双路输出正激式DC/DC变换器的设计双路输出正激式DC/DC变换器的设计
DCDC变换器的设计方案

DC-DC变换器的设计方案一种模块化高效DC-DC变换器的开发与研制设计方案一、设计任务:设计一个将220VDC升高到600VDC 的DC-DC变换器。
在电阻负载下,要求如下:1、输入电压U=220VDC,输出电压u=600VDC。
2、输出额定电流|;:=2.5A,最大输出电流Iomax=3Ao3、当输入山在小范围内变化时,电压调整率SV W2%(在匕=2.5A时)。
4、当|<在小范围你变化时,负载调整率SI W5%(在||=220VDC时)。
5、要求该变换器的在满载时的效率n±90%o6、输出噪声纹波电压峰-峰值U t)pp<1V(在Ui=220VDC,u=600VDC,[(=2・5A条件下)。
7、要求该变换器具有过流保护功能,动作电流设定在3A o8、设计相关均流电路,实现多个模块之间的并联输出。
二、设计方案分析1、DC-DC升压变换器的整体设计方案主电路图1DC-DC变换器整体电路图如图1升压式DC-DC变换器整体电路所示,该DC/DC电压变换器由主电路、采样电路、控制电路、驱动电路组成;开关电源的主电路单元、样电路单元采、控制电路单元、驱动电路单元组成闭环控制系统,是相对输出电压的自动调整。
控制电路单元以SG3525为核心,精确控制驱动电路,改变驱动电路的驱动信号,达到稳压的目的。
2、DC-DC升压变换器主电路的工作原理DC-DC功率变换器的种类很多。
按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。
非隔离型的DC-DC变换器又可分为DC600V降压式、升压式、极性反转式等几种;隔离型的DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。
下面主要讨论非隔离型升压式DC-DC 变换器的工作原理。
图2(a )DC-DC变换器主电路图2(b )DC-DC 变换器主电路图2(a )是升压式DC-DC 变换器的主电路,它主要由开关变换电路、高频变压电路、整流电路、输出滤波电路四大部分组成;图1(b )是用matlab 模拟主电路 DC220V出的升压式DC-DC变换器的主电路图。
双向DCDC变换器研究毕业设计

隔离型双向 DC/DC 变换器有:反激式双向(Bi flyback)DC/DC 变换器,正激式双向(Bi forward)DC/DC 变换器,双向半桥(Bi half bridge)DC/DC 变换器,双向推挽(Bi push-pull)DC/DC 变换器,双向全桥(Bi full bridge)DC/DC 变换器等。不仅同一种类型的隔离直流变换器可构成隔离型双向 DC/DC 变换器,而且不同形式的隔离直流变换器也可组合成隔离型双向 DC/DC 变换器。
DC/DC变换器的设计

DC/DC变换器的设计DC/DC变换器是一种电力电子设备,用于将一个直流电源的电压转换为另一个直流电压。
它在电子设备中广泛应用,例如电气车辆、太阳能发电系统和电视机等。
DC/DC变换器的设计需要考虑以下几个方面:1.输入电压范围:根据应用需要,确定所需的输入电压范围。
这有助于选取合适的输入滤波电容和保护电路。
2.输出电压和电流:确定所需的输出电压和电流,并计算所需的功率。
这有助于确定合适的变压器、开关管和输出滤波电容。
3.开关频率:选择适当的开关频率,以平衡系统效率和元件尺寸。
通常,高开关频率可以减小元件的尺寸,但也会增加开关损耗。
4.控制策略:选择合适的控制策略,例如脉宽调制(PWM)或脉冲频率调制(PFM)。
PWM控制可实现快速响应和精确的输出电压稳定性,而PFM控制则可实现高效和高功率因素。
5.过压保护和过流保护:设计合适的过压保护和过流保护电路,以确保系统在故障情况下可靠工作。
6.效率和温度管理:优化设计,以提高系统的能量转换效率,并采取措施来控制元件的温度,以保证长期可靠性。
7.噪声和EMI控制:设计合适的滤波电路和接地布局,以降低系统的输出噪声和电磁干扰。
8.反馈控制:设计适当的反馈控制回路,以实现输出电压的稳定性和动态响应。
9.元件选型和参数计算:根据应用需求,选择适当的开关管、变压器、电感和电容,并计算它们的参数,以满足设计要求。
一般而言,DC/DC变换器的设计可以分为几个主要步骤:确定电路拓扑,选择工作模式,计算各个元件的参数,进行电路仿真和稳定性分析,制作原型并进行实验验证,最后进行性能优化和可靠性测试。
总的来说,DC/DC变换器的设计需要综合考虑输入输出电压、电流、开关频率、控制策略、保护电路、效率、温度管理、EMI控制和反馈控制等因素。
通过系统性的设计和优化,可以实现高效、稳定和可靠的DC/DC变换器。
双向DCDC变换器的设计与研究

双向DCDC变换器的设计与研究一、本文概述随着电力电子技术的飞速发展,双向DC-DC变换器作为一种高效、灵活的电能转换装置,在电动汽车、可再生能源系统、微电网等领域得到了广泛应用。
本文旨在全面介绍双向DC-DC变换器的设计原理、关键技术以及最新研究进展,以期为相关领域的科研人员和工程师提供有益的参考和启示。
本文将首先概述双向DC-DC变换器的基本原理和分类,包括其拓扑结构、控制方式和工作原理等。
在此基础上,重点探讨双向DC-DC 变换器的关键设计技术,如高效率转换技术、宽输入电压范围技术、快速动态响应技术等。
同时,分析双向DC-DC变换器在实际应用中面临的挑战和解决方案,如电磁干扰、热设计、可靠性等问题。
本文还将综述近年来双向DC-DC变换器的研究热点和发展趋势,包括新型拓扑结构、智能化控制策略、高效散热技术等方面的研究进展。
通过对这些研究内容的深入分析和总结,旨在为未来双向DC-DC 变换器的设计优化和应用拓展提供有益的思路和方向。
本文还将对双向DC-DC变换器的未来发展趋势进行展望,以期推动该领域的技术进步和应用发展。
二、双向DCDC变换器的基本原理与分类双向DCDC变换器是一种能量转换装置,能够在两个不同电压等级之间实现电能的双向流动。
其基本原理和分类对于深入理解和应用该变换器具有重要意义。
双向DCDC变换器的基本工作原理基于电能的转换和传递。
它通过控制开关管的通断,将输入端的直流电能转换为高频交流电能,再通过滤波电路将其转换为输出端的直流电能。
在这个过程中,变换器不仅实现了电能的电压变换,还实现了电能的双向流动。
当变换器工作于正向模式时,它从低压侧吸收电能,经过变换后向高压侧输出电能;当变换器工作于反向模式时,它从高压侧吸收电能,经过变换后向低压侧输出电能。
这种双向流动的特性使得双向DCDC变换器在能量管理、储能系统、电动汽车等领域具有广泛的应用前景。
根据不同的分类标准,双向DCDC变换器可以分为多种类型。
WEDM脉冲电源恒流输出双管正激交错DCDC变换器设计.

WEDM脉冲电源恒流输出双管正激交错DC/DC变换器设计WEDM用脉冲电源的作用是把工频交流电流转换成一定频率的单向脉冲电流,供给电极放电间隙所需要的能量以蚀除金属。
本文提出的电流型电火花线切割加工电源前级电路恒流输出DC/DC变换器,其电路拓扑采用双管正激交错并联结构,故称为恒流输出双管正激交错并联DC/DC变换器。
其电压应力等于电源输入电压,通过两个二极管来构成励磁电流回路,使能量回馈至电源。
设计方案主电路结构如图1所示。
M1、M2、D1、D2构成一路双管正激电路,M3、M4、D3、D4构成另一路双管正激电路,D5、D6分别为两路双管正激电路的整流二极管,D7为续流二极管,L为输出滤波电感,C1、C2分别为输入、输出滤波电容。
DC/DC变换器设计的最中心工作就是设计高频变压器。
下面仅介绍高频脉冲变压器、输出滤波电感的设计,最后介绍计算输入电路、控制部分。
图1恒流输出双管正激交错并联DC/DC变换器1 高频脉冲变压器的设计①脉冲变压器原副边匝比N的确定为了满足在输入电压变化范围内都能够得到所要求的输出电流,高频变压器的变比应按输入电压最低,输出功率最大情况来选择。
此种情况下,变换器工作在最大占空比状态,且电源工作在放电周期里。
设单路前级变换器的开关频率为fs,开关周期T=1/fs,取最大占空比DMAX=0.45,则单路开关管最大导通时间为Tonmax=DmaxT。
②确定绕组线径60A/25V样机,流过副边的电流有效值为:(1)忽略电感电流脉动,变压器副边电流峰值为:Ismax=IL=60A。
原边电流幅值为:Ipmax=Ismax+Iμ。
其中,Ismax为副边电流峰值折算到原边所得的电流值。
Iμ为磁化电流,取Iμ=5%Ismax,则:(2)原边导线用铜芯标称直径0.6mm(面积为0.283mm2)的漆包线,7股并绕,则原边实际导线总面积为:Sμ1=7×0.283=1.981mm2副边用厚0.4mm、宽30mm的紫铜带绕制。
双向DCDC变换器设计

双向DCDC变换器设计双向直流-直流(DC-DC)变换器是一种电力电子设备,能够实现两个不同电压等效电路之间的能量转换和传输。
这种变换器常用于电池系统、节能转换系统和电网隔离系统等应用中。
本文将介绍双向DC-DC变换器的设计原理、工作原理和性能评估。
一、设计原理双向DC-DC变换器可以分为两个部分:升压变换器和降压变换器。
升压变换器将低电压输入提升为较高电压输出,而降压变换器则将高电压输入降压为较低电压输出。
这两个变换器可以通过一个可调节的开关来实现输出电压的控制。
在实际应用中,通过PWM(脉宽调制)技术来控制开关的导通时间,从而实现输出电压的调节。
二、工作原理双向DC-DC变换器的工作原理如下:1.当升压变换器开关导通时,输入电压经过电感储能,同时输出电容储能开始将能量传递到输出端。
2.当升压变换器开关断开时,储能元件的电感和电容开始释放储存的能量,使输出电压保持稳定。
3.当降压变换器开关导通时,输入电压先通过输出电容释放能量,同时电感储能元件开始储存电能。
4.当降压变换器开关断开时,储能元件释放储存的能量,实现输出电压的稳定。
三、性能评估设计双向DC-DC变换器时需要评估以下几个关键性能参数:1.效率:双向DC-DC变换器的效率主要取决于开关的损耗和传输效率。
通过合理选择开关元件和功率传输电路,可以提高变换器的效率。
2.响应时间:双向DC-DC变换器需要能够快速响应输入电压和输出负载的变化。
降低电路和控制系统的响应时间可以提高变换器的动态性能。
3.稳定性:双向DC-DC变换器需要具有良好的稳定性,以确保输出电压在不同负载条件下保持稳定。
在设计过程中应考虑噪声抑制和滤波技术。
4.安全性:在设计双向DC-DC变换器时,需要考虑过电流、过压和过温等保护功能,以防止电路损坏和事故发生。
在实际设计过程中,还需要考虑其他因素,如电路拓扑选择、元件选择、控制算法和布局布线等。
针对不同的应用需求,可能需要做出不同的设计决策。
双向DCDC变换器.

双向DC-DC变换器摘要:双向DC-DC变换器是能够根据能量的需要调节能量双向传输的直流到直流的变换器。
本文阐述的双向DC-DC变换器通过集成运放加三极管组成的恒流源实现实现电池的充电功能以及由TL494组成的升压电路实现对电池的放电功能,LCD液晶屏用于显示充电电池的充电电流,并且能够自动转换变换器充放电工作模式。
此作品电路简单,效率较高,性能稳定;可以满足题目的要求,可适用于直流不停电系统、太阳能电池变换器、电动汽车等方面。
关键词:双向DCDC变换器;恒流源;TL494一、方案论证与比较:恒流源方案比较:方案一:由晶体三极管组成的恒流源,利用三极管集电极电压变化对电流影响,并在电路中采用电流负反馈来提高输出电流的恒定。
由于晶体管参数受温度变化影响,要采用温度补偿及稳压措施,增加电路的复杂性且输出电流不便调节。
方案二:集成运算放大器和MOS管组成的压控型恒流源,利用运放来驱动功率管MOSFET的导通程度,获得相应的输出电流在采样电阻上产生的采样电压作为反馈电压送到运放的反相输入端,并与同相输入端的给定电压进行比较,依此对MOS管的驱动电压进行调整,达到对功率管的导通电流进行调整的目的;采用放大器负反馈构成的恒流源,可以获得较高精度、较大的电流输出。
因此本设计采用方案二。
DC-DC升压电路方案比较:方案一:结构如下图所示,可以实现输出端与输入端的隔离,适合于输入电压与输出电压之比远大于一或远小于一的情形,但由于采用多次变换,电路中的损耗较大,效率低,而且结构复杂。
直流交流交流直流逆变电路变压器整流电路滤波器图1—1方案二:用Boost升压电路,拓扑结构如图1-2所示。
开关的导通和关断受到外部PWM信号控制,电感L将交替的储存和释放能量,电感L储能后使电压泵升,而电容C可将输出电压保持住,输出电压与输入电压的关系为u0=(Ton+Toof),通过改变PWM控制信号的占空比可以实现相应输出电压的变化。
单电感双路输出dcdc转换器研究及设计

授权使用:北京服学院(bjfzxy),授权号:d3c8f336-d150-4a0a-92cc-9e6d00a54851
下载时间:2011年1月16日
东南大学
硕士学位论文
单电感双路输出DC-DC转换器研究及设计
姓名:***
申请学位级别:硕士
专业:电子科学与技术
指导教师:***
20080408
单电感双路输出DC-DC转换器研究及设计
2.期刊论文朱潇挺.许伟伟.洪志良.ZHU Xiao-ting.XU Wei-wei.HONG Zhi-liang单电感双输出降压型DC-DC变换
器的设计-微电子学与计算机2009,26(1)
设计了一种利用单个电感实现双路输出的低电压降压型(Btlck)DG-DC变换器,提供200mA(1.8V)和400mA(1.2V)的带负载能力.引入平均电流控制模式,并采用了一种无损电流检测的方法.轻负载时电路工作在非连续电流模式(DCM)下.实现了片上补偿和片上软启动.采用TSMC 0.25grn CMOS混合信号工艺,版图面积2.2mm×2.2mm.
作者:乐忠明
学位授予单位:东南大学
1.期刊论文刘继宗.LIU Ji-zong连续导电模式下的单电感双输出开关变换器-通信电源技术2010,27(1)
文章系统地分析了单电感双输出DC-DC变换器结构,采用分时复用原理实现双路输出.由于电感共享,各输出支路间存在着严重的交叉影响.当输出支路严格工作在不连续导电模式(DCM)或伪连续导电模式(PCCM)下,可有效抑制交叉影响.文章首次提出了应用于连续导电模式工作的单电感双输出开关变换器的峰值电流-差模电压控制方法,在连续导电模式(CCM)下实现了几乎没有交叉影响的双路输出.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双路输出正激式DC /DC 变换器的设计双路输出正激式DC /DC 变
换器的设计
双路输出正激式DC /DC 变换器的设计
0 引言开关电源以其高效率、小体积等优点已获得了广泛应用。
而转换器是开关电源中最重要的组成部分,转换器有5 种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。
在所有的DC /DC 隔离变换器中,正激变换器是低电压大电流功率变换器的首选拓扑结构。
由于正激变换器使用无气隙铁心,电感值高,原边和负边峰值电流小,铜损小,所以变压器利用率较高,输出效率也很高;其次,正激变换器中输出电感器和续流二极管的存在,也可以有效衰减纹波电流。
为此,本文介绍了一种采用单端正激式结构设计的双路输出(%26#177;6 V ,1.5 A)DC /DC 变换器的设计过程。
1 电路工作原理本变换器的电路原理框图如图1 所示。
当直流输入电压经过滤波电路进入辅助电源后,即由辅助电源给控制器供电,然后在控制器作用下,用开关管控制电流的通断以形成高频脉冲电流,再经高频变压器,使其在输人为高(开关管接通)时整流二极管导通,从而使串联电感为充电状态,最后经滤波电路向负载传送能量并输出直流电压;相反,在输入低电平(开关管断开)时,电感为放电状态,电路将
通过续流二极管继续向负载释放能量,并输出直流电压。
为了保持电压稳定,两路输出电压经取样、隔离反馈电路送到控制器后将使输出脉冲宽度随输出电压的变化而变化,从而稳定输出电压。
由于变压器原边绕组通过的是单向脉动电流,为避免磁性饱和,确保励磁磁通在每一个开关周期开始时处于初始值,设计时必须使变压器的铁芯磁性复位。
2 控制回路的设计传统的开关电源普遍采用电压型脉宽调制(PWM) 技术,而近年来,电流型PWM 技术得到了飞速发展,本设计采用电流型控制器UC1843 来实现控制回路。
UC1843 工作频率可达500 kHz ,并它具有大电流推拉式输出,低启动工作电流等特点。
电路中在开关管通断瞬间,必须供给栅极较大电流,并对栅源极间电容进行快速充放电,以使开关管高速工作。
UC1843 的输出级为图腾柱式,输出电流为1 A 。
它不必增加任何外围电路,就可将其直接接到开关管的栅极,并驱动VMOS 管高速工作。
UC1843 具有精度高、电压稳定、外围电路简单优点。
相比电压型PWM ,电流型PWM 具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也有明显的改善。
3 双路输出设计本设计中的双路输出部分电路如图2 所示。
由于该电路要求对称输出,故将正负两路输出
滤波电感L1 、L2 绕制在同一磁芯上,并采用双线并绕的方法来保证L1 、L2 电感量完全相同。
线路在接人方法上采用了差模相位关系,这种连接方法可使2 路输出电流的变化量相互感应,从而在一定程度上改善2 路输出的调整率。
其次。
也可将采样比较器R1 、R2 直接跨接到正负电源的输出端上。
本设计的逻辑"地"不是电源的输出地.而
是以负电压输出端作为采样比较和基准电压的逻辑"地"电位。
这样,采样误差将同时反映出正、负2 路输出的电压精度变化,并对正、负2 路同样存在有反馈作用,以在很大程度上改进 2 路输出的调整率。
4 变压器设计开关电源的设计主要分为两部分,一是电路部分的设计。
二是磁路部分的设计。
开关电源变压器是高频开关电源的核心元件,必须进行合理设计才能达到理想效果。
一般情况下,开关电源变压器的选用原则如下:(1) 要有较高的饱和磁通密度BS 和
较低的剩余磁通密度Br ,以减少变压器的匝数和铜损。
(2) 在高频率下应有较低的功率损耗;因为变压器高频工作时会发热而造成磁心损耗,从而影响电源输出效率,造成波形畸变等不良后果。
(3) 适中的磁导率;不同的相对磁导
率适合于不同的工作频率,比如相对磁导率为2000 的材料,其适用频率在300 kHz〜500 kHz。
(4)较高的居里温度;
居里温度是使磁性材料失去磁特性时的温度。
居里温度值过低,高温工作时会使磁心的饱和磁通密度严重跌落,从而影
响正常工作。
为此,本电路根据工作频率、输出功率、模块体积等要求,选用磁心规格为PC40-P11 /7Z-52H 的TDK 磁性材料。
其参数见表1 所列。
实际绕制变压器时,先根据计算所得的变压器匝数比,以绕满罐为原则来绕制变压器,再在电路中根据输出效率要求和工作电压范围,来观察开关管漏极上的电压波形,并对变压器匝数进行适当调整。
事实上,当电源初次级匝数比增大时,电源效率会提高,但
电源正常工作最小输入电压也会升高,电路的工作范围变窄;而当电源初次级匝数比减小时,电源正常工作最小输入电压降低,电路的工作范围变宽,但效率会降低。
图3 给出了不同匝数比时漏极上的电压波形:其中图3(a) 是变压器初次级匝数比为8:7:7,初次级电感量比为110 :95,:95 的波形,此时的电路输出效率为75%,最小输入电压为14 V ; 图3(b)是变压器匝数比为10 : 7: 7,初次
级电感量比为180卩:95卩:95时的电压波形,此时的电路输出效率为78 %,最小输入电压为16 V 图3(c)是变压
器匝数比为13 : 7: 7,初次级电感量比为246卩:95卩:95卩时的电压波形, 此时的电路输出效率为81 %,最小输入电压为20 V 由此可见,匝数比增高,效率逐渐提高,但低端电压逐渐上升,工作范围变窄。
本设计最后确定的初次级匝数比11:7:7。
电感量为200:95:95,效率为80%。
5 磁复位设计本电路中变压器的工作方式为单端正
激式,变压器磁心工作在磁滞回线的第一象限,如图4 所示,为了确保变压器在磁化曲线的线性区工作,设计时应在开关功率管截止期间将高频变压器复位,并使增长的磁通和减小的磁通平衡,以防止变压器磁芯饱利。
本电路在次级整流管两端并联了一个如图5 所示的RC 网络,以实现磁复位。
该电路相比二极管加去磁绕组复位电路,其结构比较简单。
这样,当开关关断时,磁感应电流便可通过变压器的次级绕组流出,并通过电容C 使磁感应电流减至零。
R,C 取值时,C 的电容量要足够小,以便在最短的关断时间内将磁感应电流衰减到零。
而电阻R 的电阻值则不能过小,电阻值过小会与内部寄生电感形成自激振荡。
磁复位时,要求在输入电压为最小值或最大值时,磁复位电路都能对高频变压器进行准确地复位。
6 输出纹波电压的降低为达到
降低输出纹波电压的目的,设计时,首先要减小功率开关管的电压尖峰。
因为当VMOS 管由导通变成截止时,在变压器的一次绕组上就会产生尖峰电压和感应电压,其中尖峰电压是由高频变压器漏感(即漏磁产生的自感)引起的,它与直流高压和感应电压叠加后很容易损坏VMOS 管,故在设计时,要优化功率变压器的设计,减小变压器初级漏感;第二,电路布线时要尽量减少VMOS 各端点的连接线长度,特别是栅极引线,如果无法使引线缩短,可以靠近栅极处串联一个小电阻,或者在漏级与地之间接上电容以减小振荡,减低尖峰电压;第三,应采用合适的RC 吸收网络,以减小功率开关管的电压尖峰;此外,整流二极管在关断时的反向恢复时间也会导致尖峰电流,从而造成纹波,因此,设计时要优选反向恢复时间短的肖特基二极管来减小尖峰;最后,LC 滤波电路要合理确定电感器的电感,应选用高可靠、温度性能好的高频独石电容为滤波电容,以减小纹波电压。
7 结束语本文介绍的双路输出正激式DC /DC 变换器采用厚膜混合集成电路技术,裸芯片组装,金属全密封封装,同时采用平行封焊工艺来保证产品的高可靠性,表2 所列是其电路性能参数由表2 可见,该产品输出电压稳定,产品一致性好,同时具有体积小、重量轻、可靠性高、耐冲击、组装方便等优点,完全满足使用要求,可以应用于航空、航天、船舶等多项领域,以便为我国国防武器现代化提供保障。