六年级关于比例问题的经典应用题

合集下载

六年级比例应用题

六年级比例应用题

六年级比例应用题1.A、B两地相距480千米,甲、乙两辆汽车同时从A、B两地出发相向开出,4小时后相遇。

已知甲、乙两车的速度是7:5,甲车每小时行多少千米?解:设甲车每小时行X千米,则乙车每小时行(480÷4-X)千米。

X:(480÷4-X)=7:55X=7(120-X)12X=840X=70答:甲车每小时行70千米.2.一个三角形三个内角的度数比是1:4:5,这个三角行是什么三角形?180°X 5/(1+4+5)=90°答:这个三角行是直角三角形。

3.一个三角形三个内角的度数比是1:4:5,这个三角行是什么三角形?180°X 5/(1+4+5)=90°答:这个三角行是直角三角形。

4.小明2分钟做了10道口算题,照这样计算,做40道题,需要几分钟?解:设需要X分钟。

10/2=40/X答:(略)。

5.某超级市场促销苦瓜汽水,3瓶特价25元,找这样计算,购买9瓶苦瓜汽水,要花多少元?解:要花X元。

25/3=X/9X=75答:(略)。

6.4张邮票6.4元,96元可买几张邮票?解:设96元可买X张邮票。

6.4/4=96/XX=60答:(略)。

7.48只鸡蛋可装成4盒,144只鸡蛋,可装成多少盒?解:设可装成X盒。

48/4=144/XX=12答:(略)。

8.王师傅3小时加工了120个零件,照这样计算,7小时能加工多少个零件?解:设7小时能加工X个零件。

120/3=X/7答:(略)。

9.2辆的士可载8人,25辆的士可载多少人?解:设25辆的士可载X人。

8/2=X/25X=100答:(略)。

10.小红看一本儿童小说,每天看12页,10天可以看完;如果每天看15页,多少天可以看完?解:设X天可以看完。

15X=12×10X=8答:(略)。

11.某车间生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?解:设可以提前X天完成。

六年级比例应用题

六年级比例应用题

六年级比例应用题一、比例的基本性质相关应用题1. 题目:已知比例公式,求公式的值。

- 解析:根据比例的基本性质,两个外项的积等于两个内项的积。

在比例公式中,公式,即公式,然后等式两边同时除以公式,得到公式。

2. 题目:如果公式,公式,求公式。

- 解析:因为公式,公式,要统一公式的值。

公式,所以公式。

二、正比例应用题1. 题目:一辆汽车公式小时行驶公式千米,照这样的速度,公式小时行驶多少千米?- 解析:- 首先判断路程和时间成正比例关系,因为速度一定(速度 = 路程÷时间)。

- 设公式小时行驶公式千米。

根据正比例关系可得公式。

- 交叉相乘得到公式,即公式,解得公式千米。

2. 题目:小明买公式本笔记本花了公式元,照这样计算,买公式本笔记本需要多少钱?- 解析:- 因为笔记本的单价是一定的,所以总价和数量成正比例关系。

- 设买公式本笔记本需要公式元。

可得公式。

- 交叉相乘得公式,即公式,解得公式元。

三、反比例应用题1. 题目:一辆汽车从甲地开往乙地,如果每小时行公式千米,公式小时到达。

如果要公式小时到达,每小时应行多少千米?- 解析:- 路程是一定的(路程 = 速度×时间),速度和时间成反比例关系。

- 设每小时应行公式千米。

根据反比例关系可得公式。

- 即公式,解得公式千米。

2. 题目:一间教室,如果用边长为公式分米的方砖铺地,需要公式块。

如果改用边长为公式分米的方砖铺地,需要多少块?- 解析:- 教室地面的面积是一定的(面积 = 方砖面积×方砖块数),方砖面积和方砖块数成反比例关系。

- 边长为公式分米的方砖面积是公式平方分米,边长为公式分米的方砖面积是公式平方分米。

- 设需要公式块边长为公式分米的方砖。

可得公式。

- 即公式,解得公式块。

六年级比的典型应用题

六年级比的典型应用题

六年级比的典型应用题1、三角形的内角度数比为5:3:2,这是一个锐角三角形。

如果比为4:4:4,那么这是一个等边三角形。

如果比为8:8:4,那么这是一个等腰直角三角形。

2、一个长方形的周长为18米,长和宽的比为5:4,这个长方形的面积为20平方米。

3、某校六年级三个班的人数在100-150之间。

在学校运动会上,六一班运动员占全年级人数的1/6,六二班占1/8,六三班占1/9.因此,六年级共有120个学生。

4、商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比为3:2.因此,商店运来了30台电冰箱。

5、学校有足球和篮球共65个,其中足球和篮球数量比为1:4.今年又买回一些足球,这时足球和篮球数量比为3:4.因此,今年买回了15个足球。

6、大母鸡和小母鸡的生蛋数量比为10:9,大母鸡比小母鸡多生2个鸡蛋。

因此,大母鸡生了20个蛋,小母鸡生了18个蛋。

7、甲乙两人下班回家,甲走的路程比乙多1/5,乙用的时间比甲多1/8.因此,甲乙两人的速度比为15:14.8、建筑工地用2份水泥,3份沙子和5份石子配制一种混凝土。

要配12吨这种混凝土需要4吨水泥,6吨沙子和10吨石子。

9、一种混凝土的水泥、黄沙和石子的比为2:3:5.如果有2/5吨的水泥搅拌混凝土,需要3吨黄沙和5吨石子。

10、三个同学跑步,甲、乙、丙的速度比为4:3:2.甲跑了600米,乙比丙多跑了300米。

11、工地用100千克水泥、150千克沙子、250千克石子配制一种混凝土。

如果按同样的比例配制8000千克混凝土,需要2000千克水泥、3000千克沙子和5000千克石子。

12、学校要把150本课外书,按六年级的人数分配给三个班。

一班48人,二班32人,三班40人。

因此,一班应该分配60本书,二班应该分配40本书,三班应该分配50本书。

13、一个农民要把17头牛分给三个儿子。

大儿子分得8头牛,二儿子分得5头牛,小儿子分得2头牛。

14、甲乙两数的比为6:5,甲丙两数的比为4:9,甲、乙、丙三数之比为24:20:45.15、三筐苹果共重140千克,甲筐苹果和乙筐苹果重量之比为3:4,乙筐苹果和丙筐苹果重量之比为6:7.因此,甲筐苹果重30千克,乙筐苹果重40千克,丙筐苹果重70千克。

六年级正比例应用题

六年级正比例应用题

六年级正比例应用题一、行程问题中的正比例关系。

1. 一辆汽车2小时行驶120千米,照这样的速度,5小时行驶多少千米?- 解析:因为速度一定,路程和时间成正比例关系。

先求出速度,速度 = 路程÷时间,即120÷2 = 60(千米/小时)。

设5小时行驶x千米,根据正比例关系可得(120)/(2)=(x)/(5),解得x = 300千米。

2. 小明步行的速度是一定的,他走1500米用了30分钟,那么他走2500米需要多少分钟?- 解析:速度一定,路程与时间成正比例。

先求速度,速度=1500÷30 = 50(米/分钟)。

设走2500米需要x分钟,可得(1500)/(30)=(2500)/(x),交叉相乘得1500x = 2500×30,x=(2500×30)/(1500)=50分钟。

3. 飞机飞行的速度不变,飞行1800千米需要3小时,若要飞行3000千米需要多少小时?- 解析:速度不变,路程和时间成正比例。

速度为1800÷3 = 600(千米/小时)。

设飞行3000千米需要x小时,(1800)/(3)=(3000)/(x),解得x = 5小时。

二、工作效率问题中的正比例关系。

4. 工人师傅3小时生产零件180个,照这样计算,7小时生产多少个零件?- 解析:工作效率一定,工作总量和工作时间成正比例。

工作效率=180÷3 = 60(个/小时)。

设7小时生产x个零件,(180)/(3)=(x)/(7),解得x = 420个。

5. 某工厂的一台机器,4天可以生产240个产品,照这样计算,8天能生产多少个产品?- 解析:工作效率一定,工作总量和工作时间成正比例。

这台机器的工作效率为240÷4 = 60(个/天)。

设8天生产x个产品,(240)/(4)=(x)/(8),解得x = 480个。

6. 一个打字员2小时打了12000字,按照这样的速度,5小时能打多少字?- 解析:打字速度一定,打字总量和打字时间成正比例。

6年级比例应用题

6年级比例应用题

6年级比例应用题一、简单比例关系应用题(1 10题)1. 一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?解析:首先根据速度 = 路程÷时间,求出汽车的速度。

汽车3小时行驶180千米,速度为公式千米/小时。

然后根据路程 = 速度×时间,5小时行驶的路程为公式千米。

设5小时行驶公式千米,根据速度一定,路程和时间成正比例关系,可得公式,解得公式。

2. 配制一种农药,药粉和水的比是1:500,现有水6000千克,配制这种农药需要药粉多少千克?解析:药粉和水的比是公式,即水是药粉的500倍。

现有水6000千克,那么药粉的重量为公式千克。

设需要药粉公式千克,根据比例关系公式,解得公式。

3. 学校图书馆科技书与故事书的比是3:5,科技书有180本,故事书有多少本?解析:因为科技书与故事书的比是公式,设故事书有公式本,则公式,交叉相乘得公式,公式本。

思路是根据两种书数量的比例关系列方程求解。

4. 一块长方形菜地长和宽的比是5:3,长是40米,宽是多少米?解析:设宽是公式米,因为长和宽的比是公式,所以公式,交叉相乘得公式,公式米。

利用长和宽的比例关系来建立方程求解宽的长度。

5. 某工厂男职工与女职工的人数比是4:3,男职工有320人,女职工有多少人?解析:设女职工有公式人,根据男职工与女职工人数比是公式,可得公式,交叉相乘得公式,公式人。

依据给定的人数比例关系列方程求解女职工人数。

6. 一种混凝土是由水泥、沙子和石子按2:3:5配制而成的。

现在要配制150吨这种混凝土,需要水泥、沙子和石子各多少吨?解析:水泥、沙子和石子的比例为公式,总份数为公式份。

水泥占公式,沙子占公式,石子占公式。

水泥的重量为公式吨,沙子的重量为公式吨,石子的重量为公式吨。

先求出各成分占总量的比例,再根据总量求出各成分的量。

7. 小明和小红的零花钱之比是7:5,如果小明有56元零花钱,小红有多少元零花钱?解析:设小红有公式元零花钱,因为小明和小红零花钱之比是公式,所以公式,交叉相乘得公式,公式元。

(完整版)六年级比例应用题

(完整版)六年级比例应用题

(完整版)六年级比例应用题六年级比例应用题
比例是数学中常见的概念,通过比例可以计算物体之间的大小关系或者数量关系。

下面是一些六年级比例应用题的例子。

例题1
A班有30名学生,其中男生和女生的比例是5:4,求男生和女生的人数各是多少?
解答:根据比例,可设男生人数为5x,女生人数为4x。

根据题意,男生人数加上女生人数等于总人数30。

所以可以列出方程:5x + 4x = 30。

解这个方程可以得到x=3。

因此男生人数为5x=15,女生人数为4x=12。

例题2
某商品原价为100元,现在打6折出售,打完折后的价格是多少?
解答:打6折表示价格减少60%,即原价乘以0.4。

所以打完折后的价格为100元 * 0.4 = 40元。

例题3
一根电线的长度为8米,它在比例尺1:2000下的表示长度是多少?
解答:比例尺表示实际长度与图上表示长度之间的比例关系。

比例尺1:2000表示实际长度1单位对应图上表示长度2000单位。

所以电线在比例尺1:2000下的表示长度为8米 * 2000 = 单位。

这些例题希望能帮助你更好地理解六年级比例应用题的解答方法。

如果有其他问题,欢迎继续咨询。

六年级数学比应用题

六年级数学比应用题

六年级数学比应用题一、简单的比的计算应用题(1 - 5题)1. 已知甲、乙两数的比是3:5,甲数是12,求乙数。

- 解析:- 因为甲、乙两数的比是3:5,设乙数为x,则(甲)/(乙)=(3)/(5)。

- 已知甲数是12,即(12)/(x)=(3)/(5)。

- 根据比例的性质,内项之积等于外项之积,可得3x = 12×5。

- 解得x=(12×5)/(3)=20。

2. 某班男、女生人数比是4:3,男生有24人,女生有多少人?- 解析:- 设女生有x人,因为男、女生人数比是4:3,所以(24)/(x)=(4)/(3)。

- 由比例性质可得4x = 24×3。

- 解得x=(24×3)/(4)=18人。

3. 一种药水是把药粉和水按照1:100的比配成的。

要配制这种药水4040克,需要药粉多少克?- 解析:- 药粉和水的比是1:100,那么药水就是1 + 100=101份。

- 这种药水共4040克,那么一份就是4040÷101 = 40克。

- 药粉占1份,所以需要药粉40克。

4. 学校图书馆里科技书和故事书的比是3:4,科技书有180本,故事书有多少本?- 解析:- 设故事书有x本,因为科技书和故事书的比是3:4,所以(180)/(x)=(3)/(4)。

- 根据比例性质3x=180×4。

- 解得x=(180×4)/(3)=240本。

5. 甲、乙两个数的比是5:6,它们的和是66,求甲、乙两数。

- 解析:- 甲、乙两个数的比是5:6,设甲数是5x,乙数是6x。

- 它们的和是66,则5x + 6x=66。

- 即11x = 66,解得x = 6。

- 所以甲数5x = 5×6 = 30,乙数6x=6×6 = 36。

二、比在几何中的应用题(6 - 10题)6. 一个长方形的长和宽的比是5:3,长是25厘米,宽是多少厘米?- 解析:- 设宽是x厘米,因为长和宽的比是5:3,所以(25)/(x)=(5)/(3)。

比例的应用题六年级

比例的应用题六年级

比例的应用题六年级一、按比例分配问题。

1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。

三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。

然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。

最后用树的总数乘以各班所占比例得到各班应栽树的棵数。

- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。

2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。

如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。

然后计算每份的重量:20÷10 = 2吨。

最后根据各自的份数求出水泥、沙子和石子的重量。

- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。

3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。

根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。

则三个车间总人数为(8 +12+21)×20=41×20 = 820人。

二、比例尺问题。

4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。

一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档