流体流动阻力测定实验

合集下载

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告一、实验目的1、掌握流体流经直管和管件时阻力损失的测定方法。

2、了解摩擦系数λ与雷诺数 Re 之间的关系。

3、学习压强差的测量方法和数据处理方法。

二、实验原理流体在管内流动时,由于黏性的存在,必然会产生阻力损失。

阻力损失包括直管阻力损失和局部阻力损失。

1、直管阻力损失根据柏努利方程,直管阻力损失可表示为:\(h_f =\frac{\Delta p}{ρg}\)其中,\(h_f\)为直管阻力损失,\(\Delta p\)为直管两端的压强差,\(ρ\)为流体密度,\(g\)为重力加速度。

摩擦系数\(λ\)与雷诺数\(Re\)及相对粗糙度\(\frac{\epsilon}{d}\)有关,其关系可通过实验测定。

当流体在光滑管内流动时,\(Re < 2000\)时,流动为层流,\(λ =\frac{64}{Re}\);\(Re > 4000\)时,流动为湍流,\(λ\)与\(Re\)和\(\frac{\epsilon}{d}\)的关系可由经验公式计算。

2、局部阻力损失局部阻力损失通常用局部阻力系数\(\zeta\)来表示,其计算式为:\(h_f' =\frac{\zeta u^2}{2g}\)其中,\(h_f'\)为局部阻力损失,\(u\)为流体在管内的流速。

三、实验装置1、实验设备本实验使用的主要设备包括:离心泵、水箱、不同管径的直管、各种管件(如弯头、三通、阀门等)、压差计、流量计等。

2、实验流程水箱中的水经离心泵加压后进入实验管路,依次流经直管和各种管件,最后流回水箱。

通过压差计测量直管和管件两端的压强差,用流量计测量流体的流量。

四、实验步骤1、熟悉实验装置,了解各仪器仪表的使用方法。

2、检查实验装置的密封性,确保无泄漏。

3、打开离心泵,调节流量至一定值,稳定后记录压差计和流量计的读数。

4、逐步改变流量,重复上述步骤,测量多组数据。

5、实验结束后,关闭离心泵,整理实验仪器。

流体流动阻力的测定实验

流体流动阻力的测定实验

流体流动阻力的测定实验一、实验内容1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ, 并确定λ和Re 之间的关系。

2.测定流体通过阀门时的局部阻力系数。

二、实验目的1. 解测定流体流动阻力摩擦系数的工程定义, 掌握测定流体阻力的实验组织方法。

2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力, 确定直管阻力摩擦系数与雷诺数之间的关系。

3. 熟悉压差计和流量计的使用方法。

4. 认识组成管路系统的各部件、阀门并了解其作用。

三、实验原理流体通过由直管和阀门组成的管路系统时, 由于粘性剪应力和涡流应力的存在, 要损失一定的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

1.直管阻力 流体流动过程是一个多参数过程, 。

由因次分析法, 从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示:⎥⎦⎤⎢⎣⎡ξμρ=ρ∆d ,du ,d l F u P 2 λ=Ψ(Re, ε/d ) 雷诺准数μρdue =R ;22u d l Ph f ⋅⋅=∆=λρ只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。

g P Hg )R(ρρ-=∆易知, 直管摩擦系数λ仅与Re 和 有关。

因此, 只要在实验室规模的装置上, 用水做实验物系, 进行试验, 确定λ与Re 和 的关系, 然后计算画图即可。

2.局部阻力局部阻力可以用当量长度法或局部阻力系数法来表示, 本实验用局部阻力系数法来表示, 即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数来表示, 用公式表示:一般情况下, 由于管件和阀门的材料及加工精度不完全相同, 每一制造厂及每一批产品的阻力系数是不尽相同的。

四、实验设计由和知, 当实验装置确定后, 只要改变管路中流体流速u及流量V, 测定相应的直管阻力压差ΔP1和局部阻力压差ΔP2, 就能通过计算得到一系列的λ和ξ的值以及相应的Re的值,【原始数据】在实验中, 我们要测的原始数据有流量V, 用来计算直管阻力压差ΔP1和局部阻力压差ΔP2的U型压差计的左右两边水银柱高度, 流体的温度t(据此确定ρ和μ), 还有管路的直径d和直管长度l。

实验一 流体流动阻力的测定

实验一   流体流动阻力的测定

实验一 流体流动阻力的测定一、实验目的1、了解流体在管道内摩擦阻力的测定方法;2、确定摩擦系数λ与雷诺数Re 的关系。

二、基本原理由于流体具有粘性,在管内流动时必须克服内摩擦力。

当流体呈湍流流动时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。

流体的粘性和流体的涡流产生了流体流动的阻力。

在被侧直管段的两取压口之间列出柏努力方程式,可得:ΔP f =ΔPL —两侧压点间直管长度(m)d —直管内径(m)λ—摩擦阻力系数u —流体流速(m/s )ΔP f —直管阻力引起的压降(N/m 2)µ—流体粘度(Pa.s )ρ—流体密度(kg/m 3)本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分别求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。

三、实验装置与仪器1、实验装置水泵将储水糟中的水抽出,送入实验系统,首先经玻璃转子流量计测量流量,然后送入被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。

被测直管段流体流动阻力△P 可根据其数值大小分别采用变压器或空气—水倒置U 型管来测量。

实验系统流程图见图一压差传感器与直流数字电压表连接方法见图二2、设备的主要技术参数(1)被测直管段:管径d —0.0080(m) 管长L —1.6(m) 材料:紫铜管(2)玻璃转子流量计:型号LZB —25 测量范围100—1000(L/h) 精度:1.5 型号LZB —10 测量范围10—100(L/h) 精度:2.5(3)单项离心清水泵:型号WB70/055 流量20—2000(L/h)扬程:13.5~19(m) 电功功率:550(W) 电机功率:550(W) 电流:1.35(A) 电压:380(V)22u d L P h ff ⨯=∆=λρ22u P L d f ∆⨯=ρλμρdu =Re四、实验步骤:1、向储水槽内注蒸馏水,直到水满为止。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告摘要:通过测算不同流速和管道直径下流体的流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。

实验的结果表明,流体流动阻力与流速和管道直径的平方成正比,结果与理论计算值基本吻合。

一、实验原理在流体力学中,我们研究流体在管道中的运动和分布。

不同形状、不同截面的管道中,流体的流动速度和压强是不同的,流体的动能和势能也会随着时间和位置的变化而发生变化。

在流体流动中,管道内壁与流体的相互作用形成一定的阻力,这种阻力称为流体流动阻力。

实验中,我们设计了一套管道流体流动测量装置,通过测算流体在不同流速和管道直径下流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。

二、实验步骤1. 准备工作:将实验装置安装好,并连接好各个部件。

2. 流量测定:打开水泵,将水流导向流量计中,通过观察流量计中的示数,测定流体的流量。

3. 压降测定:利用几何水平仪测定与水平面夹角,计算出流体在管道中的压降。

4. 流速测定:通过测算流量和管道截面积,计算出流体的平均流速。

5. 重复实验:重复以上测定步骤,测定不同流速和管道直径下的流量和压降数据,以确定流体流动阻力与流速和管道直径的关系。

6. 数据处理:根据实验数据计算出流体流动阻力公式,并与理论计算值对比。

三、实验结果与分析1. 流量与管道直径的关系通过实验测定,流量与管道直径的平方成正比。

实验数据如下:流量 Q (m3/h) 1 2 3 4 5直径 D (cm) 1 1.5 2 2.5 32. 压降与流速的关系通过实验测定,压降与流速的平方成正比。

实验数据如下:流速 v (m/s) 0.67 1.13 1.33 1.51压降 h (m) 0.05 0.09 0.12 0.163. 流体流动阻力与流速和管道直径的关系根据实验得到的数据,流体流动阻力与流速和管道直径的平方成正比。

流体流动阻力公式为:f = αρv2 D2/4其中,f 为阻力系数,ρ 为流体密度,v 为平均流速,D 为管道直径,α 为系数。

化工原理试验报告-流体流动阻力的测定

化工原理试验报告-流体流动阻力的测定

实验一流体流动阻力的测定一、实验目的1、掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。

2、测定直管摩擦系数大与雷诺准数Re的关系,验证在一般湍流区内为与Re的关系曲线。

3、测定流体流经管件(阀门)时的局部阻力系数季4、识辨组成管路的各种管件、阀门,并了解其作用。

二、实验装置实验装置如下图所示:11+J1、水箱2、离心泵3、压差传感器4、温度计5、涡轮流量计6、流量计7、转子流量计8、转子流量计9、压差传感器10、压差传感器11、压差传感器12、粗糙管实验段13、光滑管实验段14、层流管实验段15、压差传感器16、压差传感器17、阐阀18、截止阀图1实验装置流程图装置参数:三、实验原理1、直管阻力摩擦系数大的测定流体在水平等径直管中稳定流动时,阻力损失为:. 2 d Ap九二- -fP lu 2du pRe = 一N采用涡轮流量计测流量VV u =900冗d 2用压差传感器测量流体流经直管的压力降A P f o根据实验装置结构参数1、d,流体温度T (查流体物性p、四),及实验时测定的流量V、压力降APf,求取Re和大,再将Re和大标绘在双对数坐标图上。

2、局部阻力系数Z的测定流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,这种方法称为阻力倍数法。

即:故0= 2A L ⑹P U 2根据连接管件或阀门两端管径中小管的直径d,流体温度T (查流体物性p、四),及实验时测定的流量V、压力降APf,,通过式⑸或⑹,求取管件(阀门)的局部阻力系数Z。

四、实验步骤1、开启仪表柜上的总电源、仪表电源开关。

2、首先对水泵进行灌水,然后关闭出口阀,启动水泵,待电机转动平稳后,把出口阀缓缓开到最大。

3、实验从做大流量开始做起,最小流量应控制在1.5m3/h。

由于实验数据处理时使用的是双对数坐标,所以实验时每次流量变化取一递减的等比数列这样得到的数据点就会均匀分布,时实验结果更具准确性。

流体流动阻力测定实验

流体流动阻力测定实验

流体流动阻力测定实验一、实验目的⒈学习管路能量损失(hf),直管摩擦系数(λ)的测定方法。

⒉掌握直管摩擦系数λ与雷诺数Re之间关系及其变化规律。

⒊学习压强差的几种测量方法和技巧。

⒋掌握坐标系的选用方法和对数坐标系的使用方法。

二、实验内容⒈测定实验管路内流体流动的阻力和直管摩擦系数λ。

⒉测定实验管路内流体流动的直管摩擦系数l与雷诺数Re之间关系曲线和关系式。

三、实验原理1.摩擦系数的测定:h f=λ(L/d)(u2/2)λ=h f(d/L)(2/u2)λ--摩擦系数;h f-- 能量损失;d--管内直径,m;L--测压点距离;m;u--流速,m/s;流速的测定可以用流速计,也可以根据单位时间获得流体体积的“容积法”实测流量反推流速,由于已知d、u,则Re=duρ/ μρ--被测流体密度 kg/m3;μ--被测流体粘度PaS;ρ和μ可由测量流体温度查表取得,根据柏努利方程h f=(z1-z2)g+(u12-u22)/2对任一管路而言。

两截面间的能量损失,可以根据在两截面上测出L、z、ρ、u等值计算出。

如果在一条等直径的水平管上选取两个截面时,z1=z2:u1=u2,柏努利方程可以简化为:h f=(p1-p2)/ρ这样根据测量压差及流量便可以推出一定相对粗糙度时直管的λ-Re关系。

2.弯头局部阻力系数测定:局部阻力系数的测定与摩擦系数测定一样ξ=h f(2/u2)只要计算出能量损失h f和流体流速u即可。

四、实验任务:1.Dg40管的摩擦系数测定2.90℃弯头局部阻力系数测定3.绘制λ~Re曲线关系图。

五、实验步骤:1.水箱充水至80%。

然后调节仪表,MMD智能流量仪及LW-15 型涡轮流量计。

(一般实验室的老师已准备好)2.打开压差计上平衡阀,关闭各放气阀。

3.关闭离心泵的出口阀,以免启动电流过大,烧坏电机。

启动离心泵。

4.排气:a.管路排气。

b.侧压导管排气。

c.关闭平衡阀,缓慢旋动压差计上放气阀排除压差计中的气泡,注意:先排进压管,后排低压管(严防压差计中水银冲走),排气完毕。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告实验报告:流体流动阻力的测定摘要:本实验通过测量流体在管道中的压降,来确定流体流动阻力的大小。

采用了排水法和泄水法分别测量不同直径的导管中水的流速和压降,并通过处理实验数据得到了流体的流动阻力,并与理论值进行了比较。

引言:液体或气体在管道中流动时会遇到一定的阻碍力,即流动阻力。

流动阻力的大小与管道直径、流速、流体性质等因素有关,因此需要进行实验测定。

实验仪器和材料:1. 导管:直径分别为2cm、4cm、6cm的塑料导管。

2.水泵:用于提供水流。

3.节流装置:用于调节水流量。

4.U型水银压力计:用于测量压降。

5.超声波流速仪:用于测量流速。

6.计时器:用于计时。

7.温度计:用于测量流体温度。

实验步骤:1. 将2cm直径的导管连接至水泵和节流装置,并调节节流装置使水流量适中。

2.打开水泵,使水开始流动,打开计时器记录时间。

3.使用超声波流速仪测量水在导管中的流速,并记录测量值。

4.同时使用U型水银压力计测量水在导管两端的压降,并记录测量值。

5.根据实验数据计算流体的流动阻力,并记录结果。

6. 重复以上步骤,分别对4cm、6cm直径的导管进行实验测量。

实验数据与结果:对于2cm直径的导管,测得的流速为0.032m/s,压降为2cm水柱。

通过计算得出流动阻力为0.053Pa·s/m^3对于4cm直径的导管,测得的流速为0.024m/s,压降为4cm水柱。

通过计算得出流动阻力为0.083Pa·s/m^3对于6cm直径的导管,测得的流速为0.018m/s,压降为6cm水柱。

通过计算得出流动阻力为0.093Pa·s/m^3讨论与分析:通过实验测量得到的流动阻力与导管直径成反比,与流体流速成正比。

这与理论预期是一致的。

由于实验条件的限制,实验中可能存在误差,例如流速和压降的测量误差、流体温度的变化等。

同时,水的物理性质也可能受实验环境的影响而发生变化,因此计算得到的流动阻力也可能不完全准确。

化工原理流体流动阻力测定试验

化工原理流体流动阻力测定试验

流体流动阻力测定的实验一、实验目的及任务1 .学习直管摩擦阻力AP 八直管摩擦系数人的测定方法。

2 .掌握直管摩擦系数人与雷诺数Re 和相对粗糙度之间的关系及其变化规律。

3 .掌握局部摩擦阻力APr 局部阻力系数Z 的测定方法。

4 .学习压强差的几种测量方法和提高其测量精确度的一些技巧。

二、基本原理流体在管路中流动时,由于黏性剪应力和涡流的存在,不可避免地会引起流体压力损耗。

这种 损耗包括流体在流动时所产生的直管阻力损失和局部阻力损失。

1 .直管阻力损失流体流过直管时的摩擦系数与阻力损失之间的关系可用下式表示, l u 2h =九 x 一 x 一 f d 2式中 d 一管径,m ;1 一管长,m ; u —流速,m / s ; 九一摩擦系数。

在一定的流速下,测出阻力损失,按下式即可求出摩擦系数九7 d 2九=h x_x —f 1 u 2阻力损失h f 可通过对两截面间作机械能衡算求出(1-3)P -流体的密度,kg/m 3A f -两截面的压强差,Pa 。

由式(1-4)可知,对于水平等径直管只要测出两截面上静压强的差即可算出h f 。

两截面上静压 强的差可用压差计测出。

流速由流量计测得,在已知管径d 和平均流速u 的情况下,只需测出流体 的温度K 查出该流体的密度p 和黏度〃,则可求出雷诺数Re ,从而得出流体流过直管的摩擦系数人与雷诺数Re 的关系。

2.局部阻力损失阀门、突然扩大、突然缩小、弯头、三通等管件的局部阻力系数可用下式计算对于水平等径直管,z 1=z 2 u 1=u 2, 上式可简化为p 「P 2PA p―f P(1-4)式中p 1-p 2一两截面的压强差, Pa ;(1-1)(1-2)1 2)(1-5)三、实验装置流程和主要设备1.实验装置流程流体流动阻力实验流程如图1-1所示。

图1-1流动阻力实验流程示意图1-水箱;2-离心泵;3、4-放水阀;5、13-缓冲罐;6-局部阻力近端测压阀;7、15-局部阻力远端测压阀;8、20-粗糙管测压回水阀;9、19-光滑管测压阀;10-局部阻力管阀;11-U型管进水阀;12- 压力传感器;14-流量调节阀;15、16-水转子流量计;17-光滑管阀;18-粗糙管阀;21-倒置U型管放空阀;22-倒置U型管;23-水箱放水阀;24-放水阀;2.被测光滑直管段:管径d—0.008m;管长L—1.69m;材料一不锈钢管被测粗糙直管段:管径d—0.010m;管长L—1.69m;材料一不锈钢管被测局部阻力直管段:管径d—0.015m;管长L—1.2m;材料一不锈钢管3.压力传感器:型号:LXWY 测量范围:200 KPa4.直流数字电压表:型号:PZ139 测量范围:0〜200 KPa5.离心泵:型号:WB70/055 流量:8(m3/h) 扬程:12(m) 电机功率:550(W)6.玻璃转子流量计:型号测量范围精度LZB—40 100〜1000(L / h) 1.5LZB—10 10〜100(L/h) 2.5四、实验方法及步骤1.向储水槽内注水,直到水满为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
项目名称:流体流动阻力测定实验
学院:
专业年级:
学号:
姓名:
指导老师:
实验组员:
一、实验目的
1、学习管路阻力损失h f和直管摩擦系数的测定方法。

2、掌握不同流量下摩擦系数与雷诺数Re之间的关系及其变化规律。

3、学习压差测量、流量测量的方法。

了解压差传感器和各种流量计的结构、使用方法及性能。

4、掌握对数坐标系的使用方法。

二、实验原理
流体在管道内流动时,由于黏性剪应力和涡流的存在,会产生摩擦阻力。

这种阻力包括流体流经直管的沿程阻力以及因流体运动方向改变或管子大小形状改变所引起的局部阻力。

流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:
h f = ρf
P ∆=2
2
u d l λ (4-1)
式中: -f h 直管阻力,J/kg ;
-d 直管管径,m ;
-∆p 直管阻力引起的压强降,Pa ; -l 直管管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3

-λ摩擦系数。

滞流时,λ=
Re 64
;湍流时,λ与Re 的关系受管壁相对粗糙度d
ε⋅的影响,即λ= )(Re,d
f ε。

当相对粗糙度一定时,λ仅与Re 有关,即λ=(Re)f ,由实验可求得。

由式(4—1),得 λ=
2
2u P l d f
∆⋅⋅ρ (4-2) 雷诺数 Re =μ
ρ
⋅⋅u d (4-3)
式中-μ流体的黏度,Pa*s
和流体在管内的流速u,查出流体的物理性质,即可分别计测量直管两端的压力差p
算出对应的λ和Re。

三、实验装置
1、本实验共有两套装置,实验装置用图4-2所示的实验装置流程图。

每套装置中被测光滑直管段为管内径d=8mm,管长L=1.6m的不锈钢管;被测粗糙直管段为管内径d=10mm,管长L=1.6m的不锈钢管
2、流量测量:在图1-2中由大小两个转子流量计测量。

3、直管段压强降的测量:差压变送器或倒置U形管直接测取压差值。

图4-2 流体流动阻力测定实验装置流程图
⑴—大流量调节阀;⑵—大流量转子流量计;⑶—光滑管调节阀;⑷—粗糙管调节阀;⑸—光滑管;⑹—粗糙管;⑺—局部阻力阀;⑻—离心泵;⑼—排水阀;⑽倒U管⑾⑾’—近端测压点;⑿⑿’—远端测压点;⒀⒀’—切断阀;⒁⒁’—放空阀;⒂⒂’—光滑管压差;⒃⒃’—粗糙管压差;⒄—数字电压表;⒅—压差变送器
四、实验步骤
1、检查储水槽内的水位是否符合要求,检查离心泵的所有出口阀门以及真空表、压力表的阀门是否关闭。

2、开总电源,在仪表面板上按变频器的“run ”按钮启动变频电动机。

3、在流量为零条件下,打开通向倒置U 形管的进水阀,检查导压管内是否有气泡存在,以及U 形管两边液柱是否水平。

若U 形管内液柱高度差不为零,则表明导压管内存在气泡,需要进行排气泡操作。

排气泡的方法:打开管路的流量调节阀,排出导管内的气泡,再关闭流量调节阀,开大流量,旋开倒置U 形管上部的放空阀,当U 形管内两液柱降至中间时马上关闭放空阀,检查液柱两边是否水平。

4、测光滑管阻力时,关闭粗糙管截止阀,将光滑管截止阀全开,测粗燥管阻力则相反。

5、用于测量直管段的压差,小流量时用倒置∪型管压差计测量,大流量时用差压变送器测量。

应在最大流量(1000L/h )和零流量之间取值,测取12组数据。

当流量小于100L /h 时,测量5组数据,同时测取水箱水温。

6、待数据测量完毕,关闭流量调节阀,按变频器“stop ”按钮关闭电动机,关电源。

五,实验过程原始记录(数据、图表、计算等)
1、 基本数据
装置型号: 直管管长: m 离心泵型号: 粗糙管内径: m 光滑管内径: m 流体密度ρ: 3
/m kg 流体温度(原始数据): C ︒ 流体黏度μ5
10⨯: s Pa ⋅
2、 实验数据记录表

1为实验原始数据 数据处理
(1) 管内流速 2
4
d Q
u π=
=
113.00079
.03600100020
42
=⨯⨯⨯⨯π (2) 压力降 Pa gh p 24.39004.081.908.996=⨯⨯==∆ρ
(3) 雷诺数 10731013.8608
.996113.00079.0Re 5
-=⨯⨯⨯=
=
μ
ρ
du
(4) 摩擦系数 0492.0113.06.108.99624
.390079.0222
2=⨯⨯⨯⨯=∆=
lu p d ρλ 式中 -Q 流体的体积流量,s m /3;
-d 直管管径,m ;
-l 直管管长,m ; -u 管路流速,m / s ; -ρ流体的密度,kg / m 3

-μ流体的黏度,Pa*s 。

六、实验结果及分析
曲线表明,在湍流区内,光滑管阻力系数随雷诺数增大而减小,,进入阻力平方区(也称完全湍流区)后,雷诺数对阻力系数的影响却越来越弱,阻力系数基本趋于不变。

然而,第五个点阻力系数急剧下降,可能是由于用转子流量计测流量时流量太大,导致转子不稳定,度数出现误差。

(2)粗糙管结果分析:
曲线表明,在湍流区内,粗糙管阻力系数随雷诺数增大而减小,进入阻力平方区(也称完全湍流区)后,雷诺数对阻力系数的影响却越来越弱,阻力系数基本趋于不变。

由图看出试验中有两个点是有较大的偏差,可能是由于在U 形管压差计度数上出现了误差。

八、思考题
1、实验应取得15组以上的数据,且希望这些点在曲线上尽可能均匀分布,为此实验中压差的读数应怎么选取
答:小流量范围内(0~100L/h )取5个流量点,剩下的点在大范围(100~1000L/h )内平均选取7个点。

2、本实验以水为工作介质,绘出的Re -λ曲线,对其他流体能否使用为什么
答:不能,因为,每一种流体他们的流体密度还有粘度都不同,都会影响摩擦系数λ和雷诺数Re 的大小变化,根据公式λ=64μ/ρud=64/Re ,在相同的粗糙度管中,得出的关系曲线也是不同的。

因此,用水得出的λ-Re 关系不能用于其它种类的牛顿型流体。

3、不同管径、不同水温下测定的Re -λ数据能否关联在同一条曲线上
答:不能,因为管径和温度不同都会影响雷诺数及摩擦系数λ。

他们得到的λ-Re 曲线图都不同。

例如,由于温度的改变,会影响液体的粘度改变,还有液体密度的改变。

摩擦系数的公式中,λ=64μ/ρud=64/Re 因此,温度的改变会影响摩擦系数和雷诺数的改变。

因此,他们不是在同一条曲线上,但能反映在同一副图中,作出比较。

4、在圆直管内及导压管内可否有积存的空气如有,会有何影响
答:不可以有空气,因为如果设备含有气泡的话,就会影响U 型管的读数,读数不准确,便会影响实验结果的准确性。

5、本实验是测定等直径水平直管的流动阻力,若将水平管改成流体自下而上流动的垂直管,
则压差的读数及计算过程和公式是否与水平管完全相同,为什么
答:过程一样,公式相同,R 值得计算结果不同,gz gR p p B B A ρρρ+-=-)(21,水平放置时,z=0,gR p p B A )(21ρρ-=-,垂直放置时,z=L (管长)
gR gR p p B A ρρρ+-=-)(21。

相关文档
最新文档