 f2+fs
结论:
▪ FSK信号带宽越窄,峰值越高,则 效率越高,频谱利用率也就越高。
思考一下: 要想提高2FSK的频谱利用率, 怎样调整 f1和 f2 的关系呢?
答:缩小f1与f2之间的频率差
六、2FSK信号接收
1、2FSK信号的非相干解调法(包络检波)
输入
三、 FSK信号的功率谱:
B2FSK=2BB+|f2-f1|
BB=fs
Ps( f )
B 2 fs | f2 f1 |
f2-f1
f0 =(f1+f2) 2
基带信
号带宽
o
f1-fs f1
f0
f2
f2+fs
四、2FSK信号的功率谱:
定义调制指数h:
h
f2 fb
f1
,
fb
1 Tb
数据速率,Tb输入数据流的比特宽度
• 在相干解调中如何得到同频同相的本地载 波是关键问题
• 经锁相环恢复出的本地载波可能与调制载 波同相也可能反相,这种相位关系的不确定
性称为0, 相位模糊
——为了克服相位模糊度对相干解调的影响, 通常要采用差分相移键控的方法
6.2.4二进制差分相移键控2DPSK 一、2DPSK模型
单极NRZ
双极
(绝对码) (相对码)
6 数字信号的调制传输
本章内容
• 掌握二进制数字调制信号的概念,能画出典 型的2ASK、2FSK、2PSK、2DPSK时域波形图
• 理解多进制数字调制(MASK、MPSK)的时域 波形图
• 能够对几种二进制数字调制进行性能的比较
为什么采用数字信号的调制传输
• 数字基带信号是低频信号,只适宜在低 通信道中传输,但常见的实际信道都是 带通型的,所以必须对基带数字信号进 行调制,将它搬移到高频段,称为数字 调制,相应调制信号的传输称为数字信 号调制传输
1
BPF1
2
BPF2
包络 检波器1
抽样脉冲
包络 检波器2
抽样比较 输出 判决器
R1
AC sAM(t)
C R sd(t)
包络检波
2、2FSK信号的相干解调法
1 ac1os1t b1 c1
d1
BPF1
相乘器
LPF1
输入
2 cos2t b2 抽样脉冲
e
抽样比较
判决器 输
BPF2
a2 相乘器
LPF2
c2
d2
B2FSK=2BB+|f2-f1|
BB=fs
h=1.5
f1-fs f1 f1+ fs f0 f2- fs f2
f2+fs
五、2FSK信号的功率谱:
定义调制指数h:
h
f2 fb
f1
,
fb
1 Tb
数据速率,Tb输入数据流的比特宽度
B2FSK=2BB+|f2-f1|
h=0.5
BB=fs= fb
h=0.5