反激变换器的原理与设计(经典)

合集下载

反激变换器原理

反激变换器原理

反激变换器原理
反激变换器是一种常用的电力电子变换器,通过将输入的直流电压变换成所需的输出电压来实现能量的转换。

它由高频开关管、变压器、整流电路、滤波电路和控制电路等组成。

反激变换器的工作原理如下:
1. 开关管控制:反激变换器中的高频开关管(如MOSFET或IGBT)通过开关动作,周期性地打开和关闭。

开关管的导通
和截止决定了输入电压是否能够向变压器传递。

2. 能量储存:当开关管导通时,输入电压通过变压器的主绕组向储能元件(如电感、变压器副绕组或电容)储存能量。

由于能量储存元件的特性,电流开始增加,同时电压开始降低。

3. 能量释放:当开关管截止时,储能元件会释放储存的能量。

电感元件的电流开始减小,通过变压器的副绕组向输出端提供能量。

此时输出端的电压会升高。

4. 输出整流:变压器副绕组的电压经过整流电路(如二极管桥)后,变成直流电压,用于供应负载。

5. 控制电路:反激变换器需要一个控制电路来监测输出电压,并根据需要调整开关管的导通和截止时机,以使输出电压保持稳定。

控制电路通常使用反馈回路和比较器来实现。

根据所需的输出电压和负载性质,反激变换器可以选择多种拓
扑结构,如单端反激、双端反激等。

同时,反激变换器还可以通过合理的设计,在开关管截止时将储能元件的能量转移到输入电压源中,实现能量的回馈,提高整体效率。

反激变换器资料课件

反激变换器资料课件
电压调整率
电压调整率是衡量反激变换器输出电压稳定性的重要指标。 好的电压调整率意味着在输入电压变化或负载变化时,输出 电压能够保持稳定。
负载调整率
负载调整率是衡量反激变换器输出电流稳定性的重要指标。 好的负载调整率意味着在负载电流变化时,输出电压能够保 持稳定。
电磁干扰与噪声分析
电磁干扰
反激变换器在开关过程中会产生电磁干扰,可能对周围电子设备和系统产生影响 。因此,需要采取措施降低电磁干扰,如优化电路设计、使用屏蔽等。
反激变换器资料课 件
contents
目录
• 反激变换器概述 • 反激变换器的工作状态 • 反激变换器的设计要点 • 反激变换器的性能分析 • 反激变换器的优化策略 • 反激变换器的实际案例分析
01
CATALO义
反激变换器是一种将输入直流电 压转换为输出直流电压或直流电 流的电源转换器。
二极管类型
选择适当的整流二极管, 如肖特基二极管、硅整流 二极管等,以满足电路的 整流需求。
开关频率
根据电路需求和变压器设 计,选择适当的开关频率 ,以提高变换器的效率。
输出滤波器的设计
1 2
电容类型
根据输出电压和电流的纹波要求,选择适当的输 出电容类型,如陶瓷电容、电解电容等。
电感类型
选择适当的输出电感类型,如铁氧体电感、绕线 电感等,以满足输出滤波需求。
详细描述
在断续导电模式下,反激变换器的开关管在每个周期的开始阶段短暂导通,然后关闭。当开关管关闭 时,磁芯中的能量通过变压器传递到输出端。随着磁芯中的能量逐渐减少,输出电压逐渐下降。在下 一个周期开始时,开关管再次导通,重新为磁芯提供磁化能量。
临界导电模式
总结词
临界导电模式是连续导电模式和断续导 电模式之间的过渡状态。在此模式下, 反激变换器的开关管在每个周期的某个 时刻关闭,以限制磁芯中的能量。

反激变换器工作原理

反激变换器工作原理

反激变换器
28

V in (min) D max (1 D max )
(V out V D )
NP NS
(10)
V in (max) D min V in (min) D max
(11)
i P (max)
NS
I out
N P 1 D min

1 V in (max) D min 2 f s LP
2 2
C
f

D max I out V out f s
(16)
反激变换器
14
此页之后的内容在讲完变压器电抗器设计之后才细讲。 Iin Vin IP UP IS D US Iout Cf 八. 元器件的选择 Vout 4.变压器的设计
A.选定磁芯材料和型式--- 根据工作频率,磁化形式,传输功率,线圈绕组的绕制等要求, 以及磁芯的磁化曲线,供货情况等来确定磁芯材料. B.确定磁芯型材的大小---Ae,AW,lm 由电流密度参数法,有
Iout Cf 八. 元器件的选择 Vout 4.变压器的设计 根据(20),确定磁芯的大小. 于是得到Ae,AW,lm
C.确定原副边匝数---NP,NS
由(6),(6‘)和(11) 确定
NP
V in (max) D min f s Ae B
(23)
NS
(V out (max) V D ) 1 D min f s Ae B

2 N P I in DB
(34)
B
S
反激变换器
24
Iin Vin
IP UP
IS D US
Iout Cf 八. 元器件的选择 Vout 4.变压器的设计 E.变压器磁芯气隙lg的确定 加气隙后的B - H曲线

反激式变换器(Flyback Converter)的工作原理

反激式变换器(Flyback Converter)的工作原理

反激式变换器(Flyback Converter)的工作原理反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计.二.反激式变换器(Flyback Converter)的工作原理1).反激式变换器的电路结构如图一.2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b).当Q1导通,T1之初级线圈渐渐地会有初级电流流过,能量就会储存在其中.由于变压器初级与次级侧之线圈极性是相反的,因此二极管D1不会导通,输出功率则由Co来提供.此时变压器相当于一个串联电感Lp,初级线圈电流Ip可以表示为:Vdc=Lp*dip/dt此时变压器磁芯之磁通密度会从剩磁Br增加到工作峰值Bw.3.当Q1截止时, 其等效电路如图三(a)及在截止时次级电流波形,磁化曲线如图三(b).当Q1截止时,变压器之安匝数(Ampere-Turns NI)不会改变,因为∆B并没有相对的改变.当∆B向负的方向改变时(即从Bw降低到Br),在变压器所有线圈之电压极性将会反转,并使D1导通,也就是说储存在变压器中的能量会经D1,传递到Co和负载上.此时次级线圈两端电压为:Vs(t)=Vo+Vf (Vf为二极管D1的压降).次级线圈电流:Lp=(Np/Ns)2*Ls (Ls为次级线圈电感量)由于变压器能量没有完全转移,在下一次导通时,还有能量储存在变压器中,次级电流并没有降低到0值,因此称为连续电流模式或不完全能量传递模式(CCM).三.CCM模式下反激变压器设计的步骤1. 确定电源规格.1. .输入电压范围Vin=85—265Vac;2. .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A;3. .变压器的效率ŋ=0.902. 工作频率和最大占空比确定.取:工作频率fosc=100KHz, 最大占空比Dmax=0.45.T=1/fosc=10us.Ton(max)=0.45*10=4.5usToff=10-4.5=5.5us.3. 计算变压器初与次级匝数比n(Np/Ns=n).最低输入电压Vin(min)=85*√2-20=100Vdc(取低频纹波为20V).根据伏特-秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n.n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)]n=[100*0.45]/[(5+1.0)*0.55]=13.644. 变压器初级峰值电流的计算.设+5V输出电流的过流点为120%;+5v和+12v整流二极管的正向压降均为1.0V. +5V输出功率Pout1=(V01+V f)*I01*120%=6*10*1.2=72W+12V输出功率Pout2=(V02+V f)*I02=13*1=13W变压器次级输出总功率Pout=Pout1+Pout2=85W如图四, 设Ip2=k*Ip1, 取k=0.41/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ŋIp1=2*Pout/[ŋ(1+k)*Vin(min)*Dmax]=2*85/[0.90*(1+0.4)*100*0.45]=3.00AIp2=0.4*Ip1=1.20A5. 变压器初级电感量的计算.由式子Vdc=Lp*dip/dt,得:Lp= Vin(min)*Ton(max)/[Ip1-Ip2]=100*4.5/[3.00-1.20]=250uH6.变压器铁芯的选择.根据式子Aw*Ae=Pt*106/[2*ko*kc*fosc*Bm*j*ŋ],其中: Pt(变压器的标称输出功率)= Pout=85WKo(窗口的铜填充系数)=0.4Kc(磁芯填充系数)=1(对于铁氧体),变压器磁通密度Bm=1500 Gsj(电流密度): j=5A/mm2;Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90]=0.157cm4考虑到绕线空间,选择窗口面积大的磁芯,查表:EER2834S铁氧体磁芯的有效截面积Ae=0.854cm2它的窗口面积Aw=148mm2=1.48cm2EER2834S的功率容量乘积为Ap =Ae*Aw=1.48*0.854=1.264cm4 >0.157cm4故选择EER2834S铁氧体磁芯.7.变压器初级匝数及气隙长度的计算.1).由Np=Lp*(Ip1-Ip2)/[Ae*Bm],得:Np=250*(3.00-1.20)/[85.4*0.15] =35.12 取Np=36由Lp=uo*ur*Np2*Ae/lg,得:气隙长度lg=uo*ur*Ae*Np2/Lp=4*3.14*10-7*1*85.4mm2*362/(250.0*10-3mH)=0.556mm 取lg=0.6mm2). 当+5V限流输出,Ip为最大时(Ip=Ip1=3.00A),检查Bmax.Bmax=Lp*Ip/[Ae*Np]=250*10-6*3.00/[85.4 mm2*36]=0.2440T=2440Gs <3000Gs因此变压器磁芯选择通过.8. 变压器次级匝数的计算.Ns1(5v)=Np/n=36/13.64=2.64 取Ns1=3Ns2(12v)=(12+1)* Ns1/(5+1)=6.50 取Ns2=7故初次级实际匝比:n=36/3=129.重新核算占空比Dmax和Dmin.1).当输入电压为最低时: Vin(min)=100Vdc.由Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n,得:Dmax=(Vout+Vf)*n/[(Vout+Vf)*n+ Vin(min)]=6*12/[6*12+100]=0.4182).当输入电压为最高时: Vin(max)=265*1.414=374.7Vdc.Dmin=(Vout+Vf)*n/[(Vout+Vf)*n+ Vin(max)]=6*12.00/[6*12.00+374.7]=0.1610. 重新核算变压器初级电流的峰值Ip和有效值Ip(rms).1).在输入电压为最低Vin(min)和占空比为Dmax条件下,计算Ip值和K值.(如图五)设Ip2=k*Ip1.实际输出功率Pout'=6*10+13*1=73W1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout'/ŋ(1)K=1-[Vin(min)* Ton(max)]/(Ip1*Lp) (2)由(1)(2)得:Ip1=1/2*{2*Pout'*T/[ŋ* Vin(min)*Ton(max)]+Vin(min)* Ton(max)/Lp}=0.5*{2*73*10/[0.90*100*4.18]+100*4.18/250.0}=2.78AK=1-100*4.18/[2.78*250]=0.40Ip2=k*Ip1=2.78*0.40=1.11A2).初级电流有效值Ip(rms)=[Ton/(3T)*(Ip12+Ip22+Ip1*Ip2)]1/2=[0.418/3*(2.782+1.112+2.78*1.11)] 1/2=1.30A11. 次级线圈的峰值电流和有效值电流计算:当开关管截止时, 变压器之安匝数(Ampere-Turns NI)不会改变,因为∆B并没有相对的改变.因此开关管截止时,初级峰值电流与匝数的乘积等于次级各绕组匝数与峰值电流乘积之和(Np*Ip=Ns1*Is1p+Ns2*Is2p).由于多路输出的次级电流波形是随各组负载电流的不同而不同, 因而次级电流的有效值也不同.然而次级负载电流小的回路电流波形,在连续时接近梯形波,在不连续时接近三角波,因此为了计算方便,可以先计算负载电流小的回路电流有效值.1).首先假设+12V输出回路次级线圈的电流波形为连续,电流波形如下(图一):1/2*[Is2p +Is2b]*toff/T=I02(3)Ls1*[Is2p–Is2b]/toff=V02+Vf (4)Ls2/Lp=(Ns2/Np)2(5)由(3)(4)(5)式得:Is2p=1/2*{2*I02/[1-D]+[V02+Vf]*[1-D]*T*Np2/[Ns22*Lp]}=0.5*{2*1/[1-0.418]+[12+1]*[1-0.418]*10*362/[72*250]}=5.72AIs2b =I01/[1-D]-1/2*[V01+Vf]*[1-D]*Np2/[Ns22*Lp]=1/0.582-0.5*13*0.582*10*362/[72*250]=-2.28A <0因此假设不成立.则+12V输出回路次级线圈的电流波形为不连续, 电流波形如上(图七). 令+12V整流管导通时间为t’.将Is2b=0代入(3)(4)(5)式得:1/2*Is2p*t’/T=I02(6)Ls1*Is2p/t’=V02+Vf (7)Ls2/Lp=(Ns2/Np)2(8)由(6)(7)(8)式得:Is2p={(V02+Vf)*2*I02*T*Np2/[Lp*Ns22]}1/2={2*1*[12+1]*10*362/[72*250]} 1/2=5.24At’=2*I02*T/ Is2p=2*1*10/5.24=3.817us2).+12V输出回路次级线圈的有效值电流:Is2(rms)= [t’/(3T)]1/2*Is2p=[3.817/3*10] 1/2*5.24=1.87A3).+5v输出回路次级线圈的有效值电流计算:Is1rms= Is2(rms)*I01/I02=1.87*10/1=18.7A12.变压器初级线圈和次级线圈的线径计算.1).导线横截面积:前面已提到,取电流密度j=5A/mm2变压器初级线圈:导线截面积= Ip(rms)/j=1.3A/5A/mm2=0.26mm2变压器次级线圈:(+5V)导线截面积= Is1(rms)/j=18.7A/5A/mm2=3.74 mm2(+12V)导线截面积= Is2(rms)/j=1.87A/5A/mm2=0.374mm22).线径及根数的选取.考虑导线的趋肤效应,因此导线的线径建议不超过穿透厚度的2倍.穿透厚度=66.1*k/(f)1/2k为材质常数,Cu在20℃时k=1.=66.1/(100*103)1/2=0.20因此导线的线径不要超过0.40mm.由于EER2834S骨架宽度为22mm,除去6.0mm的挡墙宽度,仅剩下16.0mm的线包宽度.因此所选线径必须满足每层线圈刚好绕满.3).变压器初级线圈线径:线圈根数=0.26*4/[0.4*0.4*3.14]=0.26/0.1256=2取Φ0.40*2根并绕18圈,分两层串联绕线.4).变压器次级线圈线径:+5V: 线圈根数=3.74/0.1256=30取Φ0.40*10根并绕3圈, 分三层并联绕线.+12V: 线圈根数=0.374/0.1256=3取Φ0.40*1根并绕7圈, 分三层并联绕线.5).变压器绕线结构及工艺.为了减小变压器的漏感,建议采取三文治绕法,而且采取该绕法的电源EMI性能比较好.四.结论.由于连续模式下电流峰值比不连续模式下小,开关管的开关损耗较小,因此在功率稍大的反激变换器中均采用连续模式,且电源的效率比较高.由于反激式变压器的设计是反激变换器的设计重点,也是设计难点,如果参数不合理,则会直接影响到整个变换器的性能,严重者会造成磁芯饱和而损害开关管,因此在设计反激变压器时应小心谨慎,而且变压器的参数需要经过反复试验才能达到最佳.。

反激变换器的原理与设计

反激变换器的原理与设计

反激变换器的原理与设计反激变换器(flyback converter)是一种常用的直流电源变换器,能够将输入电压转换为所需的输出电压。

它主要由能量存储元件(电感器)、开关管(MOSFET)以及输出电压反馈回路等组成。

下面将详细介绍反激变换器的工作原理和设计要点。

1.原理:在能量存储阶段,切换管导通,输入电压通过电感器(主电感L)充电,电能被存储在电感器和漏感(副电感Lm)中。

此时二极管(D)关断。

在能量释放阶段,切换管关断,电感器中储存的能量开始传输。

电感器的电压将上升到储能电容器(C)和负载上,形成输出电压。

漏感中储存的能量也开始传输。

此时,二极管导通,漏感中的能量传递给负载和储能电容器。

2.设计要点:(1)选择合适的开关元件:切换管应选择能承受输入电压和输出功率的MOSFET管。

无源减压型和有源减压型的选型要求不一样,要根据具体需求进行选择。

(2)合理设计变压器:变压器设计是反激变换器设计的关键,主要包括匝数计算、电感值确定、磁芯选型等。

合理设计变压器能提高效率,减小开关压降。

(3)选取合适的反馈控制方式:常用的控制方式有电流模式控制和电压模式控制。

电流模式控制适用于负载变化较大的场景,能够保持输出电流的稳定性;电压模式控制适用于负载变化较小的场景,能够保持输出电压的稳定性。

(4)合理选择电容器和滤波电路:电容器的选择应根据输出电流和负载的特点来确定合适的容值。

滤波电路的设计可以减小电磁干扰和输出纹波。

(5)考虑过渡过程和保护措施:在设计过程中还要考虑到启动过程的稳定性、变压器的漏电感对输出电压的影响、过电流保护、过压保护等方面的问题,以确保变换器的可靠性和安全性。

总结:反激变换器作为直流电源转换器的重要一环,其设计和应用十分广泛。

设计反激变换器时,需要根据具体的输入输出电压和负载要求,选择适当的元件和控制策略,合理设计变压器和电路,以及充分考虑保护和稳定性问题。

这样可以提高反激变换器的性能,实现高效稳定的电源转换。

(完整word版)反激电路

(完整word版)反激电路

一、 单端反激变换器1、单端反激变换器的原理图如下:i 1i 2V o+-2、工作原理单端反激变换器主要用在250W 以下的电路中,其中的变压器既有变压器的作用,也有电感的作用其有两种工作方式:一是完全能量转换方式,即电感电流断续工作模式;二是不完全能量转换方式,即电感电流连续工作模式。

工作过程:当Tr 导通时,电源电流流过变压器原边,i1增加,其变化为11//L V dt di s =,而副边由于二极管D 的作用,i2为0,变压器磁心磁感应强度增加,变压器储能;当Tr 关断时,原边电流迅速降为0,副边电流i2在反激作用下迅速增大到最大值,然后开始线性减小,其变化为22//L V dt di o =,此时原边由于开关管的关断,电流为0,变压器磁心磁感应强度减小,变压器放能。

3、工作波形工作波形如下:连续工作模式: 断续工作模式:V g -V 2i 1i 2V Trt4、电压增益(1) 连续工作模式下的电压增益:理想状态下,由副副边绕组在一个周期中的伏秒值为0可得:s o s s T D V T nD V )1(11-= (1-1)故可得电压增益为:111D D nV V M s o -==(1-2) 而在实际中,由于变压器存在一次绕组内阻r1,二次绕组内阻r2,故可得:s o s s T D r I V T nD r I V )1)(()(122111--=- (1-3)而 o I I =2 (1-4)221/n r r = (1-5)o o s o o D nI D V I V I //11==(为计算方便,设Do=(1-D1)) (1-6)故将(1-4)(1-5)(1-6)代入(1-3)可得)1)((2121--==os o o s o D D nV r I D DnV V M (1-7) (2)断续工作模式下的电压增益:由面积相等可得式:2/2s p s o T D I T I ∆= (1-8)由s p o s s T D V T D nV =1可得V g-V 2i 1i 2V Trto s p V D nV D /1= (1-9)而 112/nL T D V I s s =∆ (1-10) 将(1-9)(1-10)代入(1-8)可得:1112L V D V T D V I o s s s o =(1-11)临界连续时,即可以看作连续又可以看作断续,此时:111D D nV V s o -=,所以临界连续电流为:112)1(nL D T D V I s s oc -=(1-12)当D=1/2时取最大值,为:18nL T V I ss ocm =(1-13) 将(1-13)代入(1-11),可得断续工作模式下的电压增益为:oocm s o I DI nV V M 214== (1-14)二、 双管反激变换器1、双管反激变换器原理图如下:V o+-2、工作原理当功率大于200W 的时候,不宜采用单端反激电路,可采用双管反激电路。

反激变换器——第六章

反激变换器——第六章
根据式(4.7确定最大导通时间)
由式(4.8)有
6.2 不连续模式下反激变换器的基本工作原理
由式(4.9)有
由式(4.10)有
6.2 不连续模式下反激变换器的基本工作原理
根据式(4.11),初级所需的总园密耳数为
选用19号线,其园密耳数为1290
根据式(4.12),可得次级电流为
复位时间Tr满足(0.8T-Ton)=16-9.9=6.1μ s
6.2.3 反激拓扑的电磁原理
防止反激变换器磁心饱和的方法:给磁心加气隙 • 采用实心铁氧体磁心,研磨掉EE型或罐型磁心中 心柱的一部分形成气隙;在U型或UU型磁心的两 半间插入塑料薄片形成气隙。
• 采用MPP(坡莫合金粉末)磁心
6.2 不连续模式下反激变换器的基本工作原理
1、铁氧体磁心加气隙防止饱和 铁氧体磁心加气隙作用:
反馈环路在Vdc或Ro上升时减小Ton ,在Vdc或Ro下降时增大Ton,从而自动调整输出。
6.2 不连续模式下反激变换器的基本工作原理
6.2.2 设计原则和设计步骤
1、确定初/次级匝数比(匝比决定了不考虑漏感尖峰时开关管可承受的最大 关断电压应力Vms) 忽略漏感尖峰并设整流管压降为1V,则直流输入电压最大时开关管的最大电 压应力为
Q1关断时,励磁电感的电流使各绕组反向,设此时次级只有一个主次级绕 组Nm,无其他辅助绕组。则由于电感电流不能突变,在Q1关断瞬间,变压 器次级电流幅值为 几个开关周期之后,次级直流电压上升到Vom。Q1关断时,Nm同名端电压 为正,电流从该端输出并线性下降,斜率为dIs/dt=Vom/Ls。其中Ls为次级 电感。若次级电流Is再次导通之前降到零,则变压器存储的能量在Q1再次导 通之前已经传送到负载端,变压器工作在不连续模式。一个周期T内直流母线 电压提供的功率为

有源箝位反激变换器分析与设计

有源箝位反激变换器分析与设计

有源箝位反激变换器分析与设计时间:2012-01-10 18:30:38 来源:作者:1. 引言反激(Flyback)变换器由于具有电路拓扑简洁、输入输出电气隔离、电压升/降范围宽、易于多路输出等优点,因而广泛用于中小功率变换场合。

但是,反激变换器功率开关电压、电流应力大,漏感引起的功率开关电压尖峰必须用箝位电路来限制。

作者在文献[1]中对RCD箝位、LCD箝位、有源箝位反激变换器进行了比较研究,得出有源箝位技术使反激变换器获得最优综合性能的结论。

图1 有源箝位反激变换器电路拓扑图2 有源箝位反激变换器原理波形2. 有源箝位反激变换器稳态原理分析有源箝位反激变换器电路拓扑及原理波形,分别如图1、图2所示[2]。

变压器用磁化电感Lm、谐振电感Lr(包括变压器漏感和外加小电感)和只有变比关系的理想变压器T表示,Cr为等效电容,包括两个开关S和SC的输出电容。

稳态工作时,每个开关周期分为七个开关状态阶段,各开关状态等值电路如图3所示。

七个开关状态为:① t=t0~t1:t0时刻,功率开关S开通,箝位开关SC及其寄生二极管Dc与整流二极管D均截止,Lm与Lr线性充电;② t=t1~t2:t1时刻,S关断,磁化电感电流即谐振电感电流以谐振方式对Cr充电,开关管S漏源电压uDS近似线性上升;③ t=t2~t3:t2时刻,uDS上升到Ui+uC,DC开通,将Lr和Lm串联支路端电压箝位在uC≈Uo(N1/N2),磁化电流通过箝位支路对CC充电(CC>Cr),u1下降规律为u1=-uCLm/(Lr+Lm);④ t=t3~t4:t3时刻,u1已经下降到使D正偏导通,随后u1箝位在-Uo(N1/N2),Lr和CC开始谐振,Lr上的电压为uC-Uo(N1/N2),iC下降速率为[uC-Uo(N1/N2)]/Lr,在iC开始反向之前开通SC,SC便获得了零电压开通(ZVS);⑤ t=t4~t5:t4时刻,SC关断,Lr与Cr谐振,在Cr放电期间u1仍然被箝位在-Uo(N1/N2)值上;⑥ t=t5~t6:t5时刻,uDS=0,假定Lr储能大于Cr储能,足以使S体内寄生二极管Ds开通,Lr 上电压箝位在Ui+Uo(N1/N2)值上,则副边整流二极管D中电流i2下降速率为(Lm>>Lr) (1)⑦ t6~t7:t6时刻S零电压ZVS开通,随着iLr上升,i2逐渐下降,t7时刻iLr已上升到磁化电流iLm值,i2=0,D反偏,u1由-Uo(N1/N2)变为Ui,随后Lm和Lr再次线性充电,新的PWM开关周期又开始了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.原边峰值电流 2.原边电感 3.磁芯截面积 4.磁感应强度
I 1 pk
2 U out I out
U in Dmax
L1 p
U in(min) Ton(max) I 1 pk
磁感应强度一般不超过0.3T.
1.功率变压器的设计
现在我们知道了:1.磁芯型号 2.原边匝数 3.副边匝数
对于变压器设计来说: 我们相当于完成了30%的任务.但是我们心里有底了!
二.反激变换器的基本工作原理
(二)反激变换器的气隙问题
反激变换器的能量究竟是存在气隙里还是磁芯里??
现在我们假设存在气隙,则存储在磁芯中的能量:
存储在气隙中的能量:
0 真空磁导率
r 相对磁导率
Lg 气隙长度
Eg
B2Lg Ae
20
Ec
B2Le Ae
20r
气隙存储能量 磁芯存储能量
Eg Ec
Lg r
Le
二.反激变换器的基本工作原理
假设有一个变压器:
相对磁导率为2000 气隙长度为1mm, 磁路长度为100mm,的磁环
气隙存储能量 磁芯存储能量
Eg Ec
Lg r
Le
1 2000 100
20 1
结论: 反激变换器决大部分能量存储在气隙里.
磁路和电路的相似性去理解磁路.
二.反激变换器的基本工作原理
三.反激变换器功率器件的设计
1.功率变压器的设计 2.功率MOS管的选择 3.功率整流管的选择
1.功率变压器的设计
(1)确定匝比
N U D in(min) max U out (1 Dmax)
U1 N1 U2 N2
UinTon N U T out off
说明: 最大占空比一般情况下我们设计为小于0.5; 如果是刚学设计变压器,不妨设为0.5; 匝比要保证在最低输入电压情况下能满载输出
对于反激变换器而言: Q导通期间:磁芯正向磁化 Q关断期间:磁芯反向磁化
正向磁化等于反向磁化
B U T NS
B Uin Ton NpS
B Uo Toff NsS
Uin Ton Uo Toff
Np
Ns
(一).伏秒平衡原理的理解




Uin Ton Uo Toff
Np
Ns
结论:
原边伏秒积 每匝
(一).伏秒平衡原理的理解 (二).铁损=铜损的讨论 (三).导线的的电密一般取为2A/mm2--4A/mm2
(一).伏秒平衡原理的理解
法拉第电磁感应定律: U N d dt
可以推出:U N d (BS) dt
U NS dB NS B
dt
T
B U T NS
(一).伏秒平衡原理的理解
B U T NS
二.反激变换器的基本工作原理
(四)反激变换器的占空比问题:
小于50%:
一般情况下,反激变换器的占空比都做成小于50%,这样 做的目的,可能是因为反激功率比小,做成电流断续模 式比较容易。
大于50%:
但是我们应该明白,反激变换器的占空比可以大于 50%,从理论上说,只要满足伏秒平衡既可。
举例:MPW1500-48A就把反激做成70%。
16V-100V输入
24V输出
二.反激变换器的基本工作原理
(一)反激变换器的工作过程: (二)反激变压器的气隙问题 (三)反激变换器的假负载问题: (四)反激变换器的占空比问题:
二.反激变换器的基本工作原理
(一)反激变换器的工作过程:
开通
关断
1.开通: 把能量存储在磁芯和气隙里 2.关断: 把存储在磁芯和气隙里能量通过次级绕组释放给负载
反激变换器的原理与设计
CP-HW开发部 贺文涛
内容提纲
一.反激变换器的拓扑分析 二.反激变换器的基本工作原理 三.反激变换器的主功率器件设计 四.变压器设计中几个概念的探讨 五.输入滤波器中几个概念的简单介绍
一.反激变换器的拓扑分析
(a)是降压变换器;
(b)是升压变换器(一般不超过5倍);
(c)是升降压变换器;
思考题: 1.如果把气隙继续加大,那么存储的能量是否一直加大?
2.反激变换器为什么要加气隙?
3.如果不加气隙反激变换器能工作吗?
漏掉的太多啦!
举例:
1.不加气隙 2.正激变换器加了气隙
储能啊!
二.反激变换器的基本工作原理
(三)反激变换器的假负载问题:
炸!
反激变换器如果没有负载,会出现什么情况?
有时候我们看不到假负载,并不代表没有假负载,可能是 利用电压采样电路代替假负载
(d)是隔离的升降压变换器;
一.反激变换器的拓扑分析
BUCK-BOST变换器应用举例:
太阳能LED照明灯一种应用电路
希望大家能理解:
BUCK—BOST变换器:既可以升压也可以降压!
一.反激变换器的拓扑分析
Flyback变换器的特点:
1.具有隔离功能的BUCK—BOST变换器 2.既可以升压也可以降压
注:这是理论计算数值,实际上比这高!
3.功率整流管的选择
1.功率整流管承受的最大反向关断电压 2.功率整流管承受的最大导通电流 最大反向关断电压 = 输入电压/匝比 + 输出电压 最大电流 = 变压器副边峰值电流=原边峰值电流 * 匝比
注:这是理论计算数值,实际上比这高!
四.变压器设计中几个概念的探讨
副边伏秒积 每匝
反过来看:
伏秒平衡就是磁心正向磁化等于反向磁化,也就是磁平衡。
(二).铁损=铜损的讨论
“铁损=铜损”的来源:
工频变压器优化设计经验
工频变压器设计中: 1.绕组较多 2.绕组占面积大
高频变压器设计中: 采用非常细的漆包线作为绕组. 这一经验法则并不成立。
在开关电源高频变压器设计中,确定优化设计有很多因素,而“铁损=铜损”其实是 最少受关注的一个方面。 在高频变压器的设计中,铁损和铜损可以相差较大,有时 两者差别甚至可以达到一个数量级之大,但这并不代表该高频变压器设计不好。
剩下的任务:
1.确定原边线径大小 2.确定副边线径大小 3.确定气隙 4.确定绕法 5.计算损耗 6.别忘了还有穿透深度的问题,选导线要注意
2.功率MOS管的选择
功率MOS管选择的最主要参数: 1.MOS管关断期间承受的最大关断电压 2.MOS管开通时承受的最大导通电流 MOS管承受的最大关断电压 = 输入电压 + 输出电压 * 匝比 MOS管承受的最大电流 = 变压器原边峰值电流
1.功率变压器的设计
(2)磁芯的初步选择
有经验的工程师: 基本上一步选择到位,然后稍加调整既可. 对于我们刚刚上手的兄弟们: 我们可以通过查表,粗略的估计变压器的基本型号.
1.功率变压器的设计
1.功率变压器的设计
(3)确定原边匝数N1ຫໍສະໝຸດ L1p I1pk Ae Bw
从公式可以看出,在确定原边匝数的时候,我们需要确定四个量.
相关文档
最新文档