晶体振荡器的负载电容
晶振电路其实是个电容三点式振荡电路

晶振电路其实是个电容三点式振荡电路
有人说是负载电容,是用来纠正晶体的振荡频率用的;有人说是启振电容;有人说起谐振作用的。
电容与内部电路共同组成一定频率的振荡,这个电容是硬连接,固定频率能力很强,其他频率的干扰就很难进来了。
讲的通俗易懂一点,用一个曾经听过的笑话来比喻,大概意思就是本飞机被我劫持了,其他劫持者等下次吧。
这个电容就是本次劫机者。
晶振电路其实是个电容三点式振荡电路,输出是正玄波晶体等效于电感,加两个槽路分压电容,输入端的电容越小,正反馈量越大。
负载电容每个晶
振都会有的参数,例如稳定度是多少PPM,部分人会称之为频差,单位都是PPM,负载电容是多少PF等。
当晶振接到震荡电路上在震荡电路所引入的
电容不符合晶振的负载电容的容量要求时震荡电路所出的频率就会和晶振所
标的频率不同
再举例说明。
晶体振荡器基础知识单选题100道及答案解析

晶体振荡器基础知识单选题100道及答案解析1. 晶体振荡器的核心部件是()A. 晶体B. 电容C. 电感D. 电阻答案:A解析:晶体振荡器中起关键作用的是晶体,其具有稳定的谐振频率。
2. 晶体振荡器的主要优点是()A. 频率稳定度高B. 输出功率大C. 成本低D. 易于调试答案:A解析:晶体振荡器相比其他振荡器,最突出的优点就是频率稳定度高。
3. 晶体在振荡器中起到()A. 放大作用B. 选频作用C. 滤波作用D. 调制作用答案:B解析:晶体的特性使其在振荡器中主要起到选频作用,确定振荡频率。
4. 常见的晶体振荡器类型不包括()A. 皮尔斯振荡器B. 考毕兹振荡器C. 哈特莱振荡器D. 克拉泼振荡器答案:C解析:哈特莱振荡器不是常见的晶体振荡器类型。
5. 晶体振荡器的频率取决于()A. 晶体的尺寸B. 晶体的材料C. 晶体的切割方式D. 以上都是答案:D解析:晶体的尺寸、材料和切割方式都会影响其振荡频率。
6. 以下哪种因素对晶体振荡器的频率稳定性影响最小()A. 温度B. 电源电压C. 负载电容D. 布线电感答案:D解析:布线电感对晶体振荡器频率稳定性的影响相对较小,温度、电源电压和负载电容的影响较大。
7. 晶体振荡器输出的波形通常是()A. 正弦波B. 方波C. 三角波D. 锯齿波答案:A解析:晶体振荡器一般输出正弦波。
8. 为提高晶体振荡器的频率,可采取的方法是()A. 减小晶体的负载电容B. 增大晶体的负载电容C. 增加晶体的串联电阻D. 减少晶体的串联电阻答案:A解析:减小晶体的负载电容可以提高晶体振荡器的频率。
9. 晶体振荡器的起振条件是()A. 环路增益大于1B. 环路增益小于1C. 环路增益等于1D. 环路增益为0答案:A解析:环路增益大于1 是振荡器起振的条件。
10. 晶体振荡器的相位平衡条件是()A. 反馈信号与输入信号同相B. 反馈信号与输入信号反相C. 反馈信号超前输入信号90 度 D. 反馈信号滞后输入信号90 度答案:A解析:相位平衡条件要求反馈信号与输入信号同相。
晶体振荡器起振条件

晶体振荡器起振条件
晶体振荡器是一种产生电信号的器件,常用于电子设备中作为时钟信号源。
其工作原理是利用晶体的谐振特性,将其振荡频率转化为电信号输出。
在晶体振荡器中,起振条件是保证振荡器能够稳定工作的重要因素。
起振条件是指在振荡器中,产生的振荡信号能够保持稳定,不会因为外界干扰或其它因素而失去振荡的状态。
晶体振荡器的起振条件包括以下几个方面:
1. 振荡回路的增益大于1
在振荡回路中,信号的放大程度必须大于1,这样才能保证信号能够持续放大,并最终达到稳定的振荡状态。
如果放大程度小于1,则信号会逐渐衰减,最终失去振荡状态。
2. 振荡回路的相移为360度
在振荡回路中,信号的相位必须满足360度的要求,这样才能保证信号能够持续放大,并最终达到稳定的振荡状态。
如果相位不满足360度的要求,则信号会出现波形畸变,最终失去振荡状态。
3. 振荡回路的共振频率与晶体的谐振频率相同
在振荡回路中,晶体的谐振频率必须与振荡回路的共振频率相同,
这样才能保证信号能够持续放大,并最终达到稳定的振荡状态。
如果晶体的谐振频率与共振频率不同,则信号会出现波形畸变,最终失去振荡状态。
4. 振荡回路的负载电容与晶体的谐振电容相同
在振荡回路中,负载电容必须与晶体的谐振电容相同,这样才能保证信号能够持续放大,并最终达到稳定的振荡状态。
如果负载电容与谐振电容不同,则信号会出现波形畸变,最终失去振荡状态。
晶体振荡器的起振条件是保证振荡器能够稳定工作的重要因素。
只有在满足起振条件的情况下,振荡器才能产生稳定的振荡信号,为电子设备提供准确可靠的时钟信号。
有源晶振(Oscillator)和无源晶振(Crystal)

有源晶振(Oscillator)和⽆源晶振(Crystal)⽆源晶振有⼀个参数叫做负载电容(Load capacitance),负载电容是指在电路中跨接晶振两端的总的外界有效电容。
负载电容是⼯作条件,即电路设计时要满⾜负载电容等于或接近晶振数据⼿册给出的数值才能使晶振按预期⼯作。
⼀般情况下,增⼤负载电容会使振荡频率下降,⽽减⼩负载电容会使振荡频率升⾼。
通过初步的计算发现CL改变1pF,Fx可以改变⼏百Hz。
相关知识点:⼀、什么是负载电容?负载是指连接在电路中的电源两端的电⼦元件负载包括容性负载、阻性负载和感性负载三种。
电路中不应没有负载⽽直接把电源两极相连,此连接称为短路。
常⽤的负载有电阻、引擎和灯泡等可消耗功率的元件。
不消耗功率的元件,如电容,也可接上去,但此情况为断路。
容性负载的含义是指具有电容的性质(充放电,电压不能突变)即和电源相⽐当负载电流超前负载电压⼀个相位差时负载为容性(如负载为补偿电容)。
负载电容是指晶振的两条引线连接IC块内部及外部所有有效电容之和,可看作晶振在电路中串接了⼀个电容。
图中CI,C2这两个电容就叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,⼀般在⼏⼗⽪法它会影响到晶振的谐振频率和输出幅度,⼀般订购晶振时候供货⽅会问你负载电容是多少。
晶振的负载电容=[(C1*C2)/(C1+C2)]+Cic+△C式中C1,C2为分别接在晶振的两个脚上和对地的电容,Cic内部电容+△CPCB上电容经验值为3⾄5pf。
因此晶振的数据表中规定12pF的有效负载电容要求在每个引脚XIN 与 XOUT上具有22pF 2 * 12pF = 24pF = 22pF + 2pF 寄⽣电容。
两边电容为C1,C2,负载电容为:Cl,Cl=cg*cd/(cg+cd)+a就是说负载电容15pf的话两边两个接27pf的差不多了。
各种的晶振引脚可以等效为电容三点式。
晶振引脚的内部通常是⼀个反相器, 或者是奇数个反相器串联。
晶振等效电路中的各个参数

晶振等效电路中的各个参数
在晶振的等效电路中,有几个重要的参数,包括:
1. 谐振频率(Resonance Frequency):晶振的谐振频率是指在晶体的压电效应下,电路中产生的机械振动的频率。
这个频率是晶振的主要特性,通常以 MHz 或 kHz 为单位表示。
2. 负载电容(Load Capacitance):负载电容是指与晶振并联的电容,它会影响晶振的谐振频率和工作稳定性。
负载电容的大小需要根据具体的晶振规格和应用要求来选择。
3. 动态电阻(Dynamic Resistance):动态电阻是指晶振在谐振频率下的等效电阻。
它反映了晶体在振动过程中的能量损耗,动态电阻的值越小,晶振的能量损耗就越小,效率就越高。
4. 激励电平(Excitation Level):激励电平是指晶振所需的最小驱动功率。
晶振需要一定的激励电平时才能正常工作,如果激励电平过低,晶振可能无法起振或工作不稳定。
5. 品质因数(Quality Factor):品质因数是衡量晶振谐振特性的参数,它反映了晶振的频率选择性和能量损耗。
品质因数越高,晶振的频率稳定性和抗干扰能力就越强。
这些参数对于晶振的设计、选择和应用非常重要。
在实际使用中,需要根据具体的应用需求和晶振规格来确定合适的参数值,以确保晶振能够正常工作并满足性能要求。
如果你需要更详细的关于晶振等效电路中各个参数的信息,建议查阅相关的技术资料或咨询专业的工程师。
石英晶体振荡器负载电容的匹配设计

[ 1 . N a v a l D e p u t y O ic f e o f S h a n g h a i Ma i r n e D i e s e l E n g i n e R e s e a r c h I n s t i t u t e , S h a n g h a i 2 0 1 1 0 8 , C h i n a ; 2 . S h a n g h a i E l e c t i r c a l A p p a r a t u s R e s e a r c h I n s t i t u t e ( G r o u p ) C o . , L t d . ,S h a n g h a i 2 0 0 0 6 3 ,C h i n a ]
t o c ys r t a l o s c i l l a t o r i f t h e r e s o n a n c e i mp e d a n c e mi s ma t c h e s o s c i l l a t i o n c i r c u i t , s u c h a s o s c i l l a t i o n s t a r t — u p f a i l u r e a n d l a r g e f r e q u e n c y d e v i a t i o n . B a s e d o n t h e a p p l i c a t i o n o f p o w e r mo n i t o r i n g mo d u l e i n ma r i n e c i r c u i t b r e a k e r , t h i s p a p e r o p t i mi z e d t h e d e s i g n o f t h e c ys r t a l o s c i l l a t o r c i r c u i t .
晶振与匹配电容的总结

晶振与匹配电容的总结 Document number:PBGCG-0857-BTDO-0089-PTT1998匹配电容-----负载电容是指晶振要正常震荡所需要的电容。
一般外接电容,是为了使晶振两端的等效电容等于或接近负载电容。
要求高的场合还要考虑ic输入端的对地电容。
一般晶振两端所接电容是所要求的负载电容的两倍。
这样并联起来就接近负载电容了。
2.负载电容是指在电路中跨接晶体两端的总的外界有效电容。
他是一个测试条件,也是一个使用条件。
应用时一般在给出负载电容值附近调整可以得到精确频率。
此电容的大小主要影响负载谐振频率和等效负载谐振电阻。
3.一般情况下,增大负载电容会使振荡频率下降,而减小负载电容会使振荡频率升高4.负载电容是指晶振的两条引线连接IC块内部及外部所有有效电容之和,可看作晶振片在电路中串接电容。
负载频率不同决定振荡器的振荡频率不同。
标称频率相同的晶振,负载电容不一定相同。
因为石英晶体振荡器有两个谐振频率,一个是串联揩振晶振的低负载电容晶振:另一个为并联揩振晶振的高负载电容晶振。
所以,标称频率相同的晶振互换时还必须要求负载电容一至,不能冒然互换,否则会造成电器工作不正常。
一份电路在其输出端串接了一个22K的电阻,在其输出端和输入端之间接了一个10M的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。
晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。
和晶振串联的电阻常用来预防晶振被过分驱动。
晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上升,并导致晶振的早期失效,又可以讲drive level调整用。
STM32晶振选型 晶振不起振 晶振及负载电容 晶振参数计算器

第一步:增益裕量(Gainmargin)计算π 3.14晶振手册:F=32768Hz C0=2pFCL=6pF ESR(R1)=50000ΩSTM32手册:gm=5μA/V(选择单位)gm单位:μA/V(Oscillator transconductance)mA/V结果:gmcrit= 5.420E-07=0.54204μA/Vgainmargin=9.22第二步:外部负载电容的计算Cs=3pF注:一般取2~75~6CL1=CL2= 6.0pF第三步:驱动级别及外部电阻的计算对于32kHz的振荡器来说,一般不推荐使用外部限流电阻(译注:因为LSE的常见问题是振荡器ESR是指晶振的等效串联电阻(其值由晶振制造商给出):IQ是流过晶振电流的均方根有效值,使用示波器可观测到其波形为正弦波。
电流值可使用峰-峰值(IPP)。
当使用电流探头时(如图6),示波器的量程比例可能需要设置为1m 图6 使用电流探头检测晶振驱动电流。
注:分路电容(shunt capacitance)低频(32K)高频SE的常见问题是振荡器驱动能力不足而非晶振被过分驱动)比例可能需要设置为1mA/1mV。
IQMAX均方根有效值(假设流过晶振的电流波形为正弦波)。
AXPP 表达式如下:荡器起振条件将得不到满足从而无法正常工作。
重新计算Gainmargin 。
重新回到第一步。
确保振荡器的起振点在基频上,而不是在其他晶振制造商的给定值,外部电阻RExt是必需的,用以推荐使用RExt了,它的值可以是0Ω。
意到RExt和CL2构成了一个分压/滤波器,考虑通带宽度用电位器来代替RExt,RExt值可预设为CL2的位器的值即是CL2值。
t值对起振条件没有影响。
例如,RExt值的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:电阻RS常用来防止晶振被过分驱动。过分驱动晶振会渐渐损耗减少晶振的接触电镀,这将引起频率的上升。可用一台示波器检测OSC输出脚,如果检测一非常清晰的正弦波,且正弦波的上限值和下限值都符合时钟输入需要,则晶振未被过分驱动;相反,如果正弦波形的波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动。这时就需要用电阻RS来防止晶振被过分驱动。判断电阻RS值大小的最简单的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止。通过此办法就可以找到最接近的电阻RS值。
(2):在许可范围内,C1,C2值越低越好。C值偏大虽有利于振荡器的稳定,但将会增加起振时间。
(3):应使C2值大于C1值,这样可使上电时,加快晶振起振。
在石英晶体谐振器和陶瓷谐振器的应用中,需要注意负载电容的选择。不同厂家生产的石英晶体谐振器和陶瓷谐振器的特性和品质都存在较大差异,在选用时,要了解该型号振荡器的关键指标,如等效电阻,厂家建议负载电容,频率偏差等。在实际电路中,也可以通过示波器观察振荡波形来判断振荡器是否工作在最佳状态。示波器在观察振荡波形时,观察OSCO管脚(Oscillator output),应选择100MHz带宽以上的示波器探头,这种探头的输入阻抗高,容抗小,对振荡波形相对影响小。(由于探头上一般存在10~20pF的电容,所以观测时,适当减小在OSCO管脚的电容可以获得更接近实际的振荡波形)。工作良好的振荡波形应该是一个漂亮的正弦波,峰峰值应该大于电源电压的70%。若峰峰值小于70%,可适当减小OSCI及OSCO管脚上的外接负载电容。反之,若峰峰值接近电源电压且振荡波形发生畸变,则可适当增加负载电容。
外接时大约是数 PF 到数十 PF, 依频率和石英晶体的特性而定. 需要注意的是: 这两个电容串联的值是并联在谐振回路上的, 会影响振荡频率. 当两个电容量相等时, 反馈系数是 0.5, 一般是可以满足振荡条件的, 但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量.
用示波器检测OSCI(Oscillator input)管脚,容易导致振荡器停振,原因是:部分的探头阻抗小不可以直接测试,可以用串电容的方法来进行测试。 如常用的4MHz石英晶体谐振器,通常厂家建议的外接负载电容为10~30pF左右。若取中心值15pF,则C1,C2各取30pF可得到其串联等效电容值15pF。同时考虑到还另外存在的电路板分布电容,芯片管脚电容,晶体自身寄生电容等都会影响总电容值,故实际配置C1,C2时,可各取20~15pF左右。并且C1,C2使用瓷片电容为佳。
设计考虑事项:
1.使晶振、外部电容器(如果有)与 IC之间的信号线尽可能保持最短。当非常低的电流通过IC晶振振荡器时,如果线路太长,会使它对 EMC、ESD 与串扰产生非常敏感的影响。而且长线路还会给振荡器增加寄生电容。
2.尽可能将其它时钟线路与频繁切换的信号线路布置在远离晶振连接的位置。
3.当心晶振和地的走线
4.将晶振外壳接地
如果实际的负载电容配置不当,第一会引起线路参考频率的误差.另外如在发射接收电路上会使晶振的振荡幅度下降(不在峰点),影响混频信号的信号强度与信噪.
当波形出现削峰,畸变时,可增加负载电阻调整(几十K到几百K).要稳定波形是并联一个1M左右的反馈电阻.
晶振电路中如何选择电容
(1):因为每一种晶振都有各自的特性,所以最好按制造厂商所提供的数值选择外部元器件。
石英晶体也连接在晶振引脚的输入和输出之间, 等效为一个并联谐振回路, 振荡频率应该是石英晶体的并联谐振频率. 晶体旁边的两个电容接地, 实际上就是电容三点式电路的分压电容, 接地点就是分压点. 以接地点即分压点为参考点, 振荡引脚的输入和输出是反相的, 但从并联谐振回路即石英晶体两端来看, 形成一个正反馈以保证电路持续振荡. 在芯片设计时, 这两个电容就已经形成了, 一般是两个的容量相等, 容量大小依工艺和版图而不同, 但终归是比较小, 不一定适合很宽的频率范围.
什么是晶振的负载电容?(ZT)
晶体元件的负载电容是指在电路中跨接晶体两端的总的外界有效电容。是指晶振要正常震荡所需要的电容。一般外接电容,是为了使晶振两端的等效电容等于或接近负载电容。要求高的场合还要考虑ic输入端的对地电容。应用时一般在给出负载电容值附近调整可以得到精确频率。此电容的大小主要影响负载谐振频率和等效负载谐振电阻。
晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C式中Cd,Cg为分别接在晶振的两个脚上和对地的电容,Cic(集成电路内部电容)+△C(PCB上电容).就是说负载电容15pf的话,两边个接27pf的差不多了,一般a为6.5~13.5pF
各种逻辑芯片的晶振引脚可以等联. 在晶振输出引脚 XO 和晶振输入引脚 XI 之间用一个电阻连接, 对于 CMOS 芯片通常是数 M 到数十 M 欧之间. 很多芯片的引脚内部已经包含了这个电阻, 引脚外部就不用接了. 这个电阻是为了使反相器在振荡初始时处与线性状态, 反相器就如同一个有很大增益的放大器, 以便于起振.