食品物性学---食品热物性.

合集下载

第二章食品物性学ppt课件

第二章食品物性学ppt课件

可编辑课件PPT
25
2.1.5 食品流变性质的测定
2.1.5.1 黏度测量 1)毛细管黏度计 毛细管黏度计大体上
是U型,主要适用于低 黏度的流体。
可编辑课件PPT
26
2)落球黏度计
这类黏度计含有一根管子,小球在重力的作用下 可以从管中落下,其操作方法是测量小球在重力作 用下,通过装有流体的管子所需的时间。
可编辑课件PPT
19
2.1.3.2 淀粉类食品
淀粉溶液经过加热处理后具有凝胶性,流变 学性质变化范围很宽,从简单的黏性流体扩延到 高弹性的凝胶,这种多样性使淀粉具有广泛的工 艺用途。
1)淀粉水分分散液结构与流变性质关系 淀粉增稠与凝胶性质主要取决于系统的微观
结构,而微观结构与淀粉加工及淀粉种类有关。 淀粉分散系是胶质系统,膨胀的淀粉颗粒形
1)应力松弛实验
如果食品物料变形成固定的形状并保持不变,
那么维持这种形变所需要的应力随着时间而下降,即
应力松弛现象。
2)爬升实验
如果物料上存在较大的恒力负载,随着时间的延 长物料持续变形,通常称为爬升。
爬升实验是指在标准时间段测量瞬间恒力作用, 在物质上所产生的形变。
可编辑课件PPT
31
3)动力学实验
2.1.2 食品的流变学特性变化规律
2.1.2.1 液态食品分散体系的流变学特征
1)食品分散体系的分类
(1)分子分散体系。分散的粒子半径小于 10-7cm ,相当于单个分子或离子的大小。如蔗糖溶于水 后形成的“真溶液”。
(2)胶体分散体系。分散相的粒子半径为 10-7~10-5cm。
可编辑课件PPT
第二章 食品物性学
第二章 食品物性学
2.1

食品物性学对食品加工的应用

食品物性学对食品加工的应用

食品物性学对食品加工的应用通过学习《食品物性学》这门课程,使我加深了对食品物性概念的正确理解,并学习了测定各物性的仪器,方法以及在食品加工中的应用。

食品物性主要是指食品及食品原料的物理特性和工程特性,包括食品的基本物理特征、食品的流变特性、食品质构、食品热物性、电特性、光学性质等,我们利用这些性质对食品在加工和检测方面的技术不断地研究,来开发新技术和增加经济效益,提高食品质量和获得消费者满意的食品。

下面通过简单的举例来学习各物性在食品生产中的应用:1食品的基本物理特征及应用基本物理性质包括圆度、球度、提及、表面积、密度、空隙率、曲率半径等,由于食品形态的不同,使每一种食品都会以自己固有的状态存在,也就是说我们可以利用基本的物理性质来鉴别不同的食品和食品不同的品质,现在主要有食品分选,分级,品质评价等方面的应用。

我们利用筛分法来分离谷物和种子,可以除去壳,梗或草籽等异物;在果蔬分类中,可以利用带孔的筛子分类器来分离不易产生损伤的物质,剔除不符合规格尺寸大小的水果;对于非球形的水果蔬菜可以采用质量分类器;密度分离法也可以用来分离谷粒和果蔬等,这种方法可以判断果蔬的成熟度;另外,密度分离法还可以用到食品加工的分离工序,比如乳业种用离心法分离乳脂和脱脂乳;"表面积会影响谷物、种子和其他物质在干燥过程中的水分流失,植物叶片面积和组成壳用来划分及预测其蒸发、呼吸及光合作用速度,水果蔬菜的表面积可用来研究贮藏过程中的呼吸速率、浸泡过程中的吸水率等"(节选自李云飞编著的《食品物性学》)。

2食品的流变特性及应用食品流变学(Rheology)是流变学的一个分支,是研究食品物质流动和变形发生、发展规律的科学。

在食品的生产过程中,经常要遇到有关食品物质的流动,变形等问题,这此问题不仅反映了食品物质的特性,同时也直接影响到食品的质量,产品加工及设备设计。

食品流变学在食品工业中的应用,"一是用于食品加工工艺方面,根据各种食品物质的不同流变特性,改进加工工艺,或者通过改变食品物质的温度、浓度及加工过程中的剪切速率和受剪切的时间、添加各种表面活性剂等各种方法,改进食品物质的流变特性,使其具有更好的加工性能,提高产品质量。

物性学——精选推荐

物性学——精选推荐

食品物性学复习材料第一章:食品的主要形态与物理性质1、食品物性学是研究食品物理性质的一门科学。

2、食品形态微观结构按分子的聚集排列方式主要有三种类型:晶态、液态、气态,其外,还有两种过渡态,它们是玻璃态和液晶态。

各自特点:晶态:分子(或原子、离子)间的几何排列具有三维远程有序;液态:分子间的几何排列只有近程有序(即在1-2分子层内排列有序),而远程无序;气态:分子间的几何排列不但远程无序,近程也无序。

玻璃态(无定形):分子间的几何排列只有近程有序,而无远程有序,即与液态分子排列相同。

它与液态主要区别在于黏度。

玻璃态粘度非常高,以致阻碍分子间相对运动液晶态:分子间几何排列相当有序,接近于晶态分子排列,但是具有一定的流动性(如动植物细胞膜和一定条件下的脂肪)。

4、粒子凝胶:球状蛋白、脂肪晶体等5、分子分散体系是一种单相体系。

6、表面活性物质是由亲水性极性基团和疏水性非极性基团组成的,能使溶液表面张力降低的物质,具有稳定泡沫的作用。

蛋白质是很好的界面活性物质。

7、影响泡沫稳定的主要因素:气泡壁液体由于重力作用产生离液现象和液体蒸发,表面黏度和马兰高尼效果。

8、果胶作为细胞间质,与纤维素、半纤维素、糖蛋白一起发挥细胞壁的作用。

二、判断1、制作食品泡沫时,一般都是先打发泡,然后再添加糖,以使泡沫稳定。

三、名词解释1、离浆:凝胶经过一段时间放置,网格会逐渐收缩,并把网格中的水挤出来,把这种现象称为离浆2、马兰高尼效果:当气泡膜薄到一定程度,膜液中界面活性剂分子就会产生局部的减少,于是这些地方的表面张力就会比原来或周围其它地方的表面张力有所增大。

因此,表面张力小的部分就会被局部表面张力大的部分所吸引,企图恢复原来的状态。

这种现象称作马兰高尼效果。

四、简答与分析1、淀粉糊化过程中的粘度变化:淀粉糊化过程中的粘度变化颗粒代表支链淀粉,曲线代表直链淀粉答:天然淀粉是一种液晶态结构。

在过量水中加热时,淀粉颗粒吸水膨胀,使处于亚稳定的直链淀粉析出进入水相,并由螺旋结构伸展成线形结构。

食品的物理特性

食品的物理特性

2、细胞状食品的质地及与其保藏的关组织 的性状与食品品质密切相关。 常见的细胞状食品有水果和蔬菜及其制品 等,在贮藏中最易变化的质地是硬度。

硬度计

一般而言,新鲜果蔬的硬度较大,随贮藏时间延长, 果蔬的硬度逐渐下降,品质发生劣变,最终导致软 化、腐烂。 果蔬的硬度主要由果实的细胞壁结构物质(纤维素、 半纤维素、木质素和果胶等)决定的,因此果蔬的 硬度在保藏过程中的变化主要与细胞壁结构物质的 降解引起的软化有关。
(2)液态食品中粒子的稳定性

液态食品大多属于胶体溶液或乳胶体液,对于这些 液体,从稳定性角度分析,可分为可逆分散系和不 可逆分散系。两者稳定性的区别是由分散相和分散 介质的亲和力大小决定的。亲和力越大,粒子与水 形成的水合结构就越稳定,形成稳定的分散系,称 为亲水性分散系统;相反,当粒子与水的亲和力较 小,两相分离为界面面积较小的状态时,自由能减 小,分散系变得不稳定,称为疏水性分散系统。
第一章
食品的特性
第二节
食品的物理特性


食品中含有无机物、有机物,甚至还包括具有细胞结 构的生物体,是一个复杂的物质系统。因此,食品的 物理性质是复杂多样的。 食品的物理性质主要包括力学性质、热学性质、光学 性质和电化学性质等。
食品的力学性质:是指食品在力的作用下产生变 形、振动、流动等的规律; 食品的热学性质:是指食品的相变规律、比热容、 潜热、传热规律及与温度有关的热膨胀规律等;
(一)食品质地的感官评价



食品质地的感官评价是以人的感觉为基础,通过感 官评价食品质地的各种属性后,再统计分析而获得 客观结果的试验方法。感官评价不仅仅是人的感觉 器官对接触食品时各种刺激的感知,而且还包括对 这些刺激的记忆、对比、综合分析等过程。 在进行感官评价时,为了更准确地表述食品的质地, 常常要用到感官评价术语。 与食品质地有关的感官评价术语:硬、软、酥松、 胶黏、弹性、细腻、油腻、粗糙、薄片状、粉状、 纤维状、蜂窝状、结晶状、泡沫状、海绵状、脆生、 玻璃状、凝胶状、黏、干、潮湿、水灵、多汁、奶 油状、烫的、冰冷的、清凉的、可塑性、砂质感、 收敛感等。

食品的物理特性

食品的物理特性

(2)液态食品中粒子的稳定性

液态食品大多属于胶体溶液或乳胶体液,对于这些 液体,从稳定性角度分析,可分为可逆分散系和不 可逆分散系。两者稳定性的区别是由分散相和分散 介质的亲和力大小决定的。亲和力越大,粒子与水 形成的水合结构就越稳定,形成稳定的分散系,称 为亲水性分散系统;相反,当粒子与水的亲和力较 小,两相分离为界面面积较小的状态时,自由能减 小,分散系变得不稳定,称为疏水性分散系统。
2、细胞状食品的质地及与其保藏的关系

细胞状食品属于组织状食品,其细胞组织 的性状与食品品质密切相关。 常见的细胞状食品有水果和蔬菜及其制品 等,在贮藏中最易变化的质地是硬度。

硬度计

一般而言,新鲜果蔬的硬度较大,随贮藏时间延长, 果蔬的硬度逐渐下降,品质发生劣变,最终导致软 化、腐烂。 果蔬的硬度主要由果实的细胞壁结构物质(纤维素、 半纤维素、木质素和果胶等)决定的,因此果蔬的 硬度在保藏过程中的变化主要与细胞壁结构物质的 降解引起的软化有关。

3、多孔状食品

所谓多孔状是指像面包、海绵蛋糕、饼干、馒头 那样,有大量空气分散在其中的状态。从分散体 系的角度理解,可认为多孔状食品是以固体或流 动性较小的半固体为连续相,气体为分散相的食 品。
多孔状食品可分为两类:一类为馒头、面包、海 绵蛋糕那样比较柔软的食品;另一类为饼干、膨 化小吃这样比较硬的食品;另外,冰淇淋等泡沫 状食品,也可算作多孔状食品。

食品的物理性质涉及多学科领域的知识,其研究具 有重要的意义,前景十分广阔。
例如,多功能近红外分析仪利用食品的光学性质可 实现对食品成分的无损检测,操作方便、快速、准 确、可靠。可用于食品水分、蛋白质、脂肪、纤维 素、pH等的检测,测样速度快(3~8秒);无需 样品制备;可减少操作者失误和提高效率。

食品物性学复习总结

食品物性学复习总结

(内容比较多,记忆起来比较困难,由于没有重点和PPT,只能总结到这一步了,重在理解!)(通宵做的,有不对的地方,改正一下)第一章绪论1食品物性学的概念及其影响作用?食品物性学重点讲述食品和食品原料的物理性质和工程特性,如力学特性、流变学特性、质构、光学特性、介电特性和热特性等。

影响作用:上述特性与食品组成、微观结构、次价力、表面状态等因素相关,进而影响食品的流动性、凝聚性、附着性、质构和口感;影响食品某些组分的扩散性、松弛性和质量稳定性,与食品生物化学反应速率相关联;影响食品对光、电、热的反应,食品分析检测相关联。

2食品物性学的主要研究内容?食品的形态、食品的质构及其描述、食品的流变特性、光电热特性、食品物性和微观结构等方面。

3食品物性学的主要特点?本课程所涉及内容与高分子物理有很多相似之处,食品物性学的研究材料相当复杂,有些是生命的活体,有些是特殊组织结构的物质,高分子和小分子物质的混杂。

本课程还与力学、电学、光学、热学等许多课程有联系。

第二章食品的主要形态和物理性质1.食品微观结构(三种),微观形态(五种)的基本概念分子结构:分子内原子之间的几何排列聚集态结构:分子之间的几何排列高分子结构:由许多小分子单元键合而成的长链状分子.气态:分子间的几何排列不但远程无序,近程也无序。

液态:分子间的几何排列只有近程有序,而远程无序。

结晶态:分子(或原子、离子)间的几何排列具有三维远程有序.液晶态:分子间的几何排列相当有序,在某方向上接近于晶态分子排列,具有一定的流动性。

玻璃态(无定形):分子间的几何排列只有近程有序,而远程无序,即与液态分子的排列相似。

是一种过渡的、热力学不稳定态。

2.食品微观作用力与食品宏观物性的关系分子内原子之间有相互作用力,分子之间也有相互作用力。

这种相互作用力包括吸引力和推拒力。

键合原子之间的吸引力有键合力,非键合原子间、基团间和分子间的吸引力有范德华力、氢键力和其他作用力。

党原子间或分子间的距离很小时,由于内层电子的相互作用,呈现推拒力。

食品物性学---食品热物性

食品物性学---食品热物性

分子扩散是由于分子的无规则运动引起的质量迁移。
对于一个两元系统(A,B)在单位时间内,组份A通
过单位面积的质量迁移流为,按Fick’s定律
JA
DAB
d A
dZ
其中p是组份A的浓度,单位为kg/m3; Z是扩散途径,单位为m DAB是 组份 A对组份 B的扩散系数,单位为
m2/s; JA是扩散质量流,单位为kg/(m2·s)。
热扩散系数 m2/s 4.0 0.60 0.13 0.22 0.15 0.069 0.12
表 3-11 几种常用包装材料的热阻
材料 蜡纸板 带玻璃纸的蜡纸板
铝箔
双层蜡防水纸
厚度 /mm 0.625 0.568 0.509 0.599 0.568 0.212
热阻 /W / m2 K 0.0096 0.0109 0.0070 0.0095 0.0075 0.0035
表 3-12 一些食品包装膜的气体渗透率(25℃)[10]
p 的单位是 cm3·mil/(m2·24h·atm)
(mil=10-3in=0.0154mm)
p 聚乙烯(PE)(低密度)
O2 8500
CO2 45000
(高密度)
9300
7000
玻璃纸
15
200
聚丙烯(polypropylene)
1500
因此,扩散系数的量纲为m2/s。
扩散系数是此系统的物理性质,对于食品材料来说, 多组份的系统,可以研究若干种扩散组份在食品系统 中的扩散系数。
第二节 食品材料的热物理数据
食品材料的热物理性质的测量是从18世纪开始的。目 前的数据中有2/3左右是在20世纪50一60年代发表的。 其中,只有一部分数据说明了材料的情况和实验的条件; 而大部分数据没有给出这些条件;有的甚至没给出含水量。 许多数据的离散度很大,因此实际上并没有多大的用处。

食品热物性详解

食品热物性详解
食品的热物性
1
自从人类从“茹毛饮血”进化为以熟食为主 以来,加热成了食品加工的重要手段。尤其 是现代化食品工业,为了提高食品的商品化 和保藏流通功能,加热、冷却、冷冻成了最 基本的加工方法。因此,食品的热物理性质 也成为食品生产管理、品质控制、加工和流 通等工程的重要基础。
2
Contents
近年来发展用差式扫描量热术(DSC)来测量材料的比热容。 此法所用的样品少(5一15mg);而且因其能测很大的温度范 围,故特别适合于测量食品材料的比热容和温度的关系。5
第一节 食品热物性基础
2、焓(enthalpy)
焓值是相对值,过去的教材中多取-20℃冻结态的焓值为
其零点;近年来多取-40℃的冻结态为其零点。
本 章 主 要 内 容
第一节 食品热物性基础
第二节 食品材料的热物理数据
第三节 差示扫描热量测定与定量差 示热分析
3
第一节 食品热物性基础
一、食品热物性的一般概念
1.食品的基本热参数 温度、比热容、焓、导热系数 2.食品的传热性质 表面热流量、质量平均温度、传热规律、 热传导、热对流、热辐射 3.热参数的检测 比热的检测、导热系数的检测
9
第二节食品材料的热物理数据
食品材料的热物理性质的测量是从18世纪开始的。 目前的数据中有2/3左右是在20世纪50一60年代发表的。 其中,只有一部分数据说明了材料的情况和实验的条件; 而大部分数据没有给出这些条件;有的甚至没给出含水量。 许多数据的离散度很大,因此实际上并没有多大的用处。
10
第二节食品材料的热物理数据
关于食品材料热物理性质的数据,收集最全的是美国供 热制冷空调工程师学会 (ASHRAE)1993年出版的手册。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

β =(△V/V)/T
表 3-2a 水的(体积)热膨胀系数
T /℃ 0 2 4 0.27 6 31.24 8 60.41 /10-6 (1/K) -68.1 -32.7
第一节 食品热物性基础
4.热扩散系数(thermal diffusivity)
一般说来,热扩散系数a是根据比热容Cp,热导率λ和密 度ρ数据计算而得的,即a=λ/(ρCp)但也可以用实验 测量,它主要是用一个瞬问加热的类似于测热导率的探 头和热电祸;再与它有一定距离处加上另一个热电祸以 测量样品温度的变化曲线。 这个距离和所测得的热扩散系数数据有着很大的关系, 但在食品材料中精确控制这个距离也不是容易的事。
分子扩散是由于分子的无规则运动引起的质量迁移。 对于一个两元系统(A,B)在单位时间内,组份A通 过单位面积的质量迁移流为,按Fick’s定律 d A J A DAB dZ
其中p是组份A的浓度,单位为kg/m3; Z是扩散途径,单位为m DAB 是 组份 A 对组份 B 的扩散系数,单位为 m2/s; JA是扩散质量流,单位为kg/(m2· s)。 因此,扩散系数的量纲为m2/s。 扩散系数是此系统的物理性质,对于食品材料来说, 多组份的系统,可以研究若干种扩散组份在食品系统 中的扩散系数。
食品物性学
食品热物性
姓 名:邢亚阁 西华大学生物工程学院
自从人类从“茹毛饮血”进化为以熟食为主 以来,加热成了食品加工的重要手段。尤其 是现代化食品工业,为了提高食品的商品化 和保藏流通功能,加热、冷却、冷冻成了最 基本的加工方法。因此,食品的热物理性质 也成为食品生产管理、品质控制、加工和流 通等工程的重要基础。
过去,物质的焓值一般均按冻结潜热、冻结率和比热容
的数据计算而得;直接测量的数据很少、但对于食品材料, 实际上很难确定在某一温度时食品中被冻结的比例,而不同 的冻结率对应不同的焓值。
第一节 食品热物性基础
2、焓(enthalpy)
用DSC直接测量食品焓值是一种新方法,其温度
扫描从-60℃开始到1℃以上,这是认为到-60℃时, 食品中的水分己全部冻结;而到1℃以上水分己全 部融化成液体。
5 食品材料中的水分迁移
在食品处理中,水分的迁移是个复杂 的过程,它可能包括分子扩散、毛细管流动、 Knudsen流动、流体流动等多种因素。用 实验方法测得的用于表征此过程的是有效湿 扩散系数(apparent diffusivity of moisture)De。 食品的物理结构对水分的扩散性能起 了重要的作用,多空结构 ( 如用冷冻干燥处 理过的),其有效湿扩散系数De明显增大; 而脂肪会使De明显降低。
近年来发展用差式扫描量热术(DSC)来测量材料的比热容。 此法所用的样品少(5一15mg);而且因其能测很大的温度范 围,故特别适合于测量食品材料的比热容和温度的关系。
第一节 食品热物性基础
2、焓(enthalpy)
焓值是相对值,过去的教材中多取-20℃冻结态的焓值为
其零点;近年来多取-40℃的冻结态为其零点。
关于食品材料热物理性质的数据,收集最全的是美国供 热制冷空调工程师会 (ASHRAE)1993年出版的手册。
Sweat等(1995)收集和比较了400多篇关于食品材料热物理性 质数据的文章,发现食品材料的热物性不仅和其成分有关 〔如水、蛋白质、脂肪、碳水化合物等),而且与其处理 方 法有关。因此,热物理性质数据应指明实验材料的尺寸大小、 表面情况、空隙度、纤维方向等;给出食品的处理过程。 严格地讲,实验数据应讲清实验方法、实验条件〔如温度、 压力、相对湿度等)。而实 验结果应给出数据的偏差范围及 测量精度,目前的数据大都达不到这些要求。
主要内容
本 章 主 要 内 容
第一节 食品热物性基础
第二节 食品材料的热物理数据
第三节 差示扫描热量测定与定量差 示热分析
第一节 食品热物性基础
一、食品热物性的一般概念
1.食品的基本热参数 温度、比热容、焓、导热系数 2.食品的传热性质 表面热流量、质量平均温度、传热规律、 热传导、热对流、热辐射 3.热参数的检测 比热的检测、导热系数的检测
第一节 食品热物性ductivity)
测量食品材料热导率要比测量比热容困难得多,因为 热导率不仅和食品材料的组分、颗粒大小等因素有关,还 与材料的均匀性有关。一般用于测量工程材料的标准方法, 如平板法、同心球法等稳态方法已不能很好用于食品材料。 因为这些方法需要很长的平衡时间,而在此期间,食品材料 会产生水分的迁移而影响热导率。 目前认为测量食品材料热导率较好的方法是探针法。被 测食品材料原处于某一均匀温度,当探针插进后,加热丝提 供一定得热量,使测量温度变化。经一段过渡期后,温度和 时间的对数出现线性。关系。根据此直线的斜率可以求出视频 材料的热导率
第二节 食品材料的热物理数据
食品材料的热物理性质的测量是从18世纪开始的。 目前的数据中有2/3左右是在20世纪50一60年代发表的。 其中,只有一部分数据说明了材料的情况和实验的条件; 而大部分数据没有给出这些条件;有的甚至没给出含水量。 许多数据的离散度很大,因此实际上并没有多大的用处。
第二节 食品材料的热物理数据
表 3-1a 水的密度
T /℃ /103(kg/m3) 0 0.99987 3.98 1.00000 5 0.99999 10 0.99973 20 0.99823
表 3-1b 冰的密度
T /℃ /103(kg/m3) 0 0.917 -25 0.921 -50 0.924 -75 0.927 -100 0.930
第一节 食品热物性基础
1. 比热容(specific heat):
1)定义:传统的方法是在恒温槽中直接测量使食品材料温
度升高1K所需的热量。
2)测定方法:比较常用的事是用热量计进行定压的热混合法
和护热板法。混合法:原理是把已知质量和温度的样品,投入盛有已知 比热容、温度、和质量的液体量热计重。在绝热状态下, 测定混合物料的平衡温度,而后根据公式推算试样的比热 容。
相关文档
最新文档