高等数学导数的四则运算法则

合集下载

同济大学高等数学2.2求导法则与导数公式

同济大学高等数学2.2求导法则与导数公式
3cos2 x2 (sin x2)(x2)
3cos2 x2 (sin x2) 2x 6xsin x2 cos2 x2
(2) y ln( x 1 x2 )
解: y [ln(x 1 x2 )]
1
(x 1 x2 )
x 1 x2
1 (1 1 (1 x2 )) x 1 x2 2 1 x2
例 1.求下列函数的导数
(1) y x5 x 13x cos x ;
x3
解:
y
x2
x
5 2
x
3
3x
cosx

y
(
x2
)
(x
5 2
)(
x3
)(3x
)co
sx
3x
(cosx)
2x
5
7
x2
3x
4
3x
ln3cosx
3x
sin
x

2
(2) y x3 sin x(ln x 1 )
x
解: y[x3 sin x(ln x 1 )] x
解: f (e) 2 ,
∵ f (x) 在x e 的某邻域内是严格单调增加的连续函数,

f
(e)
(1 x
3x2 e3
)
xe
4 e
0

∴ ( f 1)(2) 1 e 。 f (e) 4
例 7.(1)求 y arcsin x ,x (1, 1) 的导数。
解:∵ y arcsin x 在(1, 1) 内严格单调增加且连续,
§2.2 求导法则与导数公式
2.2.1 若干基本初等函数的导数
1.(C)0 ;
2.(x ) x1 (R) ;

高等数学课件上第2-2初等函数的导数

高等数学课件上第2-2初等函数的导数

解: [(xsi2nx)3]
(12sinx
3(xsi2nx)2
cosx)
=3(x+sin2x)2(1+sin2x)
例9. 设
ylncoesx)(,求 d y . dx来自解:dy dx

1 cos( e
x
)
(sine(x))

ex
extanex()
例10. 设 y ln x2 1 , 求 d y . dx
例6. 设 y(x211),0求 y
解: 令 u = x2 + 1, 则 y = u 10, y (u10)u ux 10u9 (x2 1)x 10(x21)92x 20x(x2 1)9.
例7. 设 yesinx ,求y.
解: 令 u = sin x, 则 y = e u,

1
sin2
x

csc2
x.
证: (tanx)csionsxx
(sixn )coxssixn(cx o)s

cos2 x

cos2 xsin2x cos2 x

1 cos 2
x

sec2
x.
2.2.2、反函数的求导法则
定理2.2.2. 设 yf(x)为 xf1(y)的反,f函 1(y)在 数
推论:
1) 2)
(Cu)C u ( C为常数
(1) v
1v 1v v2

)

v v2
例1. y5x33lnx4ex ,求 y .
解:
y 53x2 3 1 x
4ex.
例2. yx(x 3 4 co x ss1 i)n ,求 y及 yx1.

微积分公式大全

微积分公式大全

(4) ⎡ ⎣u ( x ) ⋅ v ( x ) ⎤ ⎦
( n)
k ( = ∑ cn u k =0
n−k )
四、基本初等函数的 n 阶导数公式 (1) x n
( )
(n)
= n!
(n)
(2) e ax + b
(
)
(n)
= a n ⋅ e ax +b
(3) a x
( )
(n)
= a x ln n a
(4) ⎡ ⎣sin ( ax + b ) ⎤ ⎦
⑴ d (c) = 0
( n)
= ( −1)
an ⋅ n!
( ax + b )
n +1
= ( −1)
a n ⋅ ( n − 1) !
( ax + b )
n
五、微分公式与微分运算法则 ⑵ d x μ = μ x μ −1dx ⑸ d ( tan x ) = sec xdx
2
( )
⑶ d ( sin x ) = cos xdx ⑹ d ( cot x ) = − csc xdx
1
u = xμ
∫ f ( ln x ) ⋅ x dx = ∫ f ( ln x )d ( ln x )
1
u = ln x
∫ f ( e ) ⋅ e dx = ∫ f ( e )d ( e )
x x x x
u = ex
x
∫ f ( a ) ⋅ a dx = ln a ∫ f ( a )d ( a )
∫ cos
1
1
2
x
2
dx = ∫ sec 2 xdx = tan x + c
∫ sin ∫

求函数的导数公式

求函数的导数公式

求函数的导数公式函数的导数公式是描述函数在某一点处斜率的一种数学工具,对于一般的函数f(x),它的导数可以用下面的公式来表示:1.导数的定义公式f'(x) = lim(h->0) [f(x + h) - f(x)]/h在这个公式中,f(x + h)表示以点(x + h, f(x + h))为端点的割线斜率,f(x)是函数f(x)在点x处的函数值,h表示x + h与x之差,即点(x + h, f(x + h))与点(x, f(x))之间的距离。

这个公式是导数定义的最基本形式,通常用于求解复杂函数的导数。

2.基本求导公式f'(x) = k,k为常数[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)[f(g(x))]’ = f'(g(x))g'(x)f’(x)/g(x) = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2[f(x)]^n = nf'(x)[f(x)]^(n-1),n为正整数这里列举了一些常用的求导公式。

对于任何由基本函数组成的函数,都可以使用这些公式求其导数。

3.导数的运算法则导数具有很好的运算性质,常用的运算法则有:(1)线性性质:f(x) ±g(x)的导数为f'(x) ±g'(x),kf(x)的导数为kf'(x),k为常数。

(2)乘积法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)。

(3)商数法则:[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2。

(4)复合函数的求导法则:如果y = f(g(x)),那么y' = f'(g(x))g'(x)。

以上是函数导数的一些基本公式和运算法则。

四个导数运算法则

四个导数运算法则

四个导数运算法则导数运算是高等数学中最重要的概念之一,它可以帮助我们分析特定函数在某一特定点处的斜率,从而了解函数的变化趋势。

从理论上讲,导数运算有四个法则,它们是加法法则、乘法法则、链式法则和指数法则。

首先,加法法则是指如果我们有两个函数f(x)和g(x),那么在某一特定点处,它们的导数之和的斜率等于f(x)的斜率加上g(x)的斜率,即:f'(x) + g'(x) = (f(x) + g(x))'其次,乘法法则指的是,如果我们有两个函数f(x)和g(x),那么在某一特定点处,它们的导数之乘积的斜率等于f(x)的斜率乘以g(x)的斜率,即:f'(x) * g'(x) = (f(x) * g(x))'第三,链式法则是指,如果我们有一个函数f(x),其中有另一个函数g(x),那么在某一特定点处,它们的导数的斜率等于f(x)的斜率乘以g(x)的导数的斜率,即:f'(x) * g'(x) = (f(g(x))'最后,指数法则指的是,如果我们有一个函数f(x)=ax^n,其中a是一个常数,那么在某一特定点处,它的导数的斜率等于这个函数乘以n的斜率,即:f'(x) = ax^(n-1) * n以上就是四个导数运算法则,它们可以帮助我们更好地理解特定函数在某一特定点处的变化趋势。

在实际应用中,这四个导数运算法则都是非常重要的,它们可以帮助我们计算函数的极限和斜率,从而了解函数的变化趋势。

例如,如果我们要求解f(x)=x2+2x+1的导数,那么我们可以使用加法法则,即f'(x)=2x+2,这样就可以计算出在某一特定点处f(x)的斜率。

另外,乘法法则也可以用来计算复杂函数的斜率,例如f(x)=x2+2x+1,g(x)=sinx。

我们可以使用乘法法则,将这两个函数相乘,得到f(x) * g(x)=x2+2x+1 * sinx,然后再求f(x) * g(x)的导数,即(f(x) * g(x))'=2x * sinx+2 * cosx+sinx,根据这个结果,我们可以得出某一特定点处f(x) * g(x)的斜率。

高等数学导数的计算教学ppt课件

高等数学导数的计算教学ppt课件

25
第二章 导数与微分
第二节 导数的计算
三.隐函数与参数式函数的导数
(一)隐函数的导数
显函数:因变量可由自变量的某一分析式来表示 的函数称为显函数.例如:
y 1 sin3 x , z x2 y2 .
隐函数:由含x,y的方程F(x, y)=0给出的函数称 为隐函数.例如:
x2/ 3 y2/ 3 a2/ 3 , x3 y3 z3 3xy 0 .
32
第二章 导数与微分
第二节 导数的计算
(二)参数式函数的导数
由参数方程给出的函数:
x y
x(t) y(t )
t
确定了y与x的函数关系.其中函数x(t),y(t)可导,且
x (t)0, ,则函数y=f (x)可导且
f ( x) 1
( y)

dy dx
1 dx
.
dy
7
第二章 导数与微分
第二节 导数的计算
例5 求y=arcsinx的导数.
解:由于y=arcsinx,x(-1,1) 为x=siny,y (-/2, /2) 的反函数,且当y (-/2, /2)时,
(siny)=cosy>0. 所以
(arcsin x)' 1 1 1 1 (sin y)' cos y 1 sin2 y 1 x2
f
( x)
3
1
x2
1
x2
1
3
x2
2
2
例10 设y arcsin x 2 x x
解:
y
arcsin
x
3
2x4
,求 y .
1
3
x
1 4
1 x2 2

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

高等数学导数公式大全

高等数学导数公式大全

cos x
(4) 把 tan x 当作中间变量, y ' (etan x ) ' etan x (tan x) ' sec2 xetan x
(5) 把 - x 当作中间变量, y ' (2-x ) ' 2-x ln 2(-x) ' -2-x ln 2
求导方法小结:
先将要求导的函数分解成基本初等函数,或 常数与基本初等函数的和、差、积、商.
解:上式两边对x求导,则有y '=(1) ' (xey ) ',即
y ' ey x (ey ) ey x ey y '
(1- xey ) y ' ey
y
'
ey 1- xey
隐函数的求导步骤: (1)方程两边对x求导,求导过程中把y视为中间变量,
得到一个含有y '的等式; (2)从所得等式中解出y '.
2) y sin( x - 2);
3) y ln cos x;
4) y etan x ;
5) y 2-x
解:(1)函数可以分解为y u3(x),u(x) 3x2 1, y ' [u3(x)]' 3u2 (x) u(x) ' 3(3x2 1)2 (3x2 1) '
3(3x2 1)2 6x 18x(3x2 1)2
v( u(
x) x)
u( x)v( x) - u( x)v( x)
[u( x)]2
.
推论 1 (cu(x)) = cu(x) (c 为常数).
推论 2
1 u( x)
-
u( x) u2 ( x)
.
乘法法则的推广:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 导数与微分
• 导数反映了函数因变量相对于自变量变化的快慢程度, 即:函数的变化率。
• 微分指明, 当自变量有微小变化时,函数大体上改变了 多少。
本章内容包括: • 两个概念——导数与微分; • 六个法则——导数的四则运算法则,复合函数求导法则,
反函数求导法则; • 若干导数应用问题。
第一节 导数的概念
y
f (x0 )

(x f ( x0 )
x0 ).
例7 求等边双曲线 y 1 在点(1 ,2)处的切线的 x2
斜率,并写出在该点处的切线方程和法线方程.
解 由导数的几何意义, 得切线斜率为
k y x1 2

( 1 ) x
x1 2
1 x2
x1 2
4.
所求切线方程为 y 2 4( x 1), 即 4x y 4 0.
1.几何意义
y
f ( x0 )表示曲线 y f ( x) 在点M ( x0 , f ( x0 ))处的 切线的斜率,即
f ( x0 ) tan , (为倾角)o
y f (x)
T
M

x0
x
切线方程为 y f ( x0 ) f ( x0 )( x x0 ).
法线方程为
1
f ( x h) h
f ( x) lim C C h0 h
0.
即 (C ) 0.
例2 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解 (sin x) lim sin( x h) sin x
h0
h
h

lim cos( x
(
x0
)x

x]

0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立 (连续函数未必可导).
举例
x2, x 0
f (x)
,
x, x 0
y
y x2
yx
在 x 0处不可导,
0
x
f ( x) 3 x 1,
y y 3 x 1
在 x 1处不可导.
h0

h) sin 2 2h

cos
x.
2
即 (sin x) cos x.
(sin x) x cos x x
4
4
2. 2
例3 求函数 y x n (n为正整数)的导数.
解 ( x n ) lim ( x h)n x n
h0
h
lim[nx n1 n(n 1) x n2h hn1 ] nx n1
三、由定义求导数
步骤: (1) 求增量 y f ( x x) f ( x);
(2) 算比值 (3) 求极限
y f ( x x) f ( x);
x
x
y lim y .
x0 x
例1 求函数 f ( x) C(C为常数)的导数.

f ( x) lim h0
x x0
共性: lim y x0 x
函数值的改变量 自变量的改变量
二、导数的定义
定义 设函数 y f ( x)在点 x0的某个邻域内 有定义, 当自变量x在 x0处取得增量x (点 x0 x 仍在该邻域内)时, 相应地函数 y取 得增量y f ( x0 x) f ( x0 ); 如果y与 x之比当x 0时的极限存在, 则称函数 y f ( x)在点 x0处可导, 并称这个极限为函 数 y f ( x)在点 x0处的导数, 记为y xx0 ,
x x0
x x0
N 沿曲线C M , x x0 ,
y
x x0 ,割线MN就转化为切线MT
割线MN的斜率就转化为曲线在 M处的切线的斜率
o
y f (x)
N
CM

x0
T
xx
切线MT的斜率为 k tan lim f ( x) f ( x0 ) .
x x0
f(b)都存在,就说 f ( x)在闭区间a, b上可导.
5) 函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
例:



f
(
x)

ax2

bx

c,
x0 ,
讨 论 在 点0的 可 导 性.
sin x,
x0
f(0)
2
法线方程为 y 2 1 ( x 1), 即 2x 8 y 15 0.
42
例8 过M(3,8)做曲线y x2的切线,写出切线方程.
解 易见点M (3,8)不在曲线y x2上.
设曲线y x2的过M点的切线的切点为P( x0, x02 )
曲线在P点的切线的斜率为f ( x0 ) 2 x0
x 0
x
或 f ( x) lim f ( x h) f ( x) .
h0
h
而 f ( x0 ) f ( x) xx0 . f ( x0 ) f ( x0 )
4) 单侧导数
左导数:
f( x0 )

lim
x x0 0
f ( x) f ( x0 ) lim

g 2 (t0
t).
当 t t0时, 取极限得
t0
t t
瞬时速度 v lim g(t0 t)
tt0
2
gt0 .
2.作变速直线运动的质点在某一时刻t的瞬时速度问题
质点运动的路程S是时间t的函数:S=S(t).从 时刻t到t+t时间段内,质点走过的路程为:
ΔS=S(t+Δt)-S(t) 在时间间隔Δt内,质点运动的平均速度为:
h
h
lim f (0 h) f (0) lim h 1,
h0
h
h h 0
y y x
o
x
f (0 h) f (0)
h
lim
lim 1.
h0
h
h h 0
即 f(0) f(0), 函数y f ( x)在x 0点不可导.
四、导数的几何意义与物理意义
log a
(1
h) x

1
h0
h
x
x

1 x
lim
h0
log
a
(1

h
)
x h
x

1 x
log a
e.

(log a
x)

1 x log a
e.
(ln x) 1 . x
例6 讨论函数 f ( x) x 在x 0处的可导性.
解 f (0 h) f (0) h ,
1
但在x 0处有 y (0 x)sin 0 x 0 sin 1
x
x
x
当x 0时, y 在 1和1之间振荡而极限不存在 . x
f ( x)在x 0处不可导.
例10
设函数
f
(x)


x2,
x 1,为了使函数f ( x)
ax b, x 1
v S S(t t) S(t)
t
t
平均速度 v与Δt的取值有关,一般不等于质点在时 刻t的速度v,但Δt的值愈小,v 愈接近于t时刻的速度
v(t)。因此,取极限t0,质点在时刻t的瞬时速度:
v v(t) Lim S(t t) S(t)
t 0
t
3.曲线的切线问题
x x0
x0
f ( x0 x) x
f ( x0 ) ;
右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0

lim
x 0
f (x0

x) x
f (x0 );
如果 f ( x)在开区间a, b内可导,且 f(a) 及
在x 1处连续且可导,a, b应取什么值?
解 f (1) 1 f (1 0) lim x2 1 x1 f (1 0) lim(ax b) a b x1 若f ( x)在x 1连续,则a b 1
N
M 割线的极限位置——切线位置
y
如图, 如果割线MN绕点 M旋转而趋向极限位置 MT,直线MT就称为曲线 C在点M处的切线.
y f (x)
N
T
CM
极限位置即

o
x0
xx
MN 0, NMT 0. 设 M ( x0 , y0 ), N ( x, y).
割线MN的斜率为 tan y y0 f ( x) f ( x0 ) ,
切线的斜率k x02 8 x0 3
k

x02 8 x0 3

2x0 , 得到x0

2或x0
4
例8 过M(3,8)做曲线y x2的切线,写出切线方程.
(1) x0 2, 切点(2,4), f (2) 4, 切线方程为y - 4 4( x 2)
(2) x0 4, 切点(4,16), f (4) 8, 切线方程为y -16 8( 9
讨论函数
f (x)
x sin
1, x
x 0,
0, x 0
在x 0处的连续性与可导性.
解 sin 1 是有界函数 , lim x sin 1 0
相关文档
最新文档