2019年中考数学练习题代数综合题

合集下载

最新2019年中考数学复习 第一章 数与式 第二节 代数式及整式(含因式分解)习题

最新2019年中考数学复习 第一章 数与式 第二节 代数式及整式(含因式分解)习题

第二节 代数式及整式(含因式分解)姓名:________ 班级:________ 用时:______分钟1.(2018·攀枝花中考)下列运算结果是a 5的是( )A .a 10÷a 2B .(a 2)3C .(-a)3D .a 3·a 22.(2019·易错题)计算(-a)3÷a 结果正确的是( )A .a 2B .-a 2C .-a 3D .-a 43.(2018·贵阳中考)当x =-1时,代数式3x +1的值是( )A .-1B .-2C .4D .-44.(2018·邵阳中考)将多项式x -x 3因式分解正确的是( )A .x(x 2-1)B .x(1-x 2)C .x(x +1)(x -1)D .x(1+x)(1-x)5.(2018·河北中考)将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10-0.5)C .9.52=102-2×10×0.5+0.52D .9.52=92+9×0.5+0.526.(2019·易错题)若x 2-2mx +1是完全平方式,则m 的值为( )A .2B .1C .±1D .±127.(2017·朝阳中考)如果3x 2m y n +1与-12x 2y m +3是同类项,则m ,n 的值为( )A .m =-1,n =3B .m =1,n =3C .m =-1,n =-3D .m =1,n =-38.(2018·南充中考)下列计算正确的是( )A .-a 4b÷a 2b =-a 2bB .(a -b)2=a 2-b 2C .a 2·a 3=a 6D .-3a 2+2a 2=-a 29.(2019·原创题)某商店在2018年“世界杯”期间购进一批足球,每个足球的成本为50元,按成本增加a%定价,3个月后因销量下滑,出现库存积压,商家决定按定价的b%打折出售,列代数式表示打折后的价格为( )A .50(1+a%)(1+b%)B .50(1+a%)b%C .50(1+b%)a%D .50·a%·b%10.(2018·株洲中考)单项式5mn 2的次数是______.11.(2018·葫芦岛中考)分解因式:2a 3-8a =________________________.12.(2018·金华中考)化简(x -1)(x +1)的结果是____________.13.(2018·泰州中考)计算:12x·(-2x 2)3=____________.14.(2018·达州中考)已知a m =3,a n =2,则a 2m -n 的值为________.15.(2018·江西中考)计算:(a +1)(a -1)-(a -2)2.16.(2018·重庆中考B 卷)计算:(x +2y)2-(x +y)(x -y).17.(2017·盘锦中考)下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x -1=(x -1)2B .(a +b)(a -b)=a 2-b 2C .x 2+4x +4=(x +2)2D .ax 2-a =a(x 2-1)18.(2018·宁波中考)在矩形ABCD 内,将两张边长分别为a 和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为( )A .2aB .2bC .2a -2bD .-2b19.(2018·攀枝花中考)分解因式:x 3y -2x 2y +xy =________________________.20.(2019·改编题)分解因式:(m +1)(m -9)+8m =__________________________21.(2018·宁波中考)先化简,再求值:(x -1)2+x(3-x),其中x =-12.22.(2018·襄阳中考)先化简,再求值:(x+y)(x-y)+y(x+2y)-(x-y)2,其中x=2+3,y=2-3.23.(2019·创新题)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2.请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:24.(2018·湘潭中考)阅读材料:若a b =N ,则b =log a N ,称b 为以a 为底N 的对数.例如23=8,则lo g 28=log 223=3.根据材料填空:log 39=________.参考答案【基础训练】1.D 2.B 3.B 4.D 5.C 6.C 7.B 8.D 9.B 10.3 11.2a(a +2)(a -2) 12.x 2-1 13.-4x 7 14.9215.解:原式=a 2-1-(a 2-4a +4)=a 2-1-a 2+4a -4=4a -5.16.解:原式=x 2+4xy +4y 2-x 2+y 2=4xy +5y 2.【拔高训练】17.C 18.B19.xy(x -1)2 20.(m +3)(m -3)21.解:原式=x 2-2x +1+3x -x 2=x +1. 当x =-12时,原式=-12+1=12.22.解:原式=x 2-y 2+xy +2y 2-x 2+2xy -y 2 =3xy.当x =2+3,y =2-3时,原式=3(2+3)(2-3)=3.23.解:方案二:a 2+ab +(a +b)b =a 2+ab +ab +b 2 =a 2+2ab +b 2=(a +b)2.方案三:a 2+[a +(a +b )]·b 2+[a +(a +b )]·b 2=a 2+ab +12b 2+ab +12b 2=a 2+2ab +b 2=(a +b)2.【培优训练】24.2。

2019-2020年中考数学第二轮专题复习代数综合题.docx

2019-2020年中考数学第二轮专题复习代数综合题.docx

2019-2020 年中考数学第二轮专题复习代数综合题Ⅰ、 合 精 :代数 合 是指以代数知 主的或以代数 形技巧 主的一 合 .主要包括方程、函数、不等式等内容,用到的数学思想方法有化 思想、分 思想、数形 合思想以 及代人法、待定系数法、配方法等.解代数 合 要注意 整理教材中的基 知 、基 本技能、基本方法,要注意各知 点之 的 系和数学思想方法、解 技巧的灵活运用, 要抓住 意,化整 零, 深人,各个 破.注意知 的横向 系,从而达到解决 的目的.Ⅱ、典型例 剖析【例 1】( 2005, 水, 8 分)已知关于 x 的一元二次方程 x 2- (k +1) x - 6=0 的一个根是2,求方程的另一根和 k 的 .解: 方程的另一根 x 1,由 达定理:2 x 1=- 6,∴ x 1=- 3. 由 达定理:- 3+2= k + 1,∴ k=- 2.22的一 个根 0,求 k 的 . 解:把 x=0 代入 个方程,得 k 2- 3k -4=0,解得 k 1= l ,k 2=- 4.因 k+4≠ 0.所以 k≠- 4,所以 k = l 。

点 :既然我 已 知道方程的一个根了,那么我 就可以将它代入原方程,就可以将解关于 x 的方程 化 解关于 k 的方程.从而求出 b 的解.但 注意需 足 k+4的系数不能0,即 k ≠- 4。

2【例 3】( 2005,自 , 5 分)已 方程 2x +3x - l = 0.求作一个二次方程,使它的两根分 是已知方程两根的倒数.解: 2 x 2 +3x - l = 0 的两根 x 1、 x 2x 1x 23 1 1 2 新方程的两根得x 1 ,1x 2x 1x 22所以 11 x 1 x2 =32x 1x 2= x 1 x 2 所以新方程 y - 3y - 2=0·点 :熟 一元二次方程根与系数的关系是非常必要的【例 4】( 2005,内江, 8 分)某 品每件成本 10 元, 段每件 品的日 售价x (元)与 品的日 售量y (件)之 的关系如下表:x (元)15 20 25 30 ⋯ y (件)25201510⋯⑴在草稿 上描点, 察点的 布,建立 y 与 x 的恰当函数模型。

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)【一】单项选择题1.以下运算:①a2•a3=a6,②〔a3〕2=a6,③a5÷a5=a,④〔ab〕3 =a3b3,其中结果正确的个数为〔〕A. 1B. 2C. 3D. 4【来源】山东省滨州市2019年中考数学试题2.计算的结果是〔〕A. B. C. D.【来源】江苏省南京市2019年中考数学试卷【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:应选:B.点睛:此题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法那么和性质是解题的关键.3.以下计算结果等于的是〔〕A. B. C. D.【来源】2019年甘肃省武威市〔凉州区〕中考数学试题4.以下运算正确的选项是〔〕A. B.C. D.【来源】湖南省娄底市2019年中考数学试题【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法那么逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,应选D.【点睛】此题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法那么是解题的关键.5.以下运算正确的选项是〔〕A. B. C. D.【来源】山东省德州市2019年中考数学试题6.我国南宋数学家杨辉所著的«详解九章算术»一书中,用以下图的三角形解释二项式的展开式的各项系数,此三角形称为〝杨辉三角〞.A. 84B. 56C. 35D. 28【来源】山东省德州市2019年中考数学试题7.以下运算正确的选项是〔〕A. B. C. D.【来源】安徽省2019年中考数学试题【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法那么逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,应选D.【点睛】此题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法那么是解题的关键.8.据省××局发布,2019年我省有效发明专利数比2019年增长22.1%假定2019年的平均增长率保持不变,2019年和2019年我省有效发明专利分别为a万件和b万件,那么〔〕A. B.C. D.【来源】安徽省2019年中考数学试题【解析】【分析】根据题意可知2019年我省有效发明专利数为〔1+22. 1%〕a万件,2019年我省有效发明专利数为〔1+22.1%〕•〔1+22.1%〕a,由此即可得.【详解】由题意得:2019年我省有效发明专利数为〔1+22.1%〕a万件,2019年我省有效发明专利数为〔1+22.1%〕•〔1+22.1%〕a万件,即b=〔1+22.1%〕2a万件,应选B.【点睛】此题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.以下运算正确的选项是〔〕A. B. C. D.【来源】山东省泰安市2019年中考数学试题10.按如下图的运算程序,能使输出的结果为的是〔〕A. B. C. D.【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕11.以下运算正确的选项是〔〕A. B. C. D.【来源】江苏省宿迁市2019年中考数学试卷12.以下运算正确的选项是〔〕A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. 〔x﹣1〕2=x2﹣1【来源】江苏省连云港市2019年中考数学试题13.以下运算正确的选项是〔〕A. B. C. D.【来源】江苏省盐城市2019年中考数学试题14.以下计算正确的选项是〔〕A. B.C. D.【来源】湖北省孝感市2019年中考数学试题详解:A、,正确;B、〔a+b〕2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、〔a3〕2=a6,故此选项错误;应选:A、点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法那么是解题关键.15.假设单项式am﹣1b2与的和仍是单项式,那么nm的值是〔〕A. 3B. 6C. 8D. 9【来源】山东省淄博市2019年中考数学试题【解析】分析:首先可判断单项式am﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式am﹣1b2与的和仍是单项式,∴单项式am﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴nm=23=8.应选:C、点睛:此题考查了合并同类项的知识,解答此题的关键是掌握同类项中的两个相同.16.以下运算正确的选项是( )A. B. C. D.【来源】广东省深圳市2019年中考数学试题17.以下运算结果正确的选项是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos3 0°=【来源】湖北省黄冈市2019年中考数学试题【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.应选D、点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.以下计算正确的选项是〔〕A. B.C. D.【来源】四川省成都市2019年中考数学试题19.以下计算正确的选项是( )A. B. C. D.【来源】山东省潍坊市2019年中考数学试题【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法那么,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法那么:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-〔b-a〕=2a-b,故C正确;D、〔-a〕3=-a3,故D错误.应选C、点睛:此题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法那么是解题的关键.20.计算〔﹣a〕3÷a结果正确的选项是〔〕A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2019年中考数学试题详解:〔-a〕3÷a=-a3÷a=-a3-1=-a2,应选B、点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法那么是解题关键.21.把三角形按如下图的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,那么第⑦个图案中三角形的个数为〔〕A. 12B. 14C. 16D. 18【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是〔〕A. ①B. ②C. ③D. ④【来源】2019年浙江省绍兴市中考数学试卷解析【二】填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,那么位于第45行、第8列的数是__________.【来源】山东省淄博市2019年中考数学试题∴第45行、第8列的数是2025﹣7=2019,点睛:此题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如下图的三角形,我们称之为〝杨辉三角〞,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2019年中考数学试题25.假设a-=,那么a2+值为_______________________.【来源】湖北省黄冈市2019年中考数学试题详解:∵a-=,∴〔a-〕2=6,∴a2-2+=6,∴a2+=8.点睛:此题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.,,,,,,…〔即当为大于1的奇数时,;当为大于1的偶数时,〕,按此规律,__________.【来源】四川省成都市2019年中考数学试题27.计算的结果等于__________.【来源】天津市2019年中考数学试题【解析】分析:依据单项式乘单项式的运算法那么进行计算即可.详解:原式=2x4+3=2x7.点睛:此题主要考查的是单项式乘单项式,掌握相关运算法那么是解题的关键.28.假设是关于的完全平方式,那么__________.【来源】贵州省安顺市2019年中考数学试题详解:∵x2+2〔m-3〕x+16是关于x的完全平方式,∴2〔m-3〕=±8,解得:m=-1或7,点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简〔x﹣1〕〔x+1〕的结果是_____.【来源】浙江省金华市2019年中考数学试题30.观察以下各式:请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2019年中考数学试题详解:由题意可得:=+1++1++ (1)=9+〔1﹣+﹣+﹣+…+﹣〕=9+=9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.【来源】湖南省娄底市2019年中考数学试题32.如图是一个运算程序的示意图,假设开始输入的值为625,那么第2019次输出的结果为__________.【来源】2019年甘肃省武威市〔凉州区〕中考数学试题【三】解答题33.先化简,再求值:a〔a+2b〕﹣〔a+1〕2+2a,其中.【来源】山东省淄博市2019年中考数学试题【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣〔a2+2a+1〕+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2〔+1〕〔-1〕﹣1=2﹣1=1.点睛:此题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法那么进行化简是解此题的关键.34.〔1〕计算:;〔2〕化简:(m+2)2 +4(2-m)【来源】浙江省温州市2019年中考数学试卷35.我们常用的数是十进制数,如,数要用10个数码〔又叫数字〕:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2019年中考数学试题【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:此题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.〔1〕计算:;〔2〕解不等式:【来源】江西省2019年中等学校招生考试数学试题37.计算或化简.〔1〕;〔2〕.【来源】江苏省扬州市2019年中考数学试题【解析】分析:〔1〕根据负整数幂、绝对值的运算法那么和特殊三角函数值即可化简求值.〔2〕利用完全平方公式和平方差公式即可.详解:〔1〕〔〕-1+|−2|+tan60°=2+〔2-〕+=2+2-+=4〔2〕〔2x+3〕2-〔2x+3〕〔2x-3〕=〔2x〕2+12x+9-[〔2x2〕-9]=〔2x〕2+12x+9-〔2x〕2+9=12x+18点睛:此题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,按照以上规律,解决以下问题:〔1〕写出第6个等式:;〔2〕写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2019年中考数学试题【解析】【分析】〔1〕根据观察到的规律写出第6个等式即可;〔2〕根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:〔1〕〔2〕【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,那么称n为〝极数〞.〔1〕请任意写出三个〝极数〞;并猜想任意一个〝极数〞是否是99的倍数,请说明理由;〔2〕如果一个正整数a是另一个正整数b的平方,那么称正整数a 是完全平方数,假设四位数m为〝极数〞,记D〔m〕=.求满足D〔m〕是完全平方数的所有m.【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如下图的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=〔a+b〕2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=〔a+b〕2请你根据方案【二】方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2019年中考数学试卷。

2019年中考数学专题整式与代数式(有答案)

2019年中考数学专题整式与代数式(有答案)

2019年中考数学专题整式与代数式(有答案)一、选择题(共13题;共26分)1. ( 2分) 若代数式2x2+3y+7的值为8,那么代数式4x2+6y-2的值是()A. 0B. 2C. 1D. 122. ( 2分) 下列运算正确的是()A.3 2-2=3B.3a2+2a3=5a5C.3+=3D.-0.25ab+0.25ab=03. ( 2分) 下列各组中的两个项,不属于同类项的是().A. 与B. 与n2mC. 与D. 1与4. ( 2分) 如图,是一组技照某种程度摆放成的图案,则图6中三角形的个数是()A. 18B. 19C. 20D. 215. ( 2分) 若单项式2x2m-3y与x3y3n-2是同类项,则符合条件的m,n的值为( )A. m=2,n=3B. m=3,n=1C. m=-3,n=1D. m=3,n=-26. ( 2分) 下列运算正确的是()A.B.C.D.7. ( 2分) 若m-n=,那么-3(n-m)的值是( )A. -B.C.D.8. ( 2分) 如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是()A. 2005B. 2006C. 2007D. 20089. ( 2分) 不论x取何值,x﹣x2﹣1的值都()A. 大于等于﹣B. 小于等于﹣C. 有最小值﹣D. 恒大于零10. ( 2分) 下列因式分解结果正确的是().A.B.C.D.11. ( 2分) 观察下列单项式的排列规律:3x,,照这样排列第10个单项式应是()A.39x10B.-39 x10C.-43 x1 0D.43 x1012. ( 2分) 下列代数式中,整式的个数是()A. 2B. 3C. 4D. 513. ( 2分) 某商店在甲批发市场以每包m元的价格进了20包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店().A. 盈利了B. 亏损了C. 不赢不亏D. 盈亏不能确定二、填空题(共7题;共9分)14. ( 1分) 若x=3﹣,则代数式x2﹣6x+9的值为________.15. ( 1分) 计算:20182-2017×2019=________.16. ( 3分) 计算:-x2·x3=________;=________;×22016=________.17. ( 1分) 已知2a﹣3b=7,则8+6b﹣4a=________.18. ( 1分) 若4x2+kx+25是一个完全平方式,则k的值是________.19. ( 1分) 把多项式x3﹣9x分解因式的结果是________.20. ( 1分) 已知a+b=ab,则(a﹣1)(b﹣1)=________三、计算题(共3题;共30分)21. ( 10分) 计算:(1)(3a﹣2)- 3(a﹣5)(2)(4a2b﹣5ab2)-(3a2b﹣4ab2)22. ( 15分) 把下列各式因式分解(1)(2)(3)23. ( 5分) 先化简,在求值: ,其中四、解答题(共7题;共54分)24. ( 5分) a与b互为相反数,c与d互为倒数,x的倒数是它本身,求的值.25. ( 5分) 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4、12、20都是这种“神秘数”.(1)28和2012这两个数是“神秘数”吗?试说明理由;(2)试说明神秘数能被4整除;(3)两个连续奇数的平方差是神秘数吗?试说明理由.26. ( 5分) 甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x−10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2−9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果。

2019年中考数学试题汇编 整式(word版有答案解析)

2019年中考数学试题汇编  整式(word版有答案解析)

整式一.选择题(共16小题)1.(2019•泰州)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为()A.﹣1B.1C.2D.3 2.(2019•重庆)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 3.(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.10﹣x B.10﹣y C.10﹣x+y D.10﹣x﹣y 4.(2019•邢台二模)若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.11 5.(2019•宿迁三模)若(2x+1)4=a0x4+a1x3+a2x2+a3x+a4,则a0+a2+a4的值为()A.82B.81C.42D.41 6.(2019•南安市一模)已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.0 7.(2019•霍邱县二模)2018年电影《我不是药神》反映了用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行了改革,看病贵将成为历史.据调查,某种原价为345元的药品进行了两次降价,第一次降价15%,第二次降价的百分率为x,则该药品两次降价后的价格变为多少元?()A.345(1﹣15%)(1﹣x)B.345(1﹣15%)(1﹣x%)C.D.8.(2019•重庆模拟)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.根据如图所示的计算程序,若输入的值x=﹣2,则输出的值为()A.﹣7B.﹣3C.﹣5D.5 9.(2019•平房区二模)甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定10.(2019春•南岸区校级月考)根据如图的程序运算:当输入x=50时,输出的结果是101;当输入x=20时,输出的结果是167.如果当输入x的值是正整数,输出的结果是127,那么满足条件的x的值最多有()A.3个B.4个C.5个D.6个11.(2019春•沙坪坝区校级月考)如图是一个计算程序,按这个计算程序的计算规律,若输入的数是9,则输出的数是()A12345B36111827A.50B.63C.83D.100 12.(2019春•兴化市期中)如图,两个正方形的面积分别为25,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.4B.9C.16D.25 13.(2019•柳州模拟)已知a2+2a=1,则代数式3a2+6a﹣1的值为()A.0B.1C.﹣1D.214.(2019春•南京期中)如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm 15.(2019•慈溪市模拟)把四张形状大小完全相同的小长方形卡片(如图①),分两种不同形式不重叠的放在一个底面长为m,宽为n的长方形盒子底部(如图②、图③),盒子底面未被卡片覆盖的部分用阴影表示,设图②中阴影部分图形的周长为l1,图③中两个阴影部分图形的周长和为l2,若,则m,n满足()A.m=n B.m=n C.m=n D.m=n 16.(2019•鄞州区模拟)如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=B.a=2b C.a=b D.a=3b二.填空题(共4小题)17.(2019•河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.18.(2019•海安县一模)已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为.19.(2019•临海市一模)如图,九宫格中横向、纵向、对角线上的三个数之和均相等,请用含x的代数式表示y,y=.20.(2019春•江油市校级月考)当x=1时,代数式ax5+bx3+cx+1=2019,当x=﹣1时,ax5+bx3+cx+1=.三.解答题(共10小题)21.(2019•贵阳)如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.22.(2019•长安区三模)下列算式是一类两个两位数相乘的特殊计算方法:67×63=100×(62+6)+7×3=4221,38×32=100×(32+3)+8×2=1216.(1)仿照上面方法计算,求44×46和51×59的值44×46=;51×59=;(2)观察上述算式我们发现:十位数字相同,个位数字和为10的两个两位数相乘,可以使用上述方法进行计算.如果用a,b分别表示两个两位数的个位数字,c表示十位上的数字.请用含a,b,c的式子表示上面的规律,并说明其正确性;(3)仿照(1)的计算方法,补充完成3342×3358的计算过程:3342×3358==.23.(2019春•沙坪坝区校级月考)已知A、B、C是数轴上3点,O为原点,A在O右侧,C在B右侧,线段OA=2BC=m,点D在线段BC上,关于x的多项式P的一次项系数为n,BD=nCD,且l6x4+mx=P•(2x﹣1)+7.(1)求m,n的值:(2)若OA、BC中点连线的长度也为m,求线段OB的长;(3)若A、C重合,E是直线OA上一动点,F是线段OA延长线上任意一点,求OE++AE的最小值.24.(2019春•鼓楼区校级期中)某菜农用780元购进某种蔬菜200千克,如果直接批发给菜商,每千克售价a元,如果拉到市场销售,每千克售价b元(b>a).已知该蔬菜在市场上平均每天可售出20千克,且该菜农每天还需支付15元其他费用.假设该蔬菜能全部售完.(1)当a=4.5,b=6时,该菜农批发给菜商和在市场销售获得的销售额分别是多少元?(2)设W1和W分别表示该菜农批发给菜商和在市场销售的利润,用含a,b的式子分别表示出W1和W;(3)若b=a+k(0<k<2),试根据k的取值范围,讨论选择哪种出售方式较好.25.(2019春•瑞安市期中)如图,将一张长方形纸板按图中虚线裁剪成9块,其中有2块是边长都为m厘米的大正方形,2块是边长都为n厘米的小正方形,5块是长为m厘米,宽为n厘米的一模一样的小长方形,且m>n,设图中所有裁剪线(虚线部分)长之和为L厘米.(1)L=(试用m,n的代数式表示)(2)若每块小长方形的面积为10平方厘米,四个正方形的面积和为58平方厘米,求L 的值.26.(2019•河东区一模)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x份(x为正整数)(1)根据题意,填写下表一次印制数量51020 (x)甲印刷厂收费(元)155…乙印刷厂收费(元)12.5…(Ⅱ)在印刷品数量大于800份的情况下选哪家印刷厂印制省钱?27.(2019春•瑶海区期中)书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本如图1的数学课本,其长为26cm、宽为18.5cm、厚为1cm,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去xcm封皮展开后如图(2)所示,求:(1)则小海宝所用包书纸的面积是多少?(用含x的代数式表示)(2)当封面和封底各折进去2cm时,请帮小海宝计算一下他需要的包装纸至少需要多少平方厘米?28.(2019春•南关区校级月考)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(QUOTE 含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费元.(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简.)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?29.(2018秋•蒸湘区校级期末)甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:甲商店:所有商品9折优惠;乙商店:每买1副球拍赠送1盒羽毛球.某校羽毛球队需要购买a副球拍和b盒羽毛球(b>a).(1)按上述的促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含a、b 的代数式表示;(2)当a=10,b=20时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?30.(2018秋•南安市期末)福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示).若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?参考答案与试题解析一.选择题(共16小题)1.【解答】解:4a2﹣6ab+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.2.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.3.【解答】解:x杯饮料则在B和C餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10﹣x;故选:A.4.【解答】解:∵m+n=7,2n﹣p=4,∴m+3n﹣p=(m+n)+(2n﹣p)=7+4=11,故选:D.5.【解答】解:令x=1,得34=a0+a1+a2+a3+a4,①令x=﹣1,得1=a0﹣a1+a2﹣a3+a4,②①+②得:2(a0+a2+a4)=82,则a0+a2+a4=41,故选:D.6.【解答】解:当x=1时,(2﹣3)7=a0+a1+a2+……+a6+a7,则a0+a1+a2+……+a7=﹣1,故选:B.7.【解答】解:由题意可得,该药品两次降价后的价格变为:345(1﹣15%)(1﹣x),故选:A.8.【解答】解:当x=﹣2,x2+1=4+1=5.故选:D.9.【解答】解:甲:把原来的价格看作单位“1”,1×(1﹣8%)×(1+8%)=92%×1.08=99.36%;乙:把原来的价格看作单位“1”,1×(1+8%)×(1﹣8%)=92%×1.08=99.36%;则甲、乙两个商家对这件商品的最终定价一样多.故选:C.10.【解答】解:根据题意得:2x+1=127,解得:x=63;2x+1=63,解得:x=31;2x+1=31,解得:x=15;2x+1=15,解得:x=7;2x+1=7,解得:x=3;2x+1=3,解得:x=1,则满足条件x的值有6个,故选:D.11.【解答】解:若输入的数是9,则输出的数为92+2=81+2=83,故选:C.12.【解答】解:设空白出长方形的面积为x,根据题意得:a+x=25,b+x=9,两式相减得:a﹣b=16,故选:C.13.【解答】解:当a2+2a=1时,3a2+6a﹣1=3(a2+2a)﹣1=3×1﹣1=3﹣1=2故选:D.14.【解答】解:设小长方形的长为xcm,宽为ycm(x>y),则根据题意得:3y+x=7,阴影部分周长和为:2(6﹣3y+6﹣x)+2×7=12+2(﹣3y﹣x)+12+14=38+2×(﹣7)=24(cm)故选:B.15.【解答】解:图②中通过平移,可将阴影部分的周长转换为长为m,宽为n的长方形的周长,即图②中阴影部分的图形的周长l1为2m+2n图③中,设小长形卡片的宽为x,长为y,则y+2x=m所求的两个长方形的周长之各为:2m+2(n﹣y)+2(n﹣2x),整理得,2m+4n﹣2m=4n即l2为4n∵,∴2m+2n=×4n整理得,故选:C.16.【解答】解:由图形可知,,,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选:B.二.填空题(共4小题)17.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.18.【解答】解:x2﹣2kx+k2﹣k﹣1=(x﹣k)2﹣k﹣1(k>2),①当2<k≤3时,当x=k时取最小值,∴﹣k﹣1=﹣2,∴k=2,不合题意;②当k>3时,当x=3时取最小值,∴9﹣6k+k2﹣k﹣1=﹣2,∴k=4或2.5,∵k>3,∴k=4;综上,k=4;故答案为:4.19.【解答】解:根据题意得:第一行第三列,第二行第二列,第三行第一列的三个数之和为:x+y+7,第一行第一列的数为:x+y+7﹣x﹣4=y+3,第一行第二列的数为:x+y+7﹣(y+3)﹣7=x﹣3,第三行第二列的数为:x+y+7﹣(x﹣3)﹣x=10﹣x+y,第三行的三个数之和为:y+(10﹣x+y)+4=x+y+7,整理得:y=2x﹣7,故答案为:2x﹣7.20.【解答】解:把x=1代入ax5+bx3+cx+1得a+b+c+1=2019,∴a+b+c=2018,再把x=﹣1代入ax5+bx3+cx+1得﹣a﹣b﹣c+1=﹣(a+b+c)+1=﹣2018+1=﹣2017.故答案为:﹣2017三.解答题(共10小题)21.【解答】解:(1)S=ab﹣a﹣b+1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;22.【解答】解:(1)由题意可得,44×46=100×(42+4)+4×6=2024,51×59=100×(52+5)+1×9=3009,故答案为:100×(42+4)+4×6=2024;100×(52+5)+1×9=3009;(2)(10c+a)×(10c+b)=100(c2+c)+ab,证明如下:(10c+a)×(10c+b)=100c2+10bc+10ac+ab=100c2+10c(b+a)+ab=100c2+100c+ab=100(c2+c)+ab;(3)3342×3358=3342×(3348+10)=3342×3348+33420=100×(3342+334)+2×8+33420=11222436故答案为:100×(3342+334)+2×8+33420;11222436.23.【解答】解:(1)∵l6x4+mx=P•(2x﹣1)+7,设P=8x3+ax2+nx+b,∴16x4+2ax3+2nx2+2bx﹣8x3﹣ax2﹣nx﹣b+7=l6x4+mx,∴a=4,n=2,2b﹣n=m,b=7,∴m=12,n=2;(2)∵m=12,∴OA=12,BC=6,∵O为原点,A在O右侧,∴A表示的数是12,∴OA的中点表示的是6,∵OA、BC中点连线的长度也为m,∴BC中点在数轴上表示的数是18或﹣6,∴B点表示的数是15或﹣9,∴BO=15或BO=9;(3)∵BC=6,n=2,BD=nCD,A、C重合,∴B点表示的数是6,D点表示的数是10,设E点表示的数是a,F点表示的数是b,OE++AE=|a|++|12﹣a|=|a|+|12﹣a|+,当a<0时,OE++AE=17﹣>17;当0≤a≤10时,OE++AE=17﹣,∴12≤OE++AE≤17;当10<a<12时,OE++AE=7+,∴12<OE++AE<13;当a≥12时,OE++AE=﹣17≥13;∴12≤OE++AE,∴OE++AE的最小值是12;24.【解答】解:由题意,可得直接批发商的销售额为200a元,拉到市场的销售额为200b元(1)当a=4.5时,直接批发商的销售额为:200×4.5=900元,当b=6时,拉到市场的销售额为:200×6=1200元(2)由题意,进菜的成本为=3.9元直接批发商的利润为:W1=200(a﹣3.9)=200a﹣780拉到市场的利润为:W=200(b﹣3.9)﹣×15=200b﹣930(3)由题意,当b=a+k(0<k<2)时,W=200(a+k)﹣930=200a+200k﹣930则W﹣W1=200a+200k﹣930﹣(200a﹣780)=200k﹣150∴①当0.75<k<2时,W>W1,选择拉到市场出售比直接给批发商好;②当k=0.75时,W=W1,两种出售方式都可以;③当0<k<0.75时,W<W1,选择直接给批发商比拉到市场出售好;25.【解答】解:(1)L=6m+6n,故答案为:6m+6n;(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和为42cm.26.【解答】解:(1)甲每份材料收1元印刷费,另收150元的制版费;故答案为160,170,150+x;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时花费大于150+800,即花费大于950元;对乙来说,印刷大于800份时花费大于2.5×800,即花费大于2000元;故去甲更省钱;27.【解答】解:(1)小海宝所用包书纸的面积是:(18.5×2+1+2x)(26+2x)=(38+2x)(26+2x)=4x2+128x+988(cm2);(2)当x=2cm时,S=4×22+128×2+988=1260(cm2).答:需要的包装纸至少是1260平方厘米.28.【解答】解:(1)1.8×20+0.45×30+0.4×(20﹣10)=53.5(元),故答案为:53.5;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)小王与小张乘坐滴滴快车分别为a分钟、b分钟,1.8×9.5+0.45a=1.8×14.5+0.45b+0.4×(14.5﹣10)整理,得0.45a﹣0.45b=10.8,∴a﹣b=24因此,这两辆滴滴快车的行车时间相差24分钟.29.【解答】解:(1)由题意可得,在甲商店购买的费用为:(300a+40b)×0.9=(270a+36b)(元),在乙商店购买的费用为:300a+40(b﹣a)=(260a+40b)(元);(2)当a=10,b=20时,在甲商店购买的费用为:270×10+36×20=3420(元),在乙商店购买的费用为:260×10+40×20=3400(元),∵3420>3400,∴当a=10,b=20时,到乙商店购买球拍和羽毛球便宜.30.【解答】解:依题意(1)A店购买可列式:40×150+(x﹣40)×30=4800+30x在网店B购买可列式:(40×150+30x)×0.9=5400+27x故答案为:4800+30x;5400+27x(2)当x=100时在A网店购买需付款:4800+30x=4800+30×100=7800元在B网店购买需付款:5400+27x=5400+27×100=8100元∵7800<8100∴当x=100时,应选择在A网店购买合算.(3)由(2)可知,当x=100时,在A网店付款7800元,在B网店付款8100元,在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳合计需付款:150×40+30×60×90%=7620∵7620<7800<8100∴省钱的购买方案是:在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳,付款7620元.。

2019-2020年中考数学总复习三 代数式精练精析2

2019-2020年中考数学总复习三 代数式精练精析2

2019-2020年中考数学总复习三代数式精练精析2一.选择题(共8小题)1.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.662.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.403.某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A.a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨4.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值为()A.﹣1 B.1 C.2 D.35.当x=﹣2时,代数式x2﹣2x+1的值是()A.1 B.﹣1 C.6 D.96.若(x﹣1)2=2,则代数式2x2﹣4x+5的值为()A.11 B.6 C.7 D.87.下列计算正确的是()A.2a2+a2=3a4B.+=C.﹣2(a﹣1)=2﹣2a D.5a+3b=8ab8.观察下列数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行根据数表所反映的规律,第n行第n列交叉点上的数应为()A.2n﹣1 B.2n+1 C.n2﹣1 D.n2二.填空题(共7小题)9.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是_________ .10.化简:2x﹣x= _________ .11.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103= _________ .12.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为_________ .13.已知一列数2,8,26,80.…,按此规律,则第n个数是_________ .(用含n的代数式表示)14.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是_________ 分.15.观察下列一组数:、1、、、…,它们是按一定规律排列的那么这组数的第n个数是_________ .(n为正整数)三.解答题(共6小题)16.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.17.已知:x2﹣5x=6,请你求出代数式10x﹣2x2+5的值.18.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想= _________ ;(2)证明你猜想的结论;(3)求和:+++…+.19.任意给定一个非零数m,按下列程序计算.(1)请用含m的代数式表示该计算程序,并给予化简;(2)当输入的数m=﹣2009时,求输出结果.20.已知代数式3x2﹣4x+6值为9,则x2﹣+6的值.21.用同样大小的灰、白两种正方形地砖铺设地面,方法是:第一层只有2块白色地砖,第二层是在第一层外面围一圈灰色地砖,第三层是在第二层外面围一圈白色地砖,…,如图所示.(1)第7层共有几块地砖,是白色的还是灰色的?(2)第n层共有几块地砖?(结果必须化简)如果这些地砖是白色的,那么正整数n有什么特点?数与式——代数式2参考答案与试题解析一.选择题(共8小题)1.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.66考点:规律型:图形的变化类.专题:规律型.分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n 个图有1+1×3+2×3+3×3+…+3n个点.解答:解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.点评:此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.2.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40考点:规律型:图形的变化类.专题:规律型.分析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n=,进一步求得第(6)个图形中面积为1的正方形的个数即可.解答:解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:B.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.3.某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A.a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨考点:列代数式.分析:根据2013年生产大米比2012年大米生产总量增加了10%,可知2012年大米生产总量×(1+10%)=2013年大米生产总量,由此列式即可.解答:解:a÷(1+10%)=(万吨).故选:B.点评:此题考查列代数式,关键是找出题目蕴含的数量关系:2012年大米生产总量×(1+10%)=2013年大米生产总量.4.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值为()A.﹣1 B.1 C.2 D.3考点:代数式求值.专题:整体思想.分析:把(m﹣n)看作一个整体并直接代入代数式进行计算即可得解.解答:解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n),=(﹣1)2﹣2×(﹣1),=1+2,=3.故选D.点评:本题考查了代数式求值,整体思想的利用是解题的关键.5.当x=﹣2时,代数式x2﹣2x+1的值是()A. 1 B.﹣1 C6 D.9考点:代数式求值.专题:计算题.分析:将x=﹣2代入计算即可求出代数式的值.解答:解:当x=﹣2时,原式=4+4+1=9,故选D点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.若(x﹣1)2=2,则代数式2x2﹣4x+5的值为()A.11 B.6 C.7 D.8考点:代数式求值.专题:计算题.分析:已知等式左边利用完全平方公式展开求出x2﹣2x的值,原式变形后将x2﹣2x的值代入计算即可求出值.解答:解:∵(x﹣1)2=x2﹣2x+1=2,即x2﹣2x=1,∴原式=2(x2﹣2x)+5=2+5=7.故选C点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.7.下列计算正确的是()A.2a2+a2=3a4B.+=C.﹣2(a﹣1)=2﹣2a D. 5a+3b=8ab考点:合并同类项;实数的运算;去括号与添括号.分析:根据同类项的定义,合并同类项的法则以及去括号法则对各选项分析判断后利用排除法求解.解答:解:A、应为2a2+a2=3a2,故本选项错误;B、与不能合并,故本选项错误;C、﹣2(a﹣1)=﹣2a+2,本项正确;D、5a与3b不能合并,故本项错误,故选:C.点评:本题考查了合并同类项的法则以及去括号法则,熟练掌握运算法则是解题的关键.8.观察下列数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行根据数表所反映的规律,第n行第n列交叉点上的数应为()A.2n﹣1 B.2n+1 C.n2﹣1 D.n2考点:规律型:数字的变化类.分析:由数表中数据排列规律可知第n行第n列交叉点上的数正好是对角线上的数,它们分别是连续的奇数.解答:解:根据分析可知第n行第n列交叉点上的数应为2n﹣1.故选:A.点评:此题考查了数字的排列规律,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.二.填空题(共7小题)9.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.考点:规律型:数字的变化类.专题:规律型.分析:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第n个数即可.解答:解:根据题意得:这一组数的第n个数是.故答案为:.点评:此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.10.化简:2x﹣x= x .考点:合并同类项.专题:计算题.分析:利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,直接得出答案.解答:解:2x﹣x=x.故答案为:x.点评:此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.11.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103= 552.考点:规律型:数字的变化类.专题:规律型.分析:13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+…+103=(1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=(1+2+…+n)2所以13+23+33+…+103=(1+2+3…+10)2=552.点评:本题的规律为:从1开始,连续n个数的立方和=(1+2+…+n)2.12.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.专题:压轴题;规律型.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.13.已知一列数2,8,26,80.…,按此规律,则第n个数是3n﹣1 .(用含n的代数式表示)考点:规律型:数字的变化类.专题:规律型.分析:根据观察等式,可发现规律,根据规律,可得答案.解答:解;已知一列数2,8,26,80.…,按此规律,则第n个数是 3n﹣1,故答案为:3n﹣1.点评:本题考查了数字的变化类,规律是第几个数就是3的几次方减1.14.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是336 分.考点:规律型:数字的变化类.专题:规律型.分析:根据题意可得甲报出的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1),由于1+3(n﹣1)=2014,解得n=672,则甲报出了672个数,再观察甲报出的数总是一奇一偶,所以偶数有672÷2=336个,由此得出答案即可.解答:解:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1)=3n﹣2,3n﹣2=2014,则n=672,甲报出了672个数,一奇一偶,所以偶数有672÷2=336个,得336分.故答案为:336.点评:本题考查数字的变化规律:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.观察下列一组数:、1、、、…,它们是按一定规律排列的那么这组数的第n个数是.(n为正整数)考点:规律型:数字的变化类.专题:规律型.分析:根据题中所给出的数据找出规律,根据此规律即可得出结论.解答:解:∵第一个数=;第一个数1=;第三个数=;第四个数=;第五个数=;…,∴第n个数为:.故答案为:.点评:本题考查的是数字的变化类,根据题意找出规律是解答此题的关键.三.解答题(共6小题)16.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.考点:规律型:图形的变化类.分析:(1)根据图中所给的黑色棋子的颗数,找出其中的规律,即可得出答案;(2)根据(1)所找出的规律,列出式子,即可求出答案.解答:解:(1)第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.答:第5个图形有18颗黑色棋子.(2)设第n个图形有2013颗黑色棋子,根据(1)得3(n+1)=2013解得n=670,所以第670个图形有2013颗黑色棋子.点评:此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.17.已知:x2﹣5x=6,请你求出代数式10x﹣2x2+5的值.考点:代数式求值.专题:整体思想.分析:先把10x﹣2x2+5变形为﹣2(x2﹣5x)+5,然后把x2﹣5x=6整体代入进行计算即可.解答:解:10x﹣2x2+5=﹣2(x2﹣5x)+5,∵x2﹣5x=6,∴原式=﹣2×6+5=﹣12+5=﹣7.点评:本题考查了代数式求值:先根据已知条件把代数式进行变形,然后利用整体代入进行求值.18.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想= ;(2)证明你猜想的结论;(3)求和:+++…+.考点:规律型:数字的变化类.专题:规律型;探究型.分析:(1)根据所给的等式,进行推而广之即可;(2)根据分式的加减运算法则进行证明;(3)根据(2)中证明的结论,进行计算.解答:(1)解:;(2)证明:右边=﹣=﹣===左边,所以猜想成立.(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了异分母的分式相减的运算法则.19.任意给定一个非零数m,按下列程序计算.(1)请用含m的代数式表示该计算程序,并给予化简;(2)当输入的数m=﹣2009时,求输出结果.考点:列代数式;代数式求值.分析:(1)÷m以前的式子应带小括号;(2)把m=﹣2009代入(1)中化简后的式子即可.解答:解:(1)依题意得(m2﹣m)÷m﹣2m=m﹣1﹣2m=﹣m﹣1;(2)当输入的数m=﹣2009时,输出结果为﹣m﹣1=﹣(﹣2009)﹣1=2008.点评:本题需注意÷m以前的式子应看成一个整体,带小括号.20.已知代数式3x2﹣4x+6值为9,则x2﹣+6的值.考点:代数式求值.专题:整体思想.分析:先根据题意列出等式3x2﹣4x+6=9,求得3x2﹣4x的值,然后求得x2﹣+6的值.解答:解:∵代数式3x2﹣4x+6值为9,∴3x2﹣4x+6=9,∴3x2﹣4x=3,∴x2﹣=1,∴x2﹣+6=1+6=7.点评:本题考查了求代数式的值,找出未知与已知的关系,然后运用整体代入的思想.21.用同样大小的灰、白两种正方形地砖铺设地面,方法是:第一层只有2块白色地砖,第二层是在第一层外面围一圈灰色地砖,第三层是在第二层外面围一圈白色地砖,…,如图所示.(1)第7层共有几块地砖,是白色的还是灰色的?(2)第n层共有几块地砖?(结果必须化简)如果这些地砖是白色的,那么正整数n有什么特点?考点:规律型:图形的变化类.专题:规律型.分析:(1)由图形可知单数层是白色瓷块,双数层是灰色地砖;第一层中白色瓷块有1×2块,第二层中灰色地砖有3×4﹣1×2块,第三层中白色瓷块有5×6﹣3×4块,…,可知第7层的地砖的块数;(2)由(1)可知第n层的地砖有2n(2n﹣1)﹣(2n﹣2)(2n﹣3)=8n﹣6,从这些地砖是白色的,可知正整数n是奇数.解答:解:(1)第7层是奇数层,地砖是白色的,地砖的块数是2×7×(2×7﹣1)﹣(2×7﹣2)(2×7﹣3)=182﹣132=50块;(2)第n层的地砖有2n(2n﹣1)﹣(2n﹣2)(2n﹣3)=8n﹣6,∵这些地砖是白色的,∴正整数n是奇数.点评:考查了规律型:图形的变化,解决这类问题首先要从简单图形入手,抓住随着“层数”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.2019-2020年中考数学总复习三十投影与视图精练精析2 一.选择题(共9小题)1.如图,在一水平面上摆放两个几何体,它的主视图是()A.B. C.D.2.如图是由三个小正方体叠成的一个几何体,它的左视图是()A.B.C.D.3.如图,从左面观察这个立体图形,能得到的平面图形是()A. B.C.D.4.如图,由4个相同的小立方块组成一个立体图形,它的主视图是()A. B.C.D.5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3 C.俯视图的面积为3 D.三种视图的面积都是46.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.7.如图的几何体的俯视图是()A.B.C.D.8.如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.9.某几何体的主视图、左视图和俯视图分别如图所示,则该几何体的体积为()A.3πB.2πC.πD.12二.填空题(共7小题)10.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_________ .11.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_________ .12.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是_________ .13.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是_________ .14.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有_________ 个碟子.15.若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有_________ 桶.16.如图的三视图表示的物体的形状是_________ .三.解答题(共7小题)17.某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.18.如图假设一座大楼高30米,观众坐在距大楼500米处,魔术师只需做一个屏障,屏障上的图画和没有大楼以后的景物一样,将屏障立在大楼前100米处,这样观众看上去好像大楼突然消失了.若要完全挡住大楼,请你找到一个方法计算出屏障至少要多高?(人身高忽略不计)19.如图是某几何体的展开图.(1)这个几何体的名称是_________ ;(2)画出这个几何体的三视图;(3)求这个几何体的体积.(π取3.14)20.如图,晚上,小亮在广场上乘凉.图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯(P)照射下的影子;(2)如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.21.如图,是住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=30m,现需了解甲楼对乙楼的采光的影响情况.(1)当太阳光与水平线的夹角为30°角时,求甲楼的影子在乙楼上有多高(精确到0.1m,=1.73);(2)若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?22.如图是由几个棱长为1cm的小立方块搭成的几何体从上往下看的平面图形,小立方块中的数字表示该位置上小立方块的个数,求出这个几何体的体积.23.如图,左边的楼高AB=60m,右边的楼高CD=24m,且BC=30m,地面上的目标P位于距C 点15m处.(1)请画出从A处看地面上距点C最近的点,这个点与点C之间的距离是多少?(2)从A处能看见目标P吗,为什么?图形的变化——投影与视图2参考答案与试题解析一.选择题(共9小题)1.如图,在一水平面上摆放两个几何体,它的主视图是()A.B.C.D.考点:简单组合体的三视图.专题:几何图形问题.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得左边是一个竖着的长方形,右边是一个横着的长方形,故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.如图是由三个小正方体叠成的一个几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层一个正方形,第二层一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左面看得到的图形是左视图,可得答案.解答:解;从左面看下面一个正方形,上面一个正方形,故选:A.点评:本题考查了简单组合体的三视图,从左面看得到的图形是左视图.4.如图,由4个相同的小立方块组成一个立体图形,它的主视图是()A.B.C.D.考点:简单组合体的三视图.专题:几何图形问题.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从正面看,下面是三个正方形,上面是一个正方形,故选:C.点评:本题考查了简单组合体的三视图,注意能看到的棱用实线画出.5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3 C.俯视图的面积为3 D.三种视图的面积都是4考点:简单组合体的三视图.专题:几何图形问题.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.解答:解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.点评:本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.6.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得,故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.如图的几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看得到右下角少了一部分的正方形,并且右边的边少的与剩下的差不多.故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:根据俯视图可确定主视图的列数和小正方体的个数,即可解答.解答:解:由俯视图可得主视图有2列组成,左边一列由4个小正方体组成,右边一列由2个小正方体组成.故选:B.点评:本题考查了由三视图判断几何体的知识,由几何体的俯视图可确定该几何体的主视图和左视图,要熟练掌握.9.某几何体的主视图、左视图和俯视图分别如图所示,则该几何体的体积为()A.3πB.2πC.πD.12考点:由三视图判断几何体.分析:根据三视图可以判断该几何体为倒放的圆柱,圆柱的底面半径为1,高为3,据此求得其体积即可.解答:解:根据三视图可以判断该几何体为圆柱,圆柱的底面半径为1,高为3,故体积为:πr2h=π×1×3=3π,故选:A.点评:本题考查了由三视图判断几何体的知识,解题的关键是了解圆柱的三视图并清楚其体积的计算方法.二.填空题(共7小题)10.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5 .考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4或5.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.11.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是72 .考点:由三视图判断几何体.分析:根据主视图与左视图得出长方体的边长,再利用图形的体积得出它的高,进而得出表面积.解答:解:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3,∴它的表面积是:2×3×2+2×6×2+3×6×2=72.故答案为:72.点评:此题主要考查了利用三视图判断几何体的边长,得出图形的高是解题关键.12.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是4或5或6或7 .考点:由三视图判断几何体.分析:易得这个几何体共有2层,由左视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.13.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是 2 .考点:简单几何体的三视图;勾股定理.分析:由俯视图和主视图知道棱柱顶的正方形对角线长是2,根据勾股定理列出方程求解.解答:解:设底面边长为x,则x2+x2=(2)2,解得x=2,即底面边长为2.故答案为:2.点评:此题主要考查了三视图的基本知识以及长方体有关计算公式.用到的知识点为:主视图反映几何体的长与高,注意物体摆放位置的不同得到主视图的形状也不同.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有12 个碟子.。

2019年、2020年山东省中考试题分类数学(2)——整式、代数式

2019年、2020年山东省中考试题分类数学(2)——整式、代数式

2019年、2020年山东省数学中考试题分类(2)——整式、代数式一.代数式求值(共1小题)1.(2020•潍坊)若m2+2m=1,则4m2+8m﹣3的值是()A.4B.3C.2D.1二.规律型:数字的变化类(共4小题)2.(2020•淄博)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是个.3.(2020•泰安)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.4.(2020•滨州)观察下列各式:a1=23,a2=35,a3=107,a4=159,a5=2611,…,根据其中的规律可得a n=(用含n的式子表示).5.(2019•滨州)观察下列一组数:a1=13,a2=35,a3=69,a4=1017,a5=1533,…,它们是按一定规律排列的,请利用其中规律,写出第n个数a n=(用含n的式子表示)三.规律型:图形的变化类(共3小题)6.(2020•德州)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202 7.(2020•聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150B.200C.355D.505 8.(2019•青岛)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c 个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.四.同底数幂的乘法(共1小题)9.(2019•潍坊)若2x=3,2y=5,则2x+y=.五.幂的乘方与积的乘方(共2小题)10.(2019•山西)下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b6 11.(2019•青岛)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5六.同底数幂的除法(共4小题)12.(2020•淄博)下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.a3÷a2=a5D.(a2)3=a5 13.(2020•德州)下列运算正确的是()A.6a﹣5a=1B.a2•a3=a5C.(﹣2a)2=﹣4a2D.a6÷a2=a314.(2019•泰安)下列运算正确的是()A.a6÷a3=a3B.a4•a2=a8C.(2a2)3=6a6D.a2+a2=a4 15.(2019•枣庄)下列运算,正确的是()A.2x+3y=5xy B.(x﹣3)2=x2﹣9C.(xy2)2=x2y4D.x6÷x3=x2七.单项式乘单项式(共1小题)16.(2019•临沂)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2−15xy2=45xy2八.单项式乘多项式(共1小题)17.(2019•威海)下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1九.完全平方公式(共3小题)18.(2020•威海)下列运算正确的是()A.3x3•x2=3x5B.(2x2)3=6x6C.(x+y)2=x2+y2D.x2+x3=x5 19.(2020•聊城)下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b220.(2019•枣庄)若m−1m=3,则m2+12=.一十.完全平方公式的几何背景(共1小题)21.(2020•枣庄)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2一十一.整式的除法(共1小题)22.(2020•临沂)计算(﹣2a3)2÷a2的结果是()A.﹣2a3B.﹣2a4C.4a3D.4a4一十二.整式的混合运算(共1小题)23.(2020•东营)下列运算正确的是()A.(x3)2=x5B.(x﹣y)2=x2+y2C.﹣x2y3•2xy2=﹣2x3y5D.﹣(3x+y)=﹣3x+y 一十三.因式分解-提公因式法(共2小题)24.(2020•聊城)因式分解:x(x﹣2)﹣x+2=.25.(2019•东营)因式分解:x(x﹣3)﹣x+3=.一十四.因式分解-运用公式法(共1小题)26.(2019•济南)分解因式:m2﹣4m+4=.一十五.提公因式法与公式法的综合运用(共3小题)27.(2020•东营)因式分解:12a2﹣3b2=.28.(2020•济宁)分解因式a3﹣4a的结果是.29.(2020•潍坊)因式分解:x2y﹣9y=.一十六.因式分解-十字相乘法等(共2小题)30.(2019•威海)分解因式:2x2﹣2x+12=.31.(2019•淄博)分解因式:x3+5x2+6x=.2019年、2020年山东省数学中考试题分类(2)——整式、代数式参考答案与试题解析一.代数式求值(共1小题)1.【解答】解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.故选:D.二.规律型:数字的变化类(共4小题)2.【解答】解:当一辆快递货车停靠在第x个服务驿站时,快递货车上需要卸下已经通过的(x﹣1)个服务驿站发给该站的货包共(x﹣1)个,还要装上下面行程中要停靠的(n﹣x)个服务驿站的货包共(n﹣x)个.根据题意,完成下表:服务驿站序号在第x服务驿站启程时快递货车货包总数1n﹣12(n﹣1)﹣1+(n﹣2)=2(n﹣2)32(n﹣2)﹣2+(n﹣3)=3(n﹣3)43(n﹣3)﹣3+(n﹣4)=4(n﹣4)54(n﹣4)﹣4+(n﹣5)=5(n﹣5)……n0由上表可得y=x(n﹣x).当n=29时,y=x(29﹣x)=﹣x2+29x=﹣(x﹣14.5)2+210.25,当x=14或15时,y取得最大值210.故答案为:210.3.【解答】解:观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=12n(n+1),则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.4.【解答】解:由分析可得a n =n 2+(−1)n+12n+1.故答案为:n 2+(−1)n+12n+1.5.【解答】解:观察分母,3,5,9,17,33,…,可知规律为2n +1,观察分子的,1=12×1×2,3=12×2×3,6=12×3×4,10=12×4×5,15=12×5×6,…,可知规律为n(n+1)2,∴a n =n(n+1)22n+1=n(n+1)2+2n+1; 故答案为n(n+1)2+2n+1;三.规律型:图形的变化类(共3小题)6.【解答】解:根据图形,第1个图案有12枚棋子, 第2个图案有22枚棋子, 第3个图案有34枚棋子, …第n ﹣1个图案有2(1+2+…+n +1)+2(n ﹣2)=n 2+5n ﹣2枚棋子,第n 个图案有2(1+2+…+n +2)+2(n ﹣1)=n 2+7n +4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚). 故选:C .7.【解答】解:由图形可知:第1个图形12块白色小正方形,第2个图形19个白色小正方形,第3个图形26个白色小正方形 则图ⓝ的白色小正方形地砖有(7n +5)块, 当n =50时,7n +5=350+5=355. 故选:C .8.【解答】解:探究三:根据探究二,a ×2的方格纸中,共可以找到(a ﹣1)个位置不同的 2×2方格, 根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a ×2的方格纸中,共可以找到(a ﹣1)×4=(4a ﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a、b、c,则分别可以找到(a﹣1)、(b﹣1)、(c﹣1)条边长为2的线段,所以在a×b×c的长方体共可以找到(a﹣1)(b﹣1)(c﹣1)位置不同的2×2×2的正方体,再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a×b×c的长方体中共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体;故答案为8(a﹣1)(b﹣1)(c﹣1).四.同底数幂的乘法(共1小题)9.【解答】解:∵2x=3,2y=5,∴2x+y=2x•2y=3×5=15.故答案为:15.五.幂的乘方与积的乘方(共2小题)10.【解答】解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2•a3=a5,故此选项错误;D、(﹣ab2)3=﹣a3b6,正确.故选:D.11.【解答】解:原式=4m2•2m3=8m5,故选:A.六.同底数幂的除法(共4小题)12.【解答】解:A.a2+a3≠a5,所以A选项错误;B.a2•a3=a5,所以B选项正确;C.a3÷a2=a,所以C选项错误;D.(a2)3=a6,所以D选项错误;故选:B.13.【解答】解:6a﹣5a=a,因此选项A不符合题意;a2•a3=a5,因此选项B符合题意;(﹣2a)2=4a2,因此选项C不符合题意;a6÷a2=a6﹣2=a4,因此选项D不符合题意;故选:B.14.【解答】解:A、a6÷a3=a3,故此选项正确;B、a4•a2=a6,故此选项错误;C、(2a2)3=8a6,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:A.15.【解答】解:A、2x+3y,无法计算,故此选项错误;B、(x﹣3)2=x2﹣6x+9,故此选项错误;C、(xy2)2=x2y4,正确;D、x6÷x3=x3,故此选项错误;故选:C.七.单项式乘单项式(共1小题)16.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2−15xy2=55xy2−15xy2=45xy2,选项正确故选:C.八.单项式乘多项式(共1小题)17.【解答】解:A、(a2)3=a6,故本选项错误;B、3a2+a,不是同类项,不能合并,故本选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故本选项错误.故选:C.九.完全平方公式(共3小题)18.【解答】解:A.3x3•x2=3x5,故本选项符合题意;B.(2x2)3=8x6,故本选项不合题意;C.(x+y)2=x2+2xy+y2,故本选项不合题意;D.x2与x3不是同类项,所以不能合并,故本选项不合题意.故选:A.19.【解答】解:A、a2•a3=a5,原计算错误,故此选项不合题意;B、a6÷a﹣2=a8,原计算错误,故此选项不合题意;C、(﹣2ab2)3=﹣8a3b6,原计算正确,故此选项合题意;D、(2a+b)2=4a2+4ab+b2,原计算错误,故此选项不合题意.故选:C.20.【解答】解:∵(m−1m)2=m2﹣2+12=9,∴m2+1m2=11,故答案为11.一十.完全平方公式的几何背景(共1小题)21.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.一十一.整式的除法(共1小题)22.【解答】解:原式=4a6÷a2=4a4.故选:D.一十二.整式的混合运算(共1小题)23.【解答】解:A、原式=x6,不符合题意;B、原式=x2﹣2xy+y2,不符合题意;C、原式=﹣2x3y5,符合题意;D、原式=﹣3x﹣y,不符合题意.故选:C.一十三.因式分解-提公因式法(共2小题)24.【解答】解:原式=x(x﹣2)﹣(x﹣2)=(x﹣2)(x﹣1).故答案为:(x﹣2)(x﹣1).25.【解答】解:原式=x(x﹣3)﹣(x﹣3)=(x﹣1)(x﹣3),故答案为:(x﹣1)(x﹣3)一十四.因式分解-运用公式法(共1小题)26.【解答】解:原式=(m﹣2)2,故答案为:(m﹣2)2一十五.提公因式法与公式法的综合运用(共3小题)27.【解答】解:原式=3(4a2﹣b2)=3(2a+b)(2a﹣b).故答案为:3(2a+b)(2a﹣b).28.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).29.【解答】解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).一十六.因式分解-十字相乘法等(共2小题)30.【解答】解:原式=2(x2﹣x+1 4)=2(x−12)2.故答案为:2(x−12)2.31.【解答】解:x3+5x2+6x,=x(x2+5x+6),=x(x+2)(x+3).。

中考数学代数式综合测试卷(1)及答案

中考数学代数式综合测试卷(1)及答案

中考代数式综合测试卷(一)及答案一、选择题(本题共10 小题,每小题3 分,满分30分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得3分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.一个代数式减去22x y -等于222x y +,则这个代数式是( )。

A.23y -B.222x y + C.2232y x -D.23y2.下列各组代数式中,属于同类项的是( )。

A .b a 221 与221ab B .b a 2 与c a 2 C .22与43 D . p 与q 3.下列计算正确的是( )。

A.2233x x -=B.22321a a -= C.235358x x x +=D.22232a a a -=4.a = 255, b = 344, c = 433, 则 a 、b 、c 的大小关系是( )。

A . a>c>b B . b>a>c C . b>c>a D . c>b>a 解:a = 255=(25)11=3211b = 344=(34)11=8111c = 433=(23)11=8115.一个两位数,十位数字是x ,个位数字是y ,如果把它们的位置颠倒一下,得到的数是( )。

A.y x +B.yxC.10y x +D.10x y +6.若26(3)(2)x kx x x +-=+-,则k 的值为( )。

A . 2B . -2 C. 1 D. –1 7.若x 2+mx +25 是一个完全平方式,则m 的值是( )。

A .20B .10 C. ± 20 D.±108.若代数式2231y y +=,那么代数式2469y y +-的值是( )。

A.2B.17C.7- D.79.如果(2-x)2+(x -3)2=(x -2)+(3-x ),那么x 的取值范围是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AG=1+ ,BG=+ t.
∴此时两平行线截平行四边形ABCD的面积为S= t+ .
当6≤t≤8时,点P在BC上运动,点Q仍在AB上运动,
设PM与DC交于点G,QN与AD交于点F,则AQ=t,AF= ,DF=4- .
QF= t,BP=t-6,CP=10-t,
PG=(10-t) .
而BD=4 ,故此时两平行线截平行四边形ABCD的面积为S= t2+10 -34 .
则y=0.6x+0.8(40-x)=-0.2x+32.
(2)由题知
解之得24≤x≤26.
∵x取整数,∴x=24,25,26应有三种装车方案:
①A型24节,B型16节;②A型25节,B型15节;③A型26节,B型14节.
(3)由y=-0.2x+32知,x越大,y越小,故当x=26时,运费最省,
这时,y=-0.2×26+32=26.8(万元).
将m=2代入①②,得
x12-2x1=3

∵x1<x2(看清条件,一个不漏,全方位思考)
∴x1=-1,x2=3,∴A(-1,0),B(3,0).
(2)求y=ax2+bx+c三个未知数,布列三个方程:将A(-1,0),B(3,0)代入解析式,再由顶点纵坐标为-4,可得:
设y=a(x-3)(x+1)(两点式)
考前热身训练
1.已知一抛物线经过O(0,0),B(1,1)两点,如图,且二次项系数为- (a>0).
(1)求该抛物线的解析式(系数用含a的代数式表示);
(2)已知点A(0,1),若抛物线与射线AB相交于点M,与x轴相交于点N(异于原点),求M,N的坐标(用含a的代数式表示);
(3)在(2)的条件下,当a在什么范围内取值时,ON+BN的值为常数?当a在什么范围内取值时,ON-OM的值也为常数?
(2)据临床观察:每毫克血液中含药量不少于4微克时,控制“非典”病情是有效的/如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长?
(3)假若某病人一天中第一次注射药液是早上6点钟,问怎样安排此人从6:00~20:00注射药液的时间,才能使病人的治疗效果最好?
解之得
∴抛物线的解析式为:y=- x2+ x.
(3)因△POA底边OA=6,∴S△POA有最大值时,点P须位于抛物线的最高点.
∵a=- <0,∴抛物线顶点恰为最高点.
∵ = = .
∴S的最大值= ×6× = .
(4)抛物线的对称轴与x轴的交点Q1,符合条件,
∵CB∥OA,∠Q1OM=∠CDO
∴Rt△Q1OM∽Rt△CDO,x=- =3,该点坐标为Q1(3,0).
答案:
中考样题看台
1.(1)由 △=(m-4)2+4(2m+4)=m2+32>0
得m1=2,m2=7(舍去),x1=-4,x2=2得A、B、C坐标为:
A(-4,0),B(2,0),C(0,8),所求抛物线的解析式为:y=x2-6x+8
(2)∵y=x2-6x+8=(x-3)2-1,
∴顶点P(3,-1),设点H的坐标为(x0,y0),
4.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(-1,0)、B(3,0)、C(0,3)三点,其顶点为D.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为( , ).
(1)求:经过A、B、C三点的抛物线的解析式;
(2)求四边形ABDC的面积;
(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似,请说明理由.
3.解:(1)△=(-1)2-4· k>0
1-2k>0,
k<
(2)令y=0有0= x2-x+k,
x2-2x+2k=0,x= =1±
∵点A在原点的左侧,∴B(1+ ,0)
又令x=0有y=k,∴C(0,k).
由OB=2OC得1+ =│2k│,由x1x2<0得k<0
∴1-2k=(1+2k)2,
∴k=- ,y= x2-x- .∴D(1,-2).
∴存在符合条件的点P1,P2.
中考样题训练
1.已知抛物线y=x2+(m-4)x+2m+4与x轴交于点A(x1,0)、B(x2,0)两点,与y轴交于点C,且x1<x2,x1+2x2=0,若点A关于y轴的对称点是D.
(1)求过点C、B、D的抛物线的解析式;
(2)若P是(1)所求抛物线的顶点,H是这条抛物线上异于点C的另一点,且△HBD和△CBD的积相等,求直线PH的解析式.
当8≤t≤10时,点P和点Q都在BC上运动,设PM与DC交于点G.
QN与DC交于点F,则CQ=20-2t,
QF=(20-2t) ,CP=10-t,PG=(10-t) .
∴此时两平行线截平行四边形ABCD的面积为S= t--30 +150 ,
故S关于t的函数关系式为
S=
②(附加题)当0≤t≤6,S的最大值为 ;
分析:(1)求A、B两点的坐标,突破口在x1,x2,两个未知数需两个方程:
方程 多出一个m还应再找一个x12+x22=10③,用配方法处理先算m.
由③:(x1+x2)2-2x1x2=10④将①②代入④,
得4(m2-2m+1)-2m2+14=10,
2m2-8m+8=0,
m2-4m+4=0,
m=2.
且当m=2时,△=4-4×(-3)>0合题意.
∵△BCD与△HBD的面积相等,∴│y0│=8,
∵点H只能在x轴上方,故y0=8,求得H(6,8),直线PH解析式为y=3x-10.
2.(1)当点P运动2秒时,AB=2cm,由∠=60°,知AE=1,PE= ,
∴S△APE= (cm)2.
(2)①当0≤t≤6时,点P与点Q都在AB上运动,
设PM与AD交于点G,ON与AD交于点F,则AQ=t,AF= ,QF= t,AP=t+2
S四边形ABDC=S△AOC+S梯形OEDC+S△DEB= + +4=9
(3)△DCB与△AOC相似.
证明:过点D作y轴的垂线,垂足为F
∵D(1,4),∴Rt△DFC中,DC= ,且∠DCF=450167
在Rt△BOC中,∠OCB=45°,BC=3
∴∠AOC=∠DCB=90°, =
∴△DCB∽△AOC
考前热身训练
1.(1)y=- x2+(1+ )x(2)M(a,1),N(a+1,0)
(3)∵ON=a+1,BM=│a-1│
∴ON+BM=a+1+│a-1│=
∴当0<a≤1时,ON+BM为常数
又∵ON-BM=a+1-│1-a│=
∴当a≥1时,ON-BM为常数
2.(1)设用A型车厢x节,则B型车厢(40-x)节,总运费为y万元,
2.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.
(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x的函数关系式;
(2)如果每节A型车厢最多可装甲种货物35吨或乙种货物15吨,每节B型车厢最多可装甲种货物25吨或乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
= ×1×3+ (3+4)×1+ ×2×4=9.
用分析法:
假设存在P(x0,y0)使得S△PAB=2S四边形ACMB=18,
即 AB│y0│=18, ×4│y0│=18,y0=±9.
将y0=9代入y=x2-2x-3,得x1=1- ,x2=1+ ,
将y0=-9代入y=x2-2x-3得△<0无实数根,
∴P1(1- ,9),P2(1+ ,9),
当6≤t≤8时,S的最大值为6 ;当8≤t≤10时,S的最大值为6 ;
所以当t=8时,S有最大值为6 .
3.(1)由题知,直线y= x与BC交于点D(x,3),
把y=3代入y= x中得,x=4,∴D(4,3).
(2)∵抛物线y=ax2+bx经过D(4,3),A(6,0)两点.
把x=4,y=3;x=6,y=0,分别代入y=ax2+bx中得,
2019年中考数学练习题:代数综合题
概述:
代数综合题是中考题中较难的题目,要想得高分必须做好这类题,这类题主要以方程或函数为基础进行综合.解题时一般用分析综合法解,认真读题找准突破口,仔细分析各个已知条件,进行转化,发挥条件整体作用进行解题.解题时,计算不能出差错,思维要宽,考虑问题要全面.
典型例题精析
过点O作OD的垂线交抛物线的对称轴于点Q2,
∵对称轴平行于y轴
∴∠Q2MO=∠DOC,
∴Rt△Q2OM∽Rt△CDO.
在Rt△Q2Q1O与Rt△DCO中,
Q1O=CO=3,∠Q2=∠ODC,
∴RtQ2Q1O≌Rt△DCO,∴CD=Q1Q2=4.
∵点Q2位于第四象限,∴Q2(3,-4).
因此,符合条件的点有两个,分别是Q1(3,0),Q2(3,-4)
(3)在上述方案中,哪个方案运费最省?最少运费多少元?
3.已知抛物线y= x2-x+k与x轴有两个不同的交点.
(1)求k的取值范围;
(2)设抛物线与x轴交于A、B两点,且点A在原点的左侧,抛物线与y轴交于点C,若OB=2.OC,求抛物线的解析式和顶点D的坐标;
相关文档
最新文档