哈工大控制系统设计大作业——直线一级倒立摆控制器设计(DOC)
一级直线倒立摆系统模糊控制器设计---实验指导书精讲

一级直线倒立摆系统模糊控制器设计---实验指导书精讲第一篇:一级直线倒立摆系统模糊控制器设计---实验指导书精讲一级直线倒立摆系统模糊控制器设计实验指导书目录实验要求........................................................................................................................... ...................3 1.1 实验准备........................................................................................................................... ................3 1.2 评分规则........................................................................................................................... ................3 1.3 实验报告内容........................................................................................................................... ........3 1.4 安全注意事项........................................................................................................................... ........3 2 倒立摆实验平台介绍..........................................................................................................................4 2.1 硬件组成........................................................................................................................... ................4 2.2 软件结构........................................................................................................................... ................4 3 倒立摆数学建模(预习内容)............................................................................................................6 4 模糊控制实验........................................................................................................................... ............8 4.1 模糊控制器设计(预习内容).......................................................................................................8 4.2 模糊控制器仿真........................................................................................................................... ...12 4.3 模糊控制器实时控制实验..............................................................................................................12 5 附录:控制理论中常用的MATLAB 函数.......................................................................................13 6 参考文献........................................................................................................................... .................14 实验要求1.1 实验准备实验准备是顺利完成实验内容的必要条件。
电气系统综合设计实验报告--直线一级倒立摆控制系统设计

电气控制系统设计——直线一级倒立摆控制系统设计学院轮机工程学院班级电气1111 姓名李杰学号 2011125036 姓名韩学建学号 2011125035 成绩指导老师肖龙海2014 年 12 月 25 日小组成员与分工:韩学建主要任务:二阶系统建模与性能分析,二阶控制器的设计,二阶系统的数字仿真与调试,二阶系统的实物仿真与调试。
二阶状态观测器的数字仿真与调试,二阶状态观测器的实物仿真与调试。
李杰主要任务:四阶系统建模与性能分析,四阶控制器的设计,四阶系统的数字仿真与调试,四阶系统的实物仿真与调试。
四阶状态观测器的数字仿真与调试,四阶状态观测器的实物仿真与调试。
前言倒立摆系统是非线性、强耦合、多变量和自然不稳定的系统,倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
本报告通过设计二阶、四阶两种倒立摆控制器来加深对实际系统进行建模方法的了解和掌握随动控制系统设计的一般步骤及方法。
熟悉倒立摆系统的组成及基本结构并利用MATLAB对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,研究调节器参数对系统动态性能的影响,非常直观的了解控制器的控制作用。
目录第一章设计的目的、任务及要求1.1 倒立摆系统的基本结构 (4)1.2 设计的目的 (4)1.3 设计的基本任务 (4)1.4 设计的要求 (4)1.5 设计的步骤 (5)第二章一级倒立摆建模及性能分析2.1 微分方程的推导 (5)2.2 系统的稳定性和能控能观性分析 (11)2.3 二阶的能观性、能控性分析 (13)2.4 四阶的能观性、能控性分析 (18)第三章倒立摆系统二阶控制器、状态观测器的设计与调试3.1 设计的要求 (22)3.2 极点配置 (22)3.3 控制器仿真设计与调试 (23)3.4 状态观测器仿真设计与调试 (28)第四章倒立摆系统四阶控制器、状态观测器的设计与调试4.1 设计的要求 (26)4.2 极点配置 (26)4.3 控制器仿真设计与调试 (27)4.4 状态观测器仿真设计与调试 (28)心得体会 (31)参考文献 (31)第一章设计的目的、任务及要求1.1 倒立摆系统的基本结构与工作原理图1.1 倒立摆系统硬件框图图1.2 倒立摆系统工作原理框图倒立摆系统通过计算机、I/O卡、伺服系统、倒立摆本体和光电码盘反馈测量元件组成一个闭环系统。
大学课程设计-直线一级倒立摆控制系统设计

摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。
本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。
本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。
关键词:一级倒立摆,PID,MATLAB仿真目录第1章MATLAB仿真软件的应用 (9)1.1 MA TLAB的基本介绍 (9)1.2 MA TLAB的仿真 (9)1.3 控制系统的动态仿真 (10)1.4 小结 (12)第2章直线一级倒立摆系统及其数学模型 (13)2.1 系统组成 (13)2.1.1 倒立摆的组成 (14)2.1.2 电控箱 (14)2.1.3 其它部件图 (14)2.1.4 倒立摆特性 (15)2.2 模型的建立 (15)2.2.1 微分方程的推导 (16)2.2.2 传递函数 (17)2.2.3 状态空间结构方程 (18)2.2.4 实际系统模型 (20)2.2.5 采用MA TLAB语句形式进行仿真 (21)第3章直线一级倒立摆的PID控制器设计与调节 (34)3.1 PID控制器的设计 (34)3.2 PID控制器设计MA TLAB仿真 (36)结论 (41)致谢 (42)参考文献 (43)第1章 MATLAB仿真软件的应用1.1 MATLAB的基本介绍MTALAB系统由五个主要部分组成,下面分别加以介绍。
推荐-直线一级倒立摆控制器设计课程设计说明书 精品

H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:控制系统设计课程设计设计题目:直线一级倒立摆控制器设计院系:班级:设计者:学号:指导教师:设计时间:哈尔滨工业大学教务处哈尔滨工业大学课程设计任务书一、直线一级倒立摆的数学模型1.1 实验设备简介一级倒立摆系统的结构示意图如图1-1所示。
图1-1 一阶倒立摆结构示意图系统组成框图如图1-2所示。
图1-2 一级倒立摆系统组成框图系统是由计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分组成的闭环系统。
光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,摆杆的角度、角速度信号由光电码盘2反馈给运动控制卡。
计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带,带动小车运动,保持摆杆平衡。
1.2 直线一级倒立摆数学模型的推导系统建模可以分为两种:机理建模和实验建模。
实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。
这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。
机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。
下面我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。
在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统. 如图1-3所示。
一级倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。
设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。
、设计要求倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。
二、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。
计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。
四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:工业控制计算机电动机驱动器一阶倒立摆一阶倒立摆控制系统动态结构图F面的工作是根据结构框图,分析和解决各个环节的传递函数!1. 一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M小车质量m为摆杆质量J :为摆杆惯量F:加在小车上的力x :小车位置摆杆与垂直向上方向的夹角l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知:(1) 摆杆绕其重心的转动方程为J鎳F y lsin 二- F x l cos: (1)(2) 摆杆重心的运动方程为F x d2(x l sin r)彳『=mg-m d2 d2t(3) 小车水平方向上的运动为-1-L+10-0一4即 G 1(s)=' ; G 2(s)='-一阶倒立摆环节问题解决!2. 电动机驱动器选用日本松下电工MSMA02型小惯量交流伺服电动机,其有关参数如下:F — F x 二 M d 2x联列上述4个方程,可以得出一阶倒立精确气模型:J ml 2F ml J ml 2sin u 2-m 2l 2gsin r COST2 2 2 2J ml j[ M m :-m l cos )mlcos v.F m 2l 2sin vcos m 2-<; M m mlg sin vm 2l 2cos 20—(M + m )(J +ml 2)式中J 为摆杆的转动惯量:J 』3若只考虑B 在其工作点附近B 0=0附近(-10 —”:10 )的细微变化,则可 以近似认为: 石2“* sin^比日 cos 日“若取小车质量M=2kg,摆杆质量 m=1kg,摆杆长度2 l =1m,重力加速度取g=10m/s 2,则可以得阶倒立摆简化模型:x =0.44F -3.33^ v - -0.4 F 12^拉氏变换=^>日(s)』F(s) x(s) ?(s)-0.42s-122 -1.1s 102 s2(J ml 2)F -m 2l 2g J J(M m) Mml (M m)mlg mlF J(M m) Mml电磁时间常数:Tl=0.001s电机时间常数:TM=0.003s经传动机构变速后输出的拖动力为: F=0~16N 与其配套的驱动器为:MSDA021A1A S 制电压:UDA=0± 10V 。
直线一级倒立摆文档

0 0 1 0
0 I ml 2 ( M m) I mMl 2 B 0 ml 2 ( M m ) I mMl C I 44
带入参数得线性化后的系统参数矩阵为
1 0 0 0 0.0883167 0.629317 A 0 0 0 0 0.235655 27.8285
图. 4 Simulink 框图
图. 5 小车位置图
图. 6 摆杆与垂直方向角度图
Y轴
φ 摆杆 l F
X轴 小 X
图2
车
导轨
图 3 是将小车与摆杆分开受力分析的示意图。其中(a)图是小车的受力分析示意图, (b)图是摆杆的受力分析示意图。其中 N 和 P 分别为小车与摆杆相互作用的水平和垂直方 向的分量。执行装置的正方向由图. 2 所示的矢量方向确定。
P N F 小 (a)
图. 3 分析小车水平方向所受的合力,可以得到以下方程:
(3) (4)
cos ml 2 sin F bx ml (M m) x
分析摆杆垂直方向上的合力,可以得到下面的方程:
P mg m
即:
d2 (l cos 2 cos P mg ml
根据式(9)可得到如下的状态空间方程:
AX Bu X Y CX
其中
X x1
x2
x3
x4
T
1 0 ( I ml 2 )b 0 ( M m) I mMl 2 A 0 0 mlb 0 ( M m) I mMl 2
0 m 2l 2 g ( M m) I mMl 2 0 ( M m)mgl ( M m) I mMl 2
一阶倒立摆控制系统
一阶直线倒立摆系统姓名:班级:学号:目录摘要 (3)第一部分单阶倒立摆系统建模 (4)(一) 对象模型 (4)(二)电动机、驱动器及机械传动装置的模型 (6)第二部分单阶倒立摆系统分析 (7)第三部分单阶倒立摆系统控制 (11)(一)内环控制器的设计 (11)(二)外环控制器的设计 (14)第四部分单阶倒立摆系统仿真结果 (16)系统的simulink仿真 (16)摘要:该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制.控制理论中把此问题归结为“一阶直线倒立摆控制问题”。
另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。
实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。
实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。
实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。
仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性.第一部分单阶倒立摆系统建模(一) 对象模型由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。
如图1。
1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心.图1。
1 一阶倒立摆的物理模型根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则1)摆杆绕其重心的转动方程为sin cos y x l F J F l θθθ=- (1—1)2)摆杆重心的水平运动可描述为22(sin )x d F m x l dtθ=+ (1—2) 3)摆杆重心在垂直方向上的运动可描述为22(cos )y d F mg m l dtθ-= (1—3) 4)小车水平方向运动可描述为202x d x F F m dt-= (1-4)由式(1—2)和式(1-4)得20()(cos sin )m m x ml F θθθθ++⋅-⋅= (1-5)由式(1—1)、式(1-2)和式(1-3)得2()cos lgsin J ml ml x m θθθ++⋅= (1-6)整理式(1—5)和式(1—6),得2222222220222022220()()sin sin cos ()()cos cos sin cos ()lg sin cos ()()J ml F lm J ml m l g x J ml m m m l ml F m l m m m m l m m J ml θθθθθθθθθθθθ⎧+++⋅-=⎪++-⎪⎨⋅+⋅-+⎪=⎪-++⎩(1—7) 因为摆杆是匀质细杆,所以可求其对于质心的转动惯量。
直线型一级倒立摆系统的控制器设计
直线型一级倒立摆系统的控制器设计引言1. 设计目的(1)熟悉直线型一级倒立摆系统(2)掌握极点配置算法(3)掌握MATLAB/simulink动态仿真技术2. 设计要求基于极点配置算法完成对于直线型一级倒立摆系统的控制器设计3. 系统说明倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
4. 设计任务(1)建立直线型一级倒立摆系统的状态空间表达式。
(2)对该系统的稳定性、能观性、能控性进行分析。
(3)应用极点配置法对该直线型一级倒立摆系统进行控制器设计。
(4)使用MATLAB/simulink软件验证设计结果目录设计目的........................................................................................... 2-4设计要求:. (4)系统说明:....................................................................................... 4-5设计任务........................................................................................... 5-8运行结果......................................................................................... 8-11收获与体会.. (10)参考文献 (12)1. 设计目的(1)熟悉直线型一级倒立摆系统倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
直线一级倒立摆控制方法设计
直线一级倒立摆控制方法设计倒立摆的数学模型设计倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,许多抽象的控制概念都可以通过倒立摆直观地表现出来。
本设计是以一阶倒立摆为被控对象来进行设计的。
状态空间法:状态空间法可以进行单输入多输出系统设计,因此在这个实验中,我们将尝试同时对摆杆角度和小车位置进行控制。
根据设计要求,给小车加一个阶跃输入信号。
此次用Matlab 求出系统的状态空间方程各矩阵,并仿真系统的开环阶跃响应。
在这里给出一个state.m 文件,执行这个文件,Matlab 将会给出系统状态空间方程的A,B,C 和D 矩阵,并绘出在给定输入为一个0.2m 的阶跃信号时系统的响应曲线。
直线一级倒立摆系统数学建模 在忽略了空气阻力、各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统。
如图所示:系统状态方程为:XAX Bu Y CX Du=+=+假设系统内部各相关参数为:M 小车质量 0.5kg m 摆杆质量 0.2kgb 小车摩擦系数 0.1N/m/sec l 摆杆转动轴心到杆质心的长度 0.3mI 摆杆惯量 0.006kg*m*m T 采样时间 0.005s x 小车位置φ 摆杆与垂直向上方向的夹角θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 应用牛顿-欧拉方法,可得到系统状态空间方程为:222222201()0()()0()0()()x I ml b m gl x I M m Mml I M m Mml lb mgl M m I M m Mml I M m Mml φφ⎡⎤⎢⎥⎡⎤-+⎢⎥⎢⎥⎢⎥++++⎢⎥=⎢⎢⎥⎢⎢⎥⎢-+⎢⎥⎣⎦⎢++++⎣⎦ 0 0 0 0 0 0m 0 2220()0()x I ml x I M m Mml u ml I M m Mml φφ⎡⎤⎢⎥⎡⎤+⎢⎥⎢⎥⎢⎥++⎢⎥+⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎣⎦⎥⎢⎥++⎣⎦1000000100x x x Y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦ 以上就是一阶倒车摆系统的状态空间表达式。
一级直线倒立摆系统模糊控制器设计---实验指导书
WOIRD格式一级直线倒立摆系统模糊控制器设计实验指导书目录1实验要求.................................................................................................. .. (3)1.1实验准备.................................................................................................. .. (3)1.2评分规则.................................................................................................. .. (3)1.3实验报告内容.................................................................................................. (3)1.4安全注意事项.................................................................................................. (3)2倒立摆实验平台介绍.................................................................................................. (4)2.1硬件组成.................................................................................................. .. (4)2.2软件结构.................................................................................................. .. (4)3倒立摆数学建模(预习内容)................................................................................................ (6)4模糊控制实验.................................................................................................. . (8)4.1模糊控制器设计(预习内容)................................................................................................ . (8)4.2模糊控制器仿真.................................................................................................. . (12)4.3模糊控制器实时控制实验.................................................................................................. (12)5附录:控制理论中常用的MATLAB函数 (13)6参考文献.................................................................................................. (14)21实验要求1.1实验准备实验准备是顺利完成实验内容的必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:控制系统设计课程设计设计题目:直线一级倒立摆控制器设计院系:航天学院控制科学与工程系班级:设计者:学号:指导教师:罗晶设计时间:2012.8.27——2012.9.9哈尔滨工业大学教务处哈尔滨工业大学课程设计任务书*注:此任务书由课程设计指导教师填写。
一、 直线一级倒立摆数学模型的推导及建立系统建模可以分为两种:机理建模和实验建模。
实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。
这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。
机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。
下面我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。
1.1、微分方程的推导在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统. 下图是系统中小车和摆杆的受力分析图。
其中,N 和P 为小车与摆杆水平和垂直方向的分量。
b px图1(a )小车隔离受力图 (b )摆杆隔离受力图 本系统相关参数定义如下:M : 小车质量 m :摆杆质量b :小车摩擦系数 l :摆杆转动轴心到杆质心的长度 I :摆杆惯量 F :加在小车上的力x :小车位置 φ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
分析小车水平方向所受的合力,可以得到以下方程:Mx F bx N =--由摆杆水平方向的受力进行分析可以得到下面等式:()22sin d N m x l dtθ=+即 2cos sin Nmx ml ml θθθθ=+-把这个等式代入上式中,就得到系统的第一个运动方程:()2cos sin M m x bx ml ml F θθθθ+++-=为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:()22cos d P mg m l dtθ-=-即2sin cos P mg ml ml θθθθ-=+力矩平衡方程如下: sin cos Pl Nl I θθθ--=注意:此方程中力矩的方向,由于,cos cos ,sin sin θπφφθφθ=+=-=-,故等式前面有负号。
合并这两个方程,约去P 和N ,得到第二个运动方程:()22sin cos I ml mgl mlxθθθ++=-1、微分方程模型设(是摆杆与垂直向上方向之间的夹角),假设与1(单位是弧度)相比很小,即,则可以进行近似处理:2cos 1,sin ,()0d dtθθθφ=-=-=。
用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:()()2M m x bx ml u I ml mgl mlx φφφ⎧++-=⎪⎨+-=⎪⎩2、传递函数对以上微分方程组进行拉普拉斯变换,得到()()22222()()()()()()()M m X s s bX s ml s s U s I ml s s mgl s mlX s s⎧++-Φ=⎪⎨+Φ-Φ=⎪⎩ 注意:推导传递函数时假设初始条件为0。
由于输出为角度为,求解方程组上述方程组的第一个方程,可以得到()22()()I ml g X s s ml s ⎡⎤+⎢⎥=-Φ⎢⎥⎣⎦或者()222()()s mls X s I ml s mglΦ=+- (1-12)如果令x ν=,则有()22()()s mlV s I ml s mglΦ=+- (1-13)把上式代入10式,则有:()()()22222()()()()I ml I ml g g M m s s b s s ml s s U s ml s ml s ⎡⎤⎡⎤++⎢⎥⎢⎥+-Φ++Φ-Φ=⎢⎥⎢⎥⎣⎦⎣⎦(1-14)整理:()()212432()()()ml s s qG s U s b I mlM m mgl bmgls s ss qqq Φ==+++--(1-15)其中()()()22q M m I ml ml ⎡⎤=++-⎣⎦3、状态空间数学模型X AX BuY CX Du=+=+,可得状态方程()()()()()()()()()2222222222x x I ml b I ml m gl x x u I M m Mml I M m Mml I M m Mml mgl M m mlb ml x u I M m Mml I M m Mml I M m Mml φφφφφ=⎧⎪-++⎪=++⎪++++++⎪⎨=⎪⎪+-⎪=++⎪++++++⎩()()()()()()()()()2222222222100000000100010000010x x I ml b I ml m gl x x I M m Mml I M m Mml I M m Mml u mlb mgl M m ml I M m Mml I M m Mml I M m Mmlx y φφφφφ-++++++++=+-+++++++==⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎣⎦⎣⎦00x x uφφ+⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎡⎤⎪⎢⎥⎡⎤⎪⎢⎥⎥⎢⎥⎪⎢⎥⎣⎦⎪⎢⎥⎩⎣⎦二、 直线一级倒立摆PID 控制器设计2.1、PID 控制器各个校正环节对系统的影响简单来说,PID 控制器各个校正环节的作用如下:(1) 比例环节:成比例的反应控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用,以减少偏差。
(2)积分环节:主要用于消除稳态误差,提高系统的型别。
积分作用的强弱取决于积分时间常数T1,T1越大,积分作用越弱,反之则越强。
(3) 微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。
2.2、PID 控制器的设计及MATLAB 仿真首先,对于倒立摆系统输出量为摆杆的角度,它的平衡位置为垂直向上。
系构框图如下:图3 直线一级倒立摆PID 控制系统框 图中KD(s)是控制器传递函数,G(s)是被控对象传递函数。
考虑到输入r(s)=0,结构图可以很容易的变换成图4 直线一级倒立摆PID 控制简化系统框图该系统的输出为)())(())(()()())(())((1)()()(1)()(s F num numPID den denPID denPID num s F den denPID num numPID den nums F s G s KD s G s y +=+=+=其中,num ——被控对象传递函数的分子项den ——被控对象传递函数的分母项numPID ——PID 控制器传递函数的分子项 denPID ——PID 控制器传递函数的分母项 被控对象的传递函数是()()212432()()()ml s s numq G s U s denb I ml M m mgl bmgl s ss sqqqΦ===+++-- 其中:()()()22q M m I ml ml ⎡⎤=++-⎣⎦PID 控制器的传递函数为denPID numPIDs K s K s K s K K s K s KD I P D I P D =++=++=2)(需仔细调节PID 控制器的参数,以得到满意的控制效果。
前面的讨论只考虑了摆杆角度,那么,在我们施加控制的过程中,小车位置如何变化呢? 考虑小车位置,得到改进的系统框图如下:图5 直线一级倒立摆PID 控制改进系统框图其中,是摆杆传递函数,是小车传递函数。
由于输入信号r(s)=0 ,所以可以把结构图转换成:图5 直线一级倒立摆PID 控制简化后改进系统框图其中,反馈环代表我们前面设计的控制器。
小车位置输出为:)())()(())()(())()(()())(())((1)()()(1)()(212112112212s F den num numPID den den denPID den denPID num s F den denPID num numPID den num s F s G s KD s G s X +=+=+=其中,num 1 ,den 1,num 2, den 2 分别代表被控对象1和被控对象2传递函数的分子和分母。
numPID 和denPID 代表PID 控制器传递函数的分子和分母。
下面我们来求G 2(s),根据前面的推导:()22()()I ml g X s s ml s ⎡⎤+⎢⎥=-Φ⎢⎥⎣⎦可以推出小车位置的传递函数为:()()2222432()()()I ml mgls X s q q G s U s b I ml M m mgl bmgl s s s sqqq+-==+++--其中:()()()22q M m I ml ml ⎡⎤=++-⎣⎦可以看出,den 1=den 2=den ,小车的传递函数可以简化成:)())(())(())(()(12s F num numPID k den denPID denPID num s X +=2.3、PID 控制器参数的调节按题目要求,施加0.1N 的脉冲信号,观察指标。
脉冲信号仿真源程序为:M = 0.5; m = 0.2; b = 0.1; I = 0.006; g = 9.8; l = 0.3; num1 = [m*l];den1 = [(I+m*l^2) 0 -m*g*l]; Kp = 1; Ki = 0; Kd = 0;numPID = [Kd Kp Ki]; denPID = [1 0];num = conv(num1,denPID);den = polyadd(conv(denPID,den1),conv(numPID,num1 ));[r,p,k] = residue(num,den);s = pt=0:0.005:5;impulse(0.1*num,den,t)grid当系统加入PID控制器后的方框图为:直线一级倒立摆PID控制MATLAB仿真模型由所查阅资料,调节Kp,会影响ess和振荡次数以及ts;Kp太大不稳定,Kp可以选择负数。