暑假作业第六课时 二次函数及解析式
初一年级数学暑假作业带答案:二次函数

2019 初一年级数学暑期作业带答案:二次函数七下数学暑期作业答案2.2 二次函数的图象同步练习⒈抛物线 y= -x2 的极点坐标为;若点(a,4)在其图象上,则 a 的值是;若点 A ( 3, m)是此抛物线上一点,则m=.2.函数 y=x2 与 y=- x2 的图象对于对称,也可以以为函数y=- x2 的图象,是函数y=x2 的图象绕旋转获得的.⒊抛物线与直线交于(1,),则其分析式为,对称轴是,顶点坐标是,当时, y 随 x 的增大而,当 x=时,函数 y 有最值,是.⒋已知 a<- 1,点( a- 1, y1)、( a, y2)、(a+ 1,y3)都在函数 y= — x2 的图象上,则()A .y1< y2<y3B . y1<y3< y2C. y3< y2< y1D .y2< y1<y3⒌如图, A 、B 分别为 y=x2 上两点,且线段AB ⊥y 轴,若AB=6 ,则直线 AB 的表达式为()A .y=3B . y=6C . y=9D .y=36⒍ 对于的图象以下表达正确的选项是()A 的值越大,张口越大B 的值越小,张口越小C 的绝对值越小,张口越大D 的绝对值越小,张口越小⒎一个函数的图象是一条以y 轴为对称轴,以原点为极点的第1页/共4页抛物线,且经过点 A ( 2,-8).(l )求这个函数的分析式; (2)画出函数图象; (3)察看函数图象,写出这个函数所拥有的性质。
⒏ 已知,如图,直线经过和两点,它与抛物线在第一象限内订交于点 P,又知的面积为,求的值;⒐如图,在以O 为圆心的两个齐心圆中,小圆的半径长为2,大圆的弦 AB 与小圆交于点 C、D ,且∠ COD =60 °,CD=CA 。
(Ⅰ )求大圆半径的长;(Ⅱ)若大圆的弦AE 与小圆切于点F,求 AE 的长 .⒑如图,在直角坐标系中,点M在y 轴的正半轴上,⊙ M与x 轴交于 A,B 两点, AD 是⊙ M 的直径,过点 D 作⊙ M 的切线,交 x 轴于点 C.已知点 A 的坐标为 (-3, 0),点 C 的坐标为(5,0)。
二次函数三种解析式的求法

二次函数三种解析式的求法二次函数是高中数学中的重要概念,它的解析式有三种常见的求法。
本文将分别介绍这三种求法,并且给出相应的例题加以说明。
第一种求法是通过顶点坐标和另一点坐标来确定二次函数的解析式。
二次函数的标准形式为f(x) = a(x-h)² + k,其中(h,k)为顶点坐标。
假设已知顶点坐标为(h,k),另一个已知点的坐标为(x₁,y₁),我们可以将这两个点的坐标代入二次函数的标准形式,得到两个方程:k = a(x-h)²y₁ = a(x₁-h)² + k通过解方程组,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),我们可以代入上述方程组进行求解。
将顶点坐标代入第一个方程,可得:3 = a(2-(-1))²解得a = 1/3。
然后将a的值代入第二个方程,可得:5 = (1/3)(2-(-1))² + 3化简后得到二次函数的解析式为f(x) = (1/3)(x+1)² + 3。
第二种求法是通过顶点坐标和对称轴与顶点的距离来确定二次函数的解析式。
对称轴与顶点的距离等于顶点的纵坐标的绝对值,即|k|。
假设已知顶点坐标为(h,k),对称轴与顶点的距离为|k|,我们可以将这些信息代入二次函数的标准形式,得到方程:f(x) = a(x-h)² + k代入|k|,可得:f(x) = a(x-h)² + |k|通过解这个方程,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),对称轴与顶点的距离为3。
我们可以代入上述方程进行求解。
将顶点坐标代入方程,可得:5 = a(2-(-1))² + 3化简后得到a = 1/3。
然后将a的值代入方程,可得:f(x) = (1/3)(x+1)² + 3这就是二次函数的解析式。
二次函数几种解析式求法ppt课件

C A
F O
D
B x
19
解:(1)B(10,0),D(5,3)
(2)设抛物线的函数解析式为 y ax2c(a 0)
由题意可得:
y
100a c 0
25a c 3
C
A
解得:
O
a
1 25
c 4
∴抛物线的函数解析式为:
y
1
x2 4
25
D B x
20
(3)解:∵抛物线的函数解析式
为:y 1 x2 4
25
C
∴E(0,4)
又有题意可得:F(0,3) A
∴EF=1
y E F
O
∴水位有CD上升到点E所用的时间为4小时。
设货车从接到通知到到达桥所用的时间为 t .
则40(t+1)=280 解得:t=6>4 故货车按原速行驶,不能安全通过此桥。
设货车速度为x km/h,能安全通过此桥.
则4x+40≥280 解得x≥60
y
C
A O
D B x
22
如图,抛物线y=ax2+bx+c与直线y=kx+4相交于A
(1,m),B(4,8)两点,与x轴交于原点及C
点,(1)求直线和抛物线的解析式;(2)在抛
物线上是否存在点D,使S△OCD=
S△23OCB,若存
在,求出点D;若不存在,请说明理由。
y
A o
B
C x
23
五、小结
1、二次函数常用解析式
∵顶点C(1,4), ∴对称轴 x=1. ∵A(-1,0)与 B关于 x=1对称, ∴B(3,0)。 ∵A(-1,0)、B(3,0)和 C(1,4)在抛物线上,
二次函数详解(附习题、答案)

二次函数详解(附习题、答案)一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+的性质: 上加下减。
3.()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:y=3(x+4)22y=3x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数的三种表示方式(解析版)

二次函数的三种表示方式高中必备知识点1:一般式形如下面的二次函数的形式称为一般式:y =ax 2+bx +c (a ≠0);典型考题【典型例题】已知抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,﹣3). (1)求抛物线的表达式.(2)已知点(m ,k )和点(n ,k )在此抛物线上,其中m ≠n ,请判断关于t 的方程t 2+mt +n =0是否有实数根,并说明理由.【答案】(1)y =x 2+2x ﹣3;(2)方程有两个不相等的实数根. 【解析】(1)抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,3) 9a ﹣3b +c =0930312a b c c b a⎧⎪-+=⎪=-⎨⎪⎪-=-⎩ 解得a =1,b =2,c =﹣3 ∴抛物线y =x 2+2x ﹣3;(2)∵点(m ,k ),(n ,k )在此抛物线上, ∴(m ,k ),(n ,k )是关于直线x =﹣1的对称点, ∴+2m n=﹣1 即m =﹣n ﹣2 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0∴此方程有两个不相等的实数根.【变式训练】抛物线的图象如下,求这条抛物线的解析式。
(结果化成一般式)【答案】【解析】由图象可知抛物线的顶点坐标为(1,4),设此二次函数的解析式为y=a(x-1)2+4把点(3,0)代入解析式,得:4a+4,即a=-1所以此函数的解析式为y=-(x-1)2+4故答案是y=-x2+2x+3.【能力提升】如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线. (1)求抛物线的解析式(化为一般式);(2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.【答案】(1) ;(2)4.【解析】 (1)抛物线的顶点坐标为,把点先向右平移2个单位,再向下平移2个单位后得到的点的坐标为,抛物线的解析式为;(2)顶点坐标为,且抛物线的对称轴与两段抛物线弧围成的阴影部分的面积,抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.高中必备知识点2:顶点式形如下面的二次函数的形式称为顶点式:y =a (x -h )2+k (a ≠0),其中顶点坐标是(h ,k ).典型考题【典型例题】已知二次函数21322y x x =-++. ⑴用配方法将此二次函数化为顶点式; ⑵求出它的顶点坐标和对称轴方程.【答案】(1)()21122y x =--+;(2)(1,2),直线1x = 【解析】 (1)21322y x x =-++()21232y x x =--- ()2121132y x x =--+--()212142y x x ⎡⎤=--+-⎣⎦ ()21142y x ⎡⎤=---⎣⎦()21122y x =--+(2)∵()21122y x =--+∴顶点坐标为(1,2),对称轴方程为直线1x =.【变式训练】已知二次函数的图象的顶点是(﹣1,2),且经过(1,﹣6),求这个二次函数的解析式. 【答案】二次函数的解析式为y=﹣2(x+1)2+2. 【解析】∵二次函数的图象的顶点是(﹣1,2),∴设抛物线顶点式解析式y=a (x+1)2+2,将(1,﹣6)代入得,a (1+1)2+2=﹣6, 解得a=﹣2,所以,这个二次函数的解析式为y=﹣2(x+1)2+2.【能力提升】二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.【答案】(1)322--=x x y ;(2)(1,-4);(3)5【解析】(1)设c bx ax y ++=2,把点(03)A -,,(23)B -,,(10)C -,代入得 ⎪⎩⎪⎨⎧=---=++-=03343b a c b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y ;(2)∵4)1(3222--=--=x x x y∴函数的顶点坐标为(1,-4); (3)∵|1-0|+|-4-0|=5∴二次函数的图象沿坐标轴方向最少平移5个单位,使得该图象的顶点在原点.高中必备知识点3:交点式形如下面的二次函数的形式称为交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.典型考题【典型例题】已知在平面直角坐标系中,二次函数 y =x 2+2x +2k ﹣2 的图象与 x 轴有两个交点. (1)求 k 的取值范围;(2)当 k 取正整数时,请你写出二次函数 y =x 2+2x +2k ﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标.【答案】(1)k <;(2)(﹣2,0)和(0,0).【解析】(1)∵图象与x轴有两个交点,∴方程有两个不相等的实数根,∴解得(2)∵k 为正整数,∴k=1.∴令y=0,得解得∴交点为(﹣2,0)和(0,0).【变式训练】已知二次函数的图象经过点(3,-8),对称轴是直线x=-2,此时抛物线与x轴的两交点间距离为6.(1)求抛物线与x轴两交点坐标;(2)求抛物线的解析式.【答案】(1)(-5,0),(1,0);(2)y=-x2-2x+.【解析】(1) ∵因为抛物线对称轴为直线x=-2,且图象与x轴的两个交点的距离为6,∴点A、B到直线x=-2的距离为3,∴A为(-5,0),B为(1,0);(2)设y=a(x+5)(x-1).∵点(3,-8)在抛物线上,∴-8=a(3+5)(3-1),a=-,∴y=-x2-2x+.【能力提升】已知二次函数y=x2﹣4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.【答案】(1)二次函数与x轴的交点坐标为(1,0)(3,0),抛物线的顶点坐标为(2,﹣1);(2)图见详解;当y<0时,1<x<3.【解析】(1)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,所以抛物线的顶点坐标为(2,﹣1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.专题验收测试题1.将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为()A.y=﹣2(x﹣1)2+1 B.y=﹣2(x+3)2﹣5C.y=﹣2(x﹣1)2﹣5 D.y=﹣2(x+3)2+1【答案】B【解析】解:将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为:y=﹣2(x+3)2﹣5.故选:B.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【答案】A【解析】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选:A.3.若二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,则k的值为()A.1 B.2 C.﹣1 D.﹣2【答案】D【解析】∵二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,∴△=b2﹣4ac=0,即8﹣4k(k+1)=0,解得:k1=1,k2=﹣2,当k=1时,k+1>0,此时图象有最低点,不合题意舍去,则k的值为:﹣2.故选:D.4.已知二次函数为常数,且),()A.若,则的增大而增大;B.若,则的增大而减小;C.若,则的增大而增大;D.若,则的增大而减小;【答案】C【解析】解:∵y=ax2+(a+2)x-1对称轴直线为,x=-=-.由a<0得,->0.∴->-1.又∵a<0∴抛物线开口向下.故当x<-时,y随x增大而增大.又∵x<-1时,则一定有x<-.∴若a<0,则x<-1,y随x的增大而增大.故选:C.5.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)【答案】B【解析】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.6.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.7.把抛物线y=ax2+bx+c图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y=x2+5x+6,则a﹣b+c的值为()A.2 B.3 C.5 D.12【答案】B【解析】y=x2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣).故原抛物线的解析式是:y=(x+)2+=x2+x+3.所以a=b=1,c=3.所以a﹣b+c=1﹣1+3=3.故选B.8.已知二次函数y=﹣(x﹣k+2)(x+k)+m,其中k,m为常数.下列说法正确的是()A.若k≠1,m≠0,则二次函数y的最大值小于0B.若k<1,m>0,则二次函数y的最大值大于0C.若k=1,m≠0,则二次函数y的最大值小于0D.若k>1,m<0,则二次函数y的最大值大于0【答案】B【解析】∵y=﹣(x﹣k+2)(x+k)+m=﹣(x+1)2+(k﹣1)2+m,∴当x=﹣1时,函数最大值为y=(k﹣1)2+m,则当k<1,m>0时,则二次函数y的最大值大于0.故选:B.9.关于抛物线,下列说法错误..的是().A.开口向上B.与轴只有一个交点C.对称轴是直线D.当时,的增大而增大【答案】B【解析】解:A、,抛物线开口向上,所以A选项的说法正确;B、当时,即,此方程没有实数解,所以抛物线与x轴没有交点,所以B选项的说法错误;C、抛物线的对称轴为直线,所以C选项的说法正确;D、抛物线开口向上,抛物线的对称轴为直线,则当时,y随x的增大而增大,所以D选项的说法正确.故选:B.10.将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=﹣3(x﹣2)2+4 B.y=﹣3(x﹣2)2﹣2C.y=﹣3(x+2)2+4 D.y=﹣3(x+2)2﹣2【答案】D【解析】将抛物线y=﹣3x2+1向左平移2个单位长度所得直线解析式为:y=﹣3(x+2)2+1;再向下平移3个单位为:y=﹣3(x+2)2+1﹣3,即y=﹣3(x+2)2﹣2.故选D.11.已知抛物线经过点,则该抛物线的解析式为__________.【答案】【解析】解:将A、O两点坐标代入解析式得:,解得:,∴该抛物线的解析式为:y=.12.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.【答案】-1【解析】解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,∴a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a的值为-1.故答案为:-1.13.将二次函数y=x2的图象先向上平移1个单位,然后向右平移2个单位,得到新的二次函数的顶点式为______.【答案】y=(x-2)2+1【解析】解:将抛物线y=x2的图象先向上平移1个单位,然后向右平移2个单位后,得到的抛物线的表达式为y=(x-2)2+1,故答案为:y=(x-2)2+1.14.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+115.在平面直角坐标系xOy 中,函数y = x2的图象经过点M (x1 , y1 ) ,N (x2 , y2 ) 两点,若- 4< x1<-2,0< x2<2 ,则y1 ____ y2 . (用“ <”,“=”或“>”号连接)【答案】>【解析】解:抛物线y=x2的对称轴为y轴,而M(x1,y1)到y轴的距离比N(x2,y2)点到y轴的距离要远,所以y1>y2.故答案为:>.16.小颖从如图所示的二次函数的图象中,观察得出了下列信息:;;;;.你认为其中正确信息的个数有______.【答案】【解析】解:抛物线的对称轴位于y轴左侧,则a、b同号,即,抛物线与y轴交于正半轴,则,所以,故错误;如图所示,当时,,所以,故正确;对称轴,,则如图所示,当时,,,,故正确;如图所示,当时,,故错误;综上所述,正确的结论是:.故答案是:.17.已知二次函数y=﹣x2+bx﹣c的图象与x轴的交点坐标为(m﹣2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y =1时,自变量x 有唯一的值,求二次函数的解析式. 【答案】(1)31=m (2)y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 【解析】解:(1)由题意可知,二次函数图象的对称轴为x =2213122m m m -++-=,∵a =﹣1<0,∴二次函数的图象开口向下, ∵x <0时,y 随x 的增大而增大,∴312m -≥0, 解得m ≥13,(2)由题意可知,二次函数的解析式为y =﹣(x ﹣312m -)2+1, ∵二次函数的图象经过点(m ﹣2,0), ∴0=﹣(m ﹣2﹣312m -)2+1, 解得m =﹣1和m =﹣5,∴二次函数的解析式为y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 18.设二次函数y 1=ax 2+bx +a ﹣5(a ,b 为常数,a ≠0),且2a +b =3. (1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;(2)y 1的图象始终经过一个定点,若一次函数y 2=kx +b (k 为常数,k ≠0)的图象也经过这个定点,探究实数k ,a 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )都在函数y 1的图象上,若x 0<1,且m >n ,求x 0的取值范围(用含a 的代数式表示).【答案】(1)y =3x 2﹣3x ﹣2;(2)k =2a ﹣5;(3)x 0<.【解析】解:(1)∵函数y 1=ax 2+bx +a ﹣5的图象经过点(﹣1,4),且2a +b =3 ∴,∴,∴函数y 1的表达式为y =3x 2﹣3x ﹣2; (2)∵2a +b =3∴二次函数y1=ax2+bx+a﹣5=ax2+(3﹣2a)x+a﹣5,整理得,y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2∴当x=1时,y1=﹣2,∴y1恒过点(1,﹣2)∴代入y2=kx+b得∴﹣2=k+3﹣2a得k=2a﹣5∴实数k,a满足的关系式:k=2a﹣5(3)∵y1=ax2+(3﹣2a)x+a﹣5∴对称轴为x=﹣,∵x0<1,且m>n∴当a>0时,对称轴x=﹣,解得,当a<0时,对称轴x=﹣,解得(不符合题意,故x0不存在)故x0的取值范围为:19.已知二次函数y=x2+bx+c的图象经过点A和点B(1)求该二次函数的解析式;(2)写出该抛物线的对称轴及顶点坐标.【答案】(1) y=x2﹣4x﹣6;(2)对称轴为x=2;顶点坐标是(2,﹣10).【解析】(1)根据题意,得,解得,∴所求的二次函数的解析式为y=x2﹣4x﹣6.(2)又∵y=x2﹣4x﹣6=(x﹣2)2﹣10,∴函数图象的对称轴为x=2;顶点坐标是(2,﹣10).20.如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,其中A点的坐标为(-3,0),C为抛物线与y轴的交点.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=2S△BOC,求点P的坐标.【答案】(1)y=x2+2x﹣3;(2)点P的坐标为(2,5)或(﹣2,﹣3)【解析】(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3.(2)∵将x=0代y=x2+2x﹣3入,得y=﹣3,∴点C的坐标为(0,﹣3).∴OC=3.∵点B的坐标为(1,0),∴OB=1.设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12OC•|a|=12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,5);当a=﹣2时,点P的坐标为(﹣2,﹣3).∴点P的坐标为(2,5)或(﹣2,﹣3).21.已知抛物线y=ax2﹣3ax﹣4a(a≠0).(1)直接写出该抛物线的对称轴.(2)试说明无论a为何值,该抛物线一定经过两个定点,并求出这两个定点的坐标.【答案】(1);(2)抛物线一定经过点.【解析】解:(1)该抛物线的对称轴为x=-;(2)可化为,当,即时,,抛物线一定经过点.22.如图,已知点A(-1,0),B(3,0),C(0,)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在第一象限的抛物线上求一点P,使△PBC的面积为.【答案】(1);(2)点P的坐标为(1,2)或(2,).【解析】(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,)代入,得-3a=,解得∴抛物线的解析式为(2)过点P作PD⊥x轴于D.设点,∴S四边形ACOB=S梯形PDOC+S△PBD =(=∴S△PBC=S四边形PCOB- S△BOC=整理得,解得x=1或x=2.∴点P的坐标为(1,2)或(2,)。
二次函数的解析式的三种形式ppt课件

交点式 y=a(x-x1)(x-x2)
:与x轴交于
(x1,0) (x2,0)
x1 x2 (x1,0) 2 (x2,0)
对称轴
完整编辑ppt
4
画出下列二次函数的示意图,并指出 它的对称轴,顶点坐标,与y轴的交点 。y=x2-3x-5
对称轴 : 顶点:
1.5
(0,-5)
与y轴的交点: (0,-5)
完整编辑ppt
完整编辑ppt
24
如图是抛物线y=ax2+bx+c
试判断: a 0, b 0, c 0, a+b+c 0, 4a-2b+c 0 b2-4ac 0,
如图是抛物线y=ax2+bx+c
试判断:
a 0, b 0, c
0,
a+b+c 0,
1
4a-2b+c 0
b2-4ac 0,
2a+b 0,
完整编辑ppt
26
对称轴 :
(0,16) 直线x=1
顶点: (1,18)
(-2,0)
(4,0)
与y轴的交点: (0,16)
1
完整编辑ppt
15
1.已知抛物线y=ax2+bx+c的对
称轴为x=2,且经过点(1,4)
和点(5,0),则该抛物线的解
析式为
.
完整编辑ppt
驶向胜利 的彼岸
16
2.求满足下列条件的二次函数解析式: (1)二次函数的图像与x轴交于点A(2,0),
顶点: (-2,-3)
(0,9)
(-3,0) -2 (-1,0)
与y轴的交点: (0,9)
完整编ppt
二次函数的解析式(解析版)-2023年升初三人教版暑假衔接教材

❊2.5二次函数的解析式知识点二次函数的解析式题型一求二次函数解析式(1)例1已知二次函数的图象经过点A (-1,0),B (0,-3)和C (3,12).求二次函数的解析式并求出图象的顶点D 的坐标.【分析】设一般式为y =ax 2+bx +c ,然后把三个点的坐标代入得到a 、b 、c 的方程组,再解方程组即可;【解答】解:设抛物线解析式为y =ax 2+bx +c ,把A (﹣1,0),B (0,﹣3)和C (3,12)代入,得0=−+−3=12=9+3+,解得:=2=−1=−3,∴抛物线解析式为y =2x 2﹣x ﹣3,∵y =2x 2﹣x ﹣3=2(−14)2−258,∴顶点D 的坐标为(14,−258);例2一个二次函数,当x =0时,y =-5;当x =-1时,y =-4;当x =-2时,y =5,则这个二次函数的关系式是()A .y =4x 2+3x -5B .y =2x 2+x +5C .y =2x 2-x +5D .y =2x 2+x -5【答案】A【分析】设二次函数的关系式是y =ax 2+bx +c (a ≠0),然后由当x =0时,y =﹣5;当x =﹣1时,y =﹣4;当x =﹣2时,y =5,得到a ,b ,c 的三元一次方程组,解方程组确定a ,b ,c 的值即可.【详解】解:设二次函数的关系式是y =ax 2+bx +c (a ≠0),∵当x =0时,y =﹣5;当x =﹣1时,y =﹣4;当x =﹣2时,y =5,∴c =﹣5①,a ﹣b +c =﹣4②,4a ﹣2b +c =5③,解由①②③组成的方程组得,a =4,b =3,c =﹣5,所以二次函数的关系式为:y =4x 2+3x ﹣5.故选:A .变1已知一个二次函数的图象经过(-1,10),(1,4),(2,7)三点.求这个二次函数的解析式,并求出它的开口方向、对称轴和顶点坐标.【解题思路】设二次函数的解析式为y =ax 2+bx +c ,把(﹣1,10),(1,4),(2,7)三点坐标代入,列方程组求a 、b 、c 的值,确定函数解析式,根据二次函数解析式可知抛物线的对称轴及顶点坐标.【解答过程】解:设二次函数的解析式为y =ax 2+bx +c ,把(﹣1,10),(1,4),(2,7)各点代入上式得−+=10++=44+2+=7,解得=2=−3=5.则抛物线解析式为y =2x 2﹣3x +5;由y =2x 2﹣3x +5=2(x −34)2+318可知,抛物线对称轴为直线x =34,顶点坐标为(34,318).变2已知二次函数的图象经过(4,3)-和(6,3)-两点,与y 轴交于(0,21),求此二次函数的解析式.【分析】利用待定系数法即可求解.【解答】解:二次函数解析式为2y ax bx c =++,二次函数的图象经过(4,3)-和(6,3)-两点,与y 轴交于(0,21),∴1643366321a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得11021a b c =⎧⎪=-⎨⎪=⎩,∴二次函数的解析式为21021y x x =-+.题型二求二次函数解析式(2)例1若二次函数图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数解析式是_________.【答案】243y x x =-+【详解】解:设二次函数解析式为()221y a x =--,把()03,代入得:341a =-,解得:1a =,则二次函数解析式为()222143y x x x =--=-+,故答案为:243y x x =-+.变1已知二次函数当x =1时有最大值是-6,其图象经过点(2,-8),求二次函数的解析式.【解题思路】由于已知抛物线的顶点坐标,则可设顶点式y =a (x ﹣1)2﹣6,然后把(2,﹣8)代入求出a 的值即可.【解答过程】解:设抛物线解析式为y =a (x ﹣1)2﹣6,把(2,﹣8)代入得a (2﹣1)2﹣6=﹣8,解得a =﹣2.所以抛物线解析式为y =﹣2(x ﹣1)2﹣6.例2抛物线2y x bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x ⋯01234⋯y⋯3-13⋯则抛物线的解析式是_________.【答案】243y xx =-+【分析】结合题意,根据二次函数的性质,通过列二元一次方程组并求解,即可得到答案.【详解】根据题意,得:310c b c =⎧⎨++=⎩将3c =代入到10b c ++=,得:130b ++=∴4b =-∴2243y x bxc x x =++=-+故答案为:243y x x =-+.例3已知二次函数2(0)y ax bx c a =++≠中的x 和y 满足下表:x4-3-2-1-012 y5-0343m5-(1)根据表格,直接写出该二次函数的对称轴以及m 的值;(2)求该二次函数的表达式.【分析】(1)由于2x =-,3y =;0x =,3y =,则可利用抛物线的对称性得到对称轴;然后利用对称性确定m 的值;(2)设顶点式2(1)4y a x =++,然后把(0,3)代入求出a 的值,从而得到抛物线解析式.【解答】解:(1) 抛物线经过点(2,3)-,(0,3),∴抛物线的对称轴为直线1x =-,1x = 和3x =-所对应的函数值相等,0m ∴=;(2)设抛物线解析式为2(1)4y a x =++,把(0,3)代入得23(01)4a =⨯++,解得1a =-,∴该二次函数的解析式为(1)24y x =-++,即223y x x =--+.变2小聪在画一个二次函数的图象时,列出了下面几组y 与x 的对应值:x⋯012345⋯y⋯53-4-3-0⋯该二次函数的解析式是_________.【分析】根据待定系数法即可求得.【解答】解:由表格数据结合二次函数图象对称性可得图象顶点为(3,4)-,设二次函数的表达式为2(3)4(0)y a x a =--≠,将(1,0)代入得440a -=,解得1a =,∴该二次函数的表达式为2(3)4y x =--(或265)y x x =-+.变3二次函数23y ax bx =+-中的x 、y 满足下表:x ⋯-10123⋯23y ax bx =+-⋯-3-4-3m⋯(1)求这个二次函数的解析式.(2)求m 的值.【答案】(1)223y x x =--(2)0【分析】(1)根据表格数据待定系数法求解析式即可求解.(2)根据二次函数的对称性即可求解.(1)解:根据表格可知对称轴为直线1x =,且1x =时4y =-,即顶点为()1,4-,设解析式为()214y a x =--,当0x =时,3y =-,即43a -=-,解得1a =,∴这个二次函数的解析式为:()221423y x x x =--=--,即223y x x =--(2)解:∵对称轴为直线1x =,∴当3x =与1x =-时的函数值相等,∴0m =题型三求二次函数解析式(3)例1在直角坐标系中,抛物线经过点A (0,4)、B (1,0)、C (5,0),求抛物线的解析式和顶点E 坐标.变1已知二次函数y =ax 2+bx +c 的图象与x 轴交于A (1,0),B (3,0)两点,与y 轴交于点C (0,3),则二次函数的解析式是_________.变2抛物线经过点(2,0),(1,0)A B -,且与y 轴交于点C .若2OC =,则该抛物线解析式为()A .22--=x x yB .22y x x =---或22++=x x yC .22++-=x x yD .22--=x x y 或22++-=x x y 【答案】D【分析】抛物线和y 轴交点的为(0,2)或(0,-2),根据A 、B 两点坐标设出抛物线解析式为()()21y a x x =-+()0a ≠,代入C 点坐标即可求解.【详解】设抛物线的解析式为()()21y a x x =-+()0a ≠∵2OC =∴抛物线和y 轴交点的为(0,2)或(0,-2)①当抛物线和y 轴交点的为(0,2)时,得()()20201a =-+解得1a =-∴抛物线解析式为()()121y x x =--+,即22y x x =-++②当抛物线和y 轴交点的为(0,-2)时,()()20201a -=-+解得1a =∴抛物线解析式为()()y x 2x 1=-+,即2y x x 2=--故选D .例2在平面直角坐标系xOy 中,二次函数图象上部分点的横坐标x ,纵坐标y 的对应值如下表,求这个二次函数的表达式.x⋯1-012⋯y⋯3-01⋯【分析】利用表中数据和抛物线的对称性可得到二次函数的顶点坐标为(1,1),则可设顶点式2(1)1y a x =-+,然后把点(0,0)代入求出a 即可.【解答】解:由题意可得二次函数的顶点坐标为(1,1),设二次函数的解析式为:2(1)1y a x =-+,把点(0,0)代入2(1)1y a x =-+,得1a =-,故抛物线解析式为2(1)1y x =--+,即22y x x =-+;例3如图,抛物线23y ax bx =+-与y 轴交于点C ,与x 轴交于A ,B 两点3OB OC OA ==,则该抛物线的解析式是_________.【答案】223y x x =--【分析】根据抛物线与y 轴交于点C 易得点C 的坐标为()0,3C -,根据3OB OC OA ==,可得点A 、B 的坐标,再利用待定系数法即可求得二次函数的解析式.【详解】当0x =时,3y =-,∴()0,3C -,∴3OC =,∴3OB =,1OA =,∴()3,0B ,()1,0A -,将()3,0B ,()1,0A -代入23y ax bx =+-得,093303a b a b =+-⎧⎨=--⎩,解得12a b =⎧⎨=-⎩,∴该抛物线的解析式是223y x x =--.变3小聪在画一个二次函数的图象时,列出了下面几组y 与x 的对应值:x⋯012345⋯y⋯53-4-3-0⋯该二次函数的解析式是_________.【分析】根据待定系数法即可求得.【解答】解:由表格数据结合二次函数图象对称性可得图象顶点为(3,4)-,设二次函数的表达式为2(3)4(0)y a x a =--≠,将(1,0)代入得440a -=,解得1a =,∴该二次函数的表达式为2(3)4y x =--(或265)y x x =-+.变4如图是二次函数2y x c =++的图像,该函数的最小值是_________.将2b =代入930b c -+=得:9320c -⨯+=,解得3c =-,则二次函数的解析式为223y x x =+-,当1x =-时,2(1)2(1)34y =-+⨯--=-,即该函数的最小值是4-,故答案为:4-.课后强化1.已知一条抛物线经过E (0,10),F (2,2),G (4,2),H (3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A .E ,F B .E ,GC .E ,HD .F ,G2.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++经过点(3,0)A 、(2,3)B -、(0,3)C -.求抛物线的表达式.【分析】根据二次函数图象上的点的坐标特征解决此题.【解答】解:由题意得,930a b c ++=,423a b c ++=-,3c =-.1a ∴=,2b =-.∴这个抛物线的表达式为223y x x =--.3.求分别满足下列条件的二次函数解析式:(1)二次函数图像经过(1,2),(0,1),(2,3)-三点.(2)二次函数图像的顶点坐标是()2,3-,并经过点()1,2.4.已知二次函数2y ax bx c =++经过(1,0)A -,(5,0)B ,(0,2.5)C -三点.求二次函数2y ax bx c =++的解析式.【分析】利用待定系数法,即可求出二次函数的解析式;【解答】解:将(1,0)A -,(5,0)B ,(0, 2.5)C -代入2y ax bx c =++得:025502.5a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:0.522.5a b c =⎧⎪=-⎨⎪=-⎩,∴二次函数2y ax bx c =++的解析式为20.52 2.5y x x =--;5.二次函数的图象顶点坐标为(2,2)--,且过(1,0).求该二次函数解析式.【分析】由抛物线顶点式表达式得:2(2)2y a x =+-,将点(1,0)代入上式即可求解;【解答】解:由抛物线顶点式表达式得:2(2)2y a x =+-,1x =时,2(12)20y a =+-=,解得:29a =,故抛物线的表达式为:22(2)29y x =+-;6.一个二次函数的图象与抛物线23y x =的形状相同、开口方向相同,且顶点为(1,4),那么这个函数的解析式是_________.【分析】根据二次函数性质形状及开口方向相同即a 的值一样,设出解析式23()y x h k =-+,根据顶点为(1,4),即可得到答案.【解答】解: 二次函数的图象与抛物线23y x =的形状相同、开口方向相同,3a ∴=,设二次函数的解析式为23()y x h k =-+,顶点为(1,4),1h ∴=,4k =,∴这个函数的解析式是23(1)4y x =-+,故答案为:23(1)4y x =-+.7.若抛物线2y ax bx c =++的顶点是()2,1A ,且经过点()10B ,,则抛物线的函数关系式为()A .243y x x =+-B .243y x x =-+-C .243y x x =---D .243y x x =-++【答案】B 【详解】解:∵抛物线顶点是A (2,1),且经过点B (1,0),∴设抛物线的函数关系式是y =a (x -2)2+1,把B 点的坐标代入得:0=a (1-2)2+1,解得:a =-1,即抛物线的函数关系式是y =-(x -2)2+1,即y =-x 2+4x -3.故选:B .8.二次函数2y ax bx c =++的y 与x 的部分对应值如下表,则下列判断中正确的是()x…0134…y …242-2…A .抛物线开口向上B .当1x >时,y 随x 的增大而减小C .当02x <<时,1724y <≤D .y 的最大值为29【答案】C 【详解】解:将点()0,2,()1,4,()3,2代入二次函数的解析式,得:24934c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:132a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为223173224y x x x ⎛⎫=-++=--+ ⎪⎝⎭,∵10-<,∴抛物线开口向下,∴A 选项不符合题意;∵由抛物线解析式可知,抛物线的对称轴为32x =,这时抛物线取得最大值17y 4=,∴当32x <时,y 随x 的增大而增大;当32x >时,y 随x 的增大而减小,∴当1x >时,y 随x 的增大先增大,到达最大值174后,y 随x 的增大而减小,∴B 选项不符合题意;∵当0x =时,2y =;当2x =时,4y =,又∵抛物线的对称轴为32x =,当32x =时,17y 4=,又∵17244<<,∴当02x <<时,1724y <≤,∴C 选项符合题意;∵抛物线的解析式为223173224y x x x ⎛⎫=-++=--+ ⎪⎝⎭,∴当32x =时,抛物线取得最大值17y 4=,∴D 选项不符合题意.故选:C .9.已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1),则这二次函数的表达式为()A .y =-6x 2+3x +4B .y =-2x 2+3x -4C .y =x 2+2x -4D .y =2x 2+3x -4【答案】D【详解】解:设所求函数的解析式为y =ax 2+bx +c ,把(-1,-5),(0,-4),(1,1)分别代入,得:541a b c c a b c -+-⎧⎪-⎨⎪++⎩===解得234a b c ⎧⎪⎨⎪-⎩===所求的函数的解析式为y =2x 2+3x -4.故选D10.如果抛物线2y ax bx c =++的对称轴是x =-3,且开口方向与形状与抛物线y =-2x 2相同,又过原点,那么a =_______,b =_______,c =_______.【答案】-2-120【详解】解:∵抛物线y =ax 2+bx +c 的开口方向,形状与抛物线y =-2x 2相同,∴a =-2,∵抛物线y =ax 2+bx +c 的对称轴是直线x =-3,∴-2b a=-3,即-()22b ⨯-=-3,解得b =-12;∵抛物线过原点,∴c =0.故答案为:-2,-12;0.11.一个二次函数图象上部分点的横坐标x ,纵坐标y 的对应值如表:(1)这个二次函数的对称轴为直线_______,顶点坐标为_______;(2)m 的值是_______,n 的值是_______;(3)这个二次函数的解析式为_________.【分析】(1)根据二次函数图象的对称性,结合表格数据即可求解;(2)根据二次函数图象的对称性,结合表格数据即可求解;(3)待定系数法求解析式即可求解.【解答】解:(1)根据二次函数图象的对称性,可知,当0x =时与2x =时,函数值相等,∴对称轴为直线1x =,当1x =时,1y =-,即顶点坐标为(1,1)-,故答案为:1x =,(1,1)-;(2) 对称轴为直线1x =,3y ∴=时,1x =-或x n =,∴112n -+=,解得:3n =,当4x =与2x =-时,函数值相等,8m ∴=,故答案为:8,3;(3) 顶点坐标为(1,1)-,设该二次函数解析式为2(1)1y a x =--,将(0,0),代入得01a =-,解得:1a =,∴二次函数解析式为:22(1)12y x x x =--=-,故答案为:22y x x =-.12.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点,且BC =5,求该二次函数的解析式.【解题思路】由于已知抛物线与x 轴的交点坐标,则可设交点式y =a (x ﹣1)(x ﹣4),再利用B 点坐标和BC =5得到C 点坐标,然后把C 点坐标代入可求出a 的值,从而得到两个解析式.【解答过程】解:设抛物线的解析式为y =a (x ﹣1)(x ﹣4),∵B (4,0)两点,交y 轴于C ,BC =5,∴C 点坐标为(0,3)或(0,﹣3),当C 点坐标为(0,3),把(0,3)代入得a •(﹣1)•(﹣4)=3,解得a =34,所以此时抛物线的解析式为y =34(x ﹣1)(x ﹣4)=34x 2−154x +3;当C 点坐标为(0,﹣3),把(0,﹣3)代入得a •(﹣1)•(﹣4)=﹣3,解得a =−34,所以此时抛物线的解析式为y =−34(x ﹣1)(x ﹣4)=−34x 2+154x ﹣3,所以该二次函数的解析式为y =34x 2−154x +3或y =−34x 2+154x ﹣3.13.二次函数图象过A ,C ,B 三点,点A 的坐标为(-1,0),点B 的坐标为(4,0),点C 在y 轴正半轴上,且AB =OC ,求二次函数的表达式.【解题思路】根据A .B 两点的坐标及点C 在y 轴正半轴上,且AB =OC .求出点C 的坐标为(0,5),然后根据待定系数法即可求得.【解答过程】解:∵A (﹣1,0),B (4,0)∴AO =1,OB =4,AB =AO +OB =1+4=5,∴OC =5,即点C 的坐标为(0,5),设二次函数的解析式为y =ax 2+bx +c ,∵二次函数图象过A ,C ,B 三点,∴−+=016+4+=0=5,解得=−54=154=5,∴二次函数的表达式为y =−54x +154x +5.。
二次函数解析式三种方法

二次函数解析式三种方法嘿,大家知道吗,求二次函数解析式有三种超棒的方法呢!先来说说一般式吧。
一般式是y=ax²+bx+c,当我们知道函数图像上的三个点时,就可以用这个方法啦。
步骤就是把这三个点的坐标代入一般式中,得到一个三元一次方程组,然后解这个方程组就能求出 a、b、c 的值啦。
哎呀呀,这多简单呀,不过可得仔细点,别把坐标代错了哟!这种方法的稳定性那可是杠杠的,只要我们认真计算,就很少会出错呢。
它适用于各种情况,尤其是那些能轻松找到三个点的题目,优势明显呀。
就好比说,我们要建一座房子,这一般式就是那坚固的地基,能让我们的函数稳稳地立起来。
再讲讲顶点式。
顶点式是 y=a(x-h)²+k,要是我们知道了顶点坐标和另外一个点,那就用这个方法最合适啦。
先把顶点坐标代进去确定 h 和 k,然后再把另一个点代进去求出 a 的值。
哇塞,是不是感觉很神奇呀!这个过程就像搭积木一样,一块一块稳稳地堆起来。
它的安全性很高哦,只要我们抓住了顶点这个关键,就不容易出错啦。
它常常在那些强调顶点重要性的题目中大展身手,就像一个武林高手,在关键时刻使出绝招。
还有交点式呢。
交点式是 y=a(x-x₁)(x-x₂),当我们知道函数与 x 轴的交点坐标时,就选它啦。
把交点坐标代进去求出 a 的值就行啦。
这就像是找到了宝藏的钥匙,一下子就打开了函数的大门。
它的过程也很稳定呀,只要我们确定了交点,就像有了方向标。
在处理与 x 轴交点相关的问题时,那简直就是如鱼得水。
来看看实际案例吧。
比如有个二次函数图像经过点(1,2)、(3,4)、(5,6),那我们就可以用一般式来求解呀,把这三个点代进去,认真计算,就能求出解析式啦。
再比如知道顶点坐标是(2,3)和另一个点(4,5),那用顶点式就能快速搞定。
所以呀,这三种方法各有各的好,我们要根据具体情况灵活选择,那就能轻松求出二次函数解析式啦!它们就像我们的得力助手,帮助我们在数学的海洋中畅游无阻!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
暑假作业第六课时二次函数及解析式的确定
A 热身训练(20分钟)
1.已知函数①y=5x﹣4,②t=x2﹣6x,③y=2x3﹣8x2+3,④y=x2﹣1,⑤y=+2,其
5.如图,已知抛物线l1:y=(x﹣2)2﹣2与x轴分别交于O、A两点,将抛物线l1向上平移得到l2,过点A作AB⊥x轴交抛物线l2于点B,如果由抛物线l1、l2、直线AB及y
轴所围成的阴影部分的面积为16,则抛物线l2的函数表达式为()
A.y=(x﹣2)2+4 B.y=(x﹣2)2+3
C.y=(x﹣2)2+2 D.y=(x﹣2)2+1
6.如果抛物线y=(k+1)x2+x﹣k2+2与y轴的交点为(0,1),那么k的值是.7.如果二次函数y=(m﹣2)x2+3x+m2﹣4的图象经过原点,那么m=.
8.已知二次函数y=﹣x2+bx+c 的图象过点(﹣3,4)、(﹣1,0).
(1)求该二次函数的关系式;
(2)当x为何值时y的值为3.
9、如图,在正方形ABCD中,AB=4,E是BC上一点,F是CD上一点,且AE=AF,设
S△AEF=y,EC=x.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)当△AEF是正三角形时,求△AEF的面积.
10.已知:二次函数y=ax2+bx+c(a≠0)的图象经过点(3,5)、(2,8)、(0,8).
(1)求这个二次函数的解析式;
(2)已知抛物线y1=a1x2+b1x+c1(a1≠0),y2=a2x2+b2x+c2(a2≠0),且满足
,则我们称抛物线y1与y2互为“友好抛物线”,请写出当
时第(1)小题中的抛物线的友好抛物线,并求出这友好抛物线的顶点坐标.
B 例题解析
1.求下列二次函数解析式:
(1)已知一个二次函数的图象经过A(4,3),B(1,0),C(﹣1,8)三点,求这个二次函数解析式.
(2)已知二次函数的图象经过点(0,﹣8)与(3,﹣5)且其对称轴是直线x=1,求此二次函数的解析式
(3)已知二次函数图象的顶点坐标为(1,﹣1),且经过原点(0,0),求该函数的解析式.
(4)已知二次函数c bx ax y ++=2
当x=1时有最值为16,且它在x 轴上截得的线段长为8,求c b a ,,的值。
2.(2011•2
3.如图,在△AOB 中,点A (﹣1,0),点B 在y 轴正半轴上,且OB=2OA .
(1)求点B 的坐标;
(2)将△AOB 绕原点O 顺时针旋转90°,点B 落在x 轴正半轴的点B ′处,抛物线y=ax 2+bx+2
经过点A 、B ′两点,求此抛物线的解析式及对称轴.
4.如图,抛物线y=﹣x 2
+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,且OA=2,OC=3.
(1)求抛物线的解析式.
(2)若点D (2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.
C 课后作业(40分钟)
1.将二次函数y=x 2﹣2x ﹣3化成y=(x ﹣h )2+k 形式,则h+k 结果为( )
2.已知抛物线y=x 2﹣3x+m 经过点(﹣1,2),那么抛物线的解析式是 . 3.已知抛物线y=ax 2﹣3x+a 2﹣1经过坐标原点,且开口向下,则实数a 的值为 .
4.若y=(m+1)562--m m x 是二次函数,则m 的值为 7 .
5.已知二次函数的图象经过原点及点(﹣2,﹣2),且图象与x 轴的另一个交点到原点的距离为4,那么该二次函数的解析式为 .
6.已知二次函数y=﹣x 2
+bx+c 的图象过点(﹣3,4)、(﹣1,0).
(1)求该二次函数的关系式;
(2)当x 为何值时y 的值为3.
7.已知双曲线y=与抛物线y=ax 2+bx+c 交于A (2,3)、B (m ,2)、c (﹣3,n )三点.
(1)求m 、n 的值;
(2)求抛物线的解析式.
8.已知二次函数y=2x 2﹣4x+5,
(1)将二次函数的解析式化为y=a (x ﹣h )2+k 的形式;
(2)将二次函数的图象先向右平移2个单位长度,再向下平移1个单位长度后,所得二次函数图象的顶点为A ,请你直接写出点A 的坐标;
(3)若反比例函数y=
x
k 的图象过点A ,求反比例函数的解析式.
9.如图①,已知抛物线y=ax 2+bx+c 经过点A (0,3),B (3,0),C (4,3).
(1)求抛物线的函数表达式;
(2)求抛物线的顶点坐标和对称轴;
(3)把抛物线向上平移,使得顶点落在x 轴上,直接写出两条抛物线、对称轴和y 轴围成的图形的面积S (图②中阴影部分).
10.★★★(2013•重庆)如图,已知抛物线y=x 2
+bx+c 的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5).
(1)求直线BC 与抛物线的解析式;
(2)若点M 是抛物线在x 轴下方图象上的一动点,过点M 作MN ∥y 轴交直线BC 于点N ,求MN 的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.。