四川大学2017-2018 线性代数期末试卷
2017-2018-1 线性代数1-8周期末试卷B

第1页共4页 第2页共4页安徽工程大学2017——2018学年第 1学期(线性代数) 课程期末考试试卷 (B) 卷 考试时间 120 分钟,满分100 分要求:闭卷[√],开卷[ ];答题纸上答题[√],卷面上答题[ ] (填入√)一、选择题 (每小题3分,满分15分)1. 已知A 、B 为n 阶方阵,E 为n 阶单位矩阵,则下列各式中正确的是 ( ).(A )(A +B )2=A 2+2AB +B 2 (B ) AB =BA (C )(A +E )(A −2E )=(A −2E )(A +E ) (D ) (AB )2=A 2B 22. 已知A 、B 为2阶方阵,则下列各式中不正确的是 ( ). (A )|AB |=|A ||B | (B )|2A |=2|A | (C )|A T |=|A | (D )|AB |=|BA |3. 已知 α1,α2,α3 为 R 3中向量,下列说法不正确的是 ( ).(A )若 α1,α2,α3 线性相关,则 α1,α1+α2,α1+α2+α3 线性相关(B )若 α1,α2,α3 线性无关,则 α1,α1+α2,α1+α2+α3 线性无关(C )α1,α2,2α1−α2 线性相关(D )(1,0,0)T ,(1,1,0)T ,(1,1,1)T线性相关 4.已知A 为 m ×n 矩阵,则非齐次方程 Ax =b 有无穷多解的充要条件是 ( ).(A )r (A )<n (B ) r (A )=r (A |b )<n (C )r (A )=r (A |b )=n (D ) r (A )<n,r (A |b )=n 5. 已知 x,y 为内积空间V 中向量,下列说法不正确的是 ( ). (A )若 x ⊥y , 则 ‖x +y ‖2=‖x ‖2+‖y ‖2 (B )若 x ⊥y , 则 ‖x −y ‖2=‖x ‖2+‖y ‖2 (C ) λ 为任意实数,‖λx ‖=λ‖x ‖ (D )|〈x,y 〉|≤‖x ‖‖y ‖二、填空题(每空3分,满分15分)1. 已知矩阵 A =(1−2y−1x −32−42y),且 r (A )=1,则x=____,y=____.2. 已知 A 为3阶方阵,A ∗ 为其伴随矩阵,且 |A |=2,则 |A ∗|=_____.3.齐次线性方程组 { x 1+x 3=0x 2−x 4=0 的解空间维数为______.4. 已知矩阵 (x 110y 1004) 相似于对角矩阵 (100020004),则x 2+y 2=______.5. 二次型 f (x,y,z )=x 2+2y 2+2xy +4xz −2yz 的矩阵为第3页共4页 第4页共4页___________.三、计算题(每小题10分,满分60分)1. 已知矩阵 X 满足 XA =X +A ,其中 A =(001020002),求 X .2. 计算行列式 D =|a 01−a b20−b3|. 3. λ为何值时,齐次线性方程组 { x 1+3x 2+5x 3=02x 1+x 2=03x 1+4x 2+λx 3=0有非零解,并求此时方程组的一般解.4. 求矩阵 A =(1−2−1221−442) 的秩 r (A ),以及列空间 R (A )的一组基。
【期末试题】2018-2019秋线性代数(理工)

三、证明题(共 19 分)
1. (7 分)证明:向量组 ������1, ������2, ������3 线性无关的充分必要条件是向量组 ������1 + ������2, ������2 + ������3, ������3 + ������1 线性无关. 2.(6 分)设方阵 ������ 使得 ������3 = 2������, 证明 ������2 − ������ 可逆,并求 ������2 − ������ 的逆矩阵. 3.(6 分)设 ������ 阶方阵 ������ 满足 ������2 = ������. 则 ������ 是齐次线性方程组 ������������ = 0 解的充分必要条件 为:存在向量 ������ 使得 ������ = ������ − ������������.
0
相似,
则
������������ =
__________.
1 2 3 4 0 0 4 y
1 0 0
x
0
0
1
1
110 2. 若存在3维列向量不能由向量组 (0) , (������) , (2) 线性表出,则 ������ = __________.
121
1 2 4 ������1 3. 若二次型 (������1, ������2, ������3) (0 2 2) (������2) 正定,则 ������ 的取值范围为 __________.
0 0 ������ ������3 4. 设������为3阶实对称阵,������2 − ������ = 2������, ������������(������) = 0,则二次型 ������������������������ 的规范形为 __________.
线性代数期末考试试卷+答案合集

d (x a b c d) 0 x 0 0 (x a b c d)x3
d
00 x 0
1 b c xd
000 x
3 0 1 2. 设 AB A 2B ,且 A 1 1 0, 求 B 。
0 1 4
解. ( A 2E)B A
2 1 1
5 2 2
(A
2E) 1
2
。
1 2 1 x1 1
7、已知方程组 2 3 a 2 x2 3 无解,则 a
。
1 a 2 x3 4
8 、 二 次 型 f (x1, x2 , x3) 2x12 3x22 tx32 2x1x2 2x1x3 是 正 定 的 , 则 t 的 取 值 范 围
是
。
三、计算题(本题共 2 小题,每题 8 分,满分 16 分)
0 1 y
按第三列展开得
D xy x 0 x 2y 2 。 1y
(4 分)
(4 分)
10、解:把各列加到第一列,然后提取第一列的公因子
n i 1
xi
3
,再通过行列式的变换化
为上三角形行列式
1 x2 xn
Dn
n i 1
xi
3
1
x2 3
xn
1 x2 xn 3
(4 分)
1 x2 xn
共 3 页第 7页
(2) 4 不能由1,2 ,3 线性表出。
大学生校园网— 线性代数 综合测试题
12、设 A 是 n 阶矩方阵, E 是 n 阶单位矩阵, A E 可逆,且 f ( A) (E A)(E A) 1 。 证明 (1) (E f ( A))(E A) 2E ; (2) f ( f (A)) A 。
2
线性代数期末试卷及解析(4套全)2018科大

线性代数期末试卷一一、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上)(5)设矩阵210120001⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,矩阵B 满足*2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则||=B __________.解:||=B 19.显然||3=A ,在等式*2=+ABA BA E 两端右乘A 得36=+AB B A (36)-=A E B A 上式取行列式03030||3003=-B故 1||9=B . 方法二:因||3=A ,则*31||||9-==A A将**2=+ABA BA E 移项得 *(2)-=A E BA E 两端取行列式得1||91⋅⋅=B ,故1||9=B .二、选择题(本题8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.)(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A )010100.101⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭. (C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.解:(D )正确. 由题意12=AE B ,其中12010100001⎛⎫⎪= ⎪ ⎪⎝⎭E 为第一种类型初等矩阵,23(1)=BE C ,其中23100(1)011001⎛⎫ ⎪= ⎪ ⎪⎝⎭E 为第三种类型初等矩阵.于是有 1223(1)==AE E C AQ则 1223010100011(1)100011100001001001⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭Q E E与所给答案比较,选(D ).(12)设,A B 为满足=AB 0的任意两个非零矩阵,则必有 (A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关. (D )A 的行向量组线性相关,B 的列向量组线性相关. 解:(A )正确.设A 为m n ⨯矩阵,B 为n p ⨯矩阵,因为 =AB 0故 ()()r r n +≤A B ,其中(),()r r A B 分别表示矩阵,A B 的秩.又因为,A B 皆是非零矩阵,故()0,()0r r >>A B ,所以()r n <A ,()r n <B .因此A 的列秩数,B 的行秩数小于n ,这说明A 的列向量组线性相关,B 的行向量组线性相关,故选(A ).取101000⎛⎫= ⎪⎝⎭A ,100110⎛⎫⎪= ⎪⎪-⎝⎭B ,则0000⎛⎫= ⎪⎝⎭AB , 由B 的列向量组线性无关知(B )、(D )错误.取101010-⎛⎫= ⎪⎝⎭A ,100110⎛⎫⎪= ⎪ ⎪-⎝⎭B ,则0000⎛⎫= ⎪⎝⎭AB ,由A 的行向量组线性无关知(C )错误.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (20)(本题满分9分) 设有齐次线性方程组121212(1)0,2(2)20,(2)()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩L L L L L试问a 取何值时,该方程组有非零解,并求出其通解.解法1 对方程组的系数矩阵A 作初等行变换,有11111111222220000aa a a a n n n n a na a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪=→= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A B L L L L L L L L L L. 当0a =时,()1r n =<A ,故方程组有非零解,其同解方程组为120n x x x +++=L , 由此得基础解系为T T T121(1,1,0,,0),(1,0,1,,0),,(1,0,0,,1)n -=-=-=-ηηηL L L L ,于是方程组的通解为1111n n x k k --=++ηηL ,其中11,,n k k -L 为任意常数. 当0a ≠时,对矩阵B 作初等行变换,有(1)1111000221002100.001001n n a a n n +⎛⎫++⎛⎫ ⎪⎪⎪-⎪-→→⎪ ⎪⎪ ⎪ ⎪ ⎪-⎪⎝⎭-⎝⎭B L L L L L L L L LL可知(1)2n n a +=-时,()1r n n =-<A ,故方程组也有非零解,其同解方程组为 1213120,30,0,n x x x x nx x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩M由此得基础解系为T(1,2,,)n =ηL , 于是方程组的通解为x k =η,其中k 为任意常数. 解法2 方程组的系数行列式为111112222(1)||.2n aa n n a a nnn n a-+++⎛⎫==+ ⎪⎝⎭+A L L L LL当||0=A ,即0a =或(1)2n n a +=-时,方程组有非零解.当0a =时,对系数矩阵A 作初等行变换,有1111111122220000,0000n n n n ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A L L L L L L L L L L 故方程组的同解方程组为120,n x x x +++=L 由此得基础解系为T T T121(1,1,0,,0),(1,0,1,,0),,(1,0,0,,1)n -=-=-=-ηηηL L L L ,于是方程组的通解为1111n n x k k --=++ηηL ,其中11,,n k k -L 为任意常数.当(1)2n n a +=-时,对系数矩阵A 作初等行变换,有 11111111222220000aa a a an n n n a na a ++⎛⎫⎛⎫⎪⎪+-⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A L L LLL L L L L L . 1111000021002100.00101a n n +⎛⎫⎛⎫⎪⎪--⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭L L LL L L L L L L 故方程组的同解方程组为1213120,30,0,n x x x x nx x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩M由此得基础解系为T(1,2,,)n =ηL , 于是方程组的通解为x k =η,其中k 为任意常数. (21)(本题满分9分)设矩阵12314315a -⎛⎫⎪=-- ⎪ ⎪⎝⎭A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.解:A 的特征多项式为1232201431431515a aλλλλλλλ-----=-------11010(2)143(2)13315115aa λλλλλλ-=--=---------2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根,则有22161830a -++=,解得2a =-.当2a =-时,A 的特征值为2,2,6,矩阵1232123123-⎛⎫⎪-=- ⎪ ⎪--⎝⎭E A 的秩为1,故2λ=对应的线性无关的特征向量有两个,从而A 可相似对角化.若2λ=不是特征方程的二重根,则28183a λλ-++为完全平方,从而18316a +=,解得23 a=-.当23a=-时,A的特征值为2,4,4,矩阵32341032113⎛⎫⎪-⎪-= ⎪⎪--⎪⎝⎭E A的秩为2,故4λ=对应的线性我关的特征向量只有一个,从而A不可相似对角化.线性代数期末试卷二一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中的横线上.) (6)同数学(一)一、(5).二、选择题(本题共8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项目前的字母填在题后的括号内.) (13)同数学(一)二、(11). (14)同数学(一)二、(12).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.解法1 对方程组的系数矩阵A 作初等行变换,有111111112222200.33333004444400aa a a a a a a a a a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪=→= ⎪ ⎪+- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A B 当0a =时,()14r =<A ,故方程组有非零解,其同解方程组为 12340x x x x +++=.由此得基础解系为T T T123(1,1,0,0),(1,0,1,0),(1,0,0,1)=-=-=-ηηη,于是所求方程组的通解为112233k k k =++x ηηη,其中123,,k k k 为任意常数. 当0a ≠时,11111000021002100,3010301040014001a a ++⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭B 可知10a =-时,()34r =<A ,故方程组也有非零解,其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为 T(1,2,3,4)=η,于是所求方程组的通解为 k =x η,其中k 为任意常数. 解法2 方程组的系数行列式311112222||(10)33334444aa a a a a++==+++A .当||0=A ,即0a =或10a =-时,方程组有零解. 当0a =时,对系数矩阵A 作初等行变换,有11111111222200003333000044450000⎛⎫⎛⎫⎪⎪⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭A , 故方程组的同解方程组为12340.x x x x +++= 其基础解系为T T T123(1,1,0,0),(1,0,1,0),(1,0,0,1)=-=-=-ηηη,于是所求方程组的通解为112233k k k =++x ηηη,其中123,,k k k 为任意常数. 当10a =-时,对A 作初等行变换,有911191112822201000337330010*******0010--⎛⎫⎛⎫⎪ ⎪--⎪ ⎪=→⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭A91110000210021003010301040014001-⎛⎫⎛⎫⎪⎪--⎪ ⎪→→⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 故方程组的同解方程组为2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为T(1,2,3,4)=η,于是所求方程组的通解为x k =η,其中k 为任意常数. (23)(本题满分9分) 同数学(一)三、(21).线性代数期末试卷三一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(4)二次型222123122331(,,)()()()f x x x x x x x x x =++-++的秩为_________.解:秩为 2 .222123122331(,,)()()()f x x x x x x x x x =++-++ 222123121323222222x x x x x x x x x =++++-于是二次型f 的表示矩阵为211121112⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A易求得()2r =A ,故二次型f 的秩为2.二、选择题(本题8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.) (12)设n 阶矩阵A 与B 等价,则必有 (A )当||(0)a a =≠A 时,||a =B . (B )当||(0)a a =≠A 时,||a =-B . (C )当||0≠A 时,||0=B . (D )当||0=A 时,||0=B . 解:(D )正确.因为n 阶矩阵A 与B 等价,故存在n 阶可逆矩阵,P Q 使 =PAP B故 ||||||||=B P A Q当||0=A 时,自然有||0=B ,故(D )正确.当||0≠A 时,由||,||P Q 皆不为零,故||0≠B ,所以(C )错误.当||0a =≠A 时,||||||a =B P Q ,仅由A 与B 等价,无法推出||||1=±P Q ,故(A )、(B )不正确.当,A B 相似时,(A )才正确.(13)设n 阶矩阵A 的伴随矩阵*≠A 0,若1234,,,ξξξξ是非齐次线性方程组=Ax b 的互不相等的解,则对应的齐次线性方程组=Ax 0的基础解系.(A )不存在. (B )仅含一个非零解向量. (C )含有两个线性无关的解向量. (D )含有三个线性无关的解向量. 解:(B )正确.因*=A 0,故*A 中至少有一个非零元素. 由于*A 中元素恰为A 的1n -阶代数余子式所组成,故A 至少有一个1n -阶子式非零,这表明()1r n ≥-A .现断言()r n ≠A ,否则A 可逆,则线性方程组=Ax b 有惟一解,这与12,ξξ是非齐次线性方程组=Ax b 不同的解矛盾.由此必有()1r n =-A ,所以齐次线性方程组=Ax 0的解空间维数为(1)1n n --=,即=Ax 0的基础解仅含一个非零解向量. 可见(B )正确,(A )错误.尽管从1234,,,ξξξξ是非齐次线性方程组=Ax b 的互不相等的解,可以得出=Ax 0有三个不同的非零解,如121314,,,---ξξξξξξ但是它们是成比例的线性相关解,也就是说=Ax 0不会有两个,更不会有三个线性无关的解向量,即(C )、(D )不正确.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (20)(本题分13分)设T T T 123(1,2,0),(1,2,3),(1,2,2)a a b a b ==+-=---+ααα,T(1,3,3)=-β. 试讨论当,a b为何值时,(I )β不能由123,,ααα线性表示;(II )β可由123,,ααα惟一地线性表示,并求出表示式;(III )β可由123,,ααα线性表示,但表示式不惟一,并求出表示式. 解:设有数123,,k k k ,使得112233k k k ++=αααβ. (*) 记123(,,)=A ααα. 对矩阵()Aβ施以初等行变换,有1111()22230323a b a a b -⎛⎫ ⎪=+-- ⎪ ⎪-+-⎝⎭A β111101000a b a b -⎛⎫ ⎪→- ⎪ ⎪-⎝⎭.(I )当0,a b =为任意常数时,有1111()0010001b -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A β.可知()()r r ≠A A β. 故方程组(*)无解,β不能由123,,ααα线性表示.(II )当0a ≠,且a b ≠时()()3r r ==A A β,故方程组(*)有惟一解 123111,,0,k k k a a=-== 则β可由123,,ααα惟一地线性表示,其表示式为1211(1)a a=-+βαα.(III )当0a b =≠时,对()A β施以初等行变换,有110011()011.0000a a ⎛⎫- ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭A β. 可知()()2r r ==A A β,故方程组(*)有无穷多解,其全部解为123111,(),k k c k c a a=-=+=,其中c 为任意常数.β可由123,,ααα线性表示,但表示式不惟一,其表示式为12311(1)()c c a a=-+++βααα. (21)(本题满分13分)111b b bb b b ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭A L L M M M L. (I )求A 的特征值和特征向量;(II )求可逆矩阵P ,使得1-P AP 为对角矩阵. 解:(I )1º当0b ≠时,11||1b b b b bbλλλλ-------=---E A L LM M ML1[1(1)][(1)]n n b b λλ-=-----.故A 的特征值为121(1),1n n b b λλλ=+-===-L .对于11(1)/n b λ=+-,设A 的属于特征值1λ的一个特征向量为1ξ,则1111[1(1)]1b b b b n b b b ⎛⎫⎪ ⎪=+- ⎪ ⎪ ⎪⎝⎭ξξL L M M M L , 解得T1(1,1,,1)=ξL ,所以全部特征向量为T1(1,1,,1)k k =ξL (k 为任意非零常数).对于21n b λλ===-L ,解齐次线性方程组[(1)]0b --=E A x ,由111000(1)000b b b b b b b b b b ---⎛⎫⎛⎫⎪ ⎪---⎪ ⎪--=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭E A L L LL M M M M M M L L, 解得基础解系T2(1,1,0,,0)=-ξL ,T3(1,0,1,,0)=-ξL ,… …T(1,0,0,,1)n =-ξL .故全部特征向量为2233n n k k k +++ξξξL (2,,n k k L 是不全为零的常数). 2º当0b =时,特征值11n λλ===L ,任意非零列向量均为特征向量. (II )1º当0b ≠时,A 有n 个线性无关的特征向量,令12(,,,)n =P ξξξL ,则 1diag{1(1),1,,1}.n b b b -=+---P AP L 2º当0b =时,=A E ,对任意可逆矩阵P ,均有 1-=P AP E .注:T1(1,1,,1)=ξL 也可由求解齐次线性方程组1()λ-=E A x 0得出.线性代数期末试卷四一、填空题(本题共6小题,每小4分,满分24分. 把答案填在题中横线上.)(4)设1010100,001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭A B P AP ,其中P 为三阶可逆矩阵,则200422-=B A _________. 解:300030001⎛⎫ ⎪ ⎪ ⎪-⎝⎭. 由010100001-⎛⎫ ⎪= ⎪ ⎪-⎝⎭A 得2100010001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A ,故4=A E ,其中E 是3阶单位阵,所以2004=A E .由1-=B P AP 得200412004-==B P A P E于是 20042210020030022010020030001002001-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭BA E A . (5)设33()ij a ⨯=A 是实正交矩阵,且T 111,(1,0,0)a b ==,则线性方程组=Ax b 的解是__________.解:T (1,0,0).在方程=Ax b 两端左乘TAT T =A Ax A b 则 2131T 122232121323331311100a a a a a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭x A b将 12131a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭x 代回=Ax b 有2131122232121323331311100a a a a a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由此得22121311a a ++=因A 为实矩阵,故12130a a ==,因此=Ax b 的解为100⎛⎫ ⎪= ⎪ ⎪⎝⎭x .二、选择题(本题共8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.)(12)同数学(三)二、(12).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(20)(本题满分13分)设线性方程组1234123412340,220,3(2)(4)41,x x x x x x x x x x x x λμλμ+++=⎧⎪+++=⎨⎪+++++=⎩已知T(1,1,1,1)--是该方程组的一个解. 试求(I )方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (II )该方程组满足23x x =的全部解.解:将T (1,11,1)--代入方程组,得λμ=. 对方程组的增广矩阵施以初等变换,得 1102112032441λλλλ⎛⎫ ⎪= ⎪ ⎪++⎝⎭A 102101311.002(21)2121λλλλλλ---⎛⎫ ⎪→ ⎪ ⎪---⎝⎭(I )当12λ≠时,有 1001011010.221100122⎛⎫ ⎪ ⎪ ⎪→-- ⎪ ⎪ ⎪ ⎪⎝⎭A 因()()34r r ==<A A ,故方程组有无穷多解,全部解为T T 11(0,,,0)(2,1,1,2)22k =-+--ξ, 其中k 为任意常数.当12λ=时,有 11101220131100000⎛⎫-- ⎪ ⎪→ ⎪ ⎪ ⎪⎝⎭A .因()()24r r ==<A A ,故方程组有无穷多解,全部解为T T T 121(,1,0,0)(1,3,1,0)(1,2,0,2)2k k =-+-+--ξ, 其中12,k k 为任意常数.(II )当12λ≠时,由于23x x =,即 1122k k -+=-. 解得12k =,方程组的解为T T T 111(0,,,0)(2,1,1,2)(1,0,0,1)222=-+--=-ξ. 当12λ=时,由于23x x =,即 121132k k k --=. 解得121142k k =-,故全部解为 T T 2111311(,,,0)(,,,2)444222k =-+---ξ, 其中2k 为任意常数.[注]:在题(II )中,12λ=时,解得21122k k =-时,全部解也可以表示为 T T 1(1,0,0,1)(3,1,1,4)k =-+-ξ,其中1k 为任意常数.(21)(本题满分13分)设三阶实对称矩阵A 的秩为122,6λλ==是A 的二重特征值. 若T T T 123(1,1,0),(2,1,1),(1,2,3)===--ααα都是A 的属于特征值6的特征向量. (I )求A 的另一特征值和对应的特征向量;(II )求矩阵A .解:(I )因为126λλ==是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量有2个. 由题设可得123,,ααα的一个极大无关组为12,αα,故12,αα为A 的属于特征值6的线性无关的特征向量.由()2r =A 可知,||0=A ,所以A 的另一特征值30λ=. 设30λ=所对应的特征向量为T 123(,,)x x x =α,则有T T120,0==αααα,即 121230,20.x x x x x +=⎧⎨++=⎩ 解得此方程组的基础解系为T (1,1,1)=-α,即A 的属于特征值30λ=的特征向量为T (1,1,1)c c =-α,(c 为不为零的任意常数).(II )令矩阵123(,,)=P ααα,则1600060000-⎛⎫ ⎪= ⎪ ⎪⎝⎭P AP ,所以 1600060000-⎛⎫ ⎪= ⎪ ⎪⎝⎭A P P .又1011112333111333-⎛⎫ ⎪- ⎪ ⎪=- ⎪ ⎪ ⎪- ⎪⎝⎭P , 故422242.224⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A。
四川大学数一二线性代数期末考试试卷

第 页 共6页1四川大学期末考试试卷科 目:《大学数学》(线性代数)一、填空题(每小题3分,共15分)1. 232323a a ab bb c c c = __abc()_____.2. 向量组1(2,5,5)α=,2(2,0,1)α=,3(2,3,1)α=,4(7,8,11)α=-线性_______.3. 设A =378012002⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦, A *是A 的伴随矩阵, 则 |15-A*| = _________.4. 当t 满足______的条件时, 22212311223(,,)222f x x x x tx x x x =+++为正定二次5. 设A, B 都是3阶矩阵, 秩(A )=3, 秩(B )=1, C =AB 的特征值为1, 0, 0, 则C =AB __相似对角化.第 页 共6页2 二、选择题(每小题3分,共15分)1. 设矩阵,23⨯A ,32⨯B 33⨯C , 则下列式子中, ( )的运算可行.(A) AC; (B) C AB -; (C) CB ; (D) BC CA -.2. 设D=123012247-, ij A 表示D 中元素ij a 的代数余子式, 则3132333A A A ++=( ).(A) 0; (B) 1; (C) 1-; (D) 2 . 3. 设A 为4m ⨯矩阵, 秩(A)=2,123,,X X X 是非齐次线性方程组AX =β的三个线性无关解向量, 则( )为AX =0的通解.(A) 11223;k X k X X +- (B) 123();X k X X +-(C)1122123(1);k X k X k k X ++-- (D) 1122123().k X k X k k X +-+4. 设A,B,C 都为n 阶矩阵, 且|AC|≠0, 则矩阵方程AXC=B 的解为( ).(A) 11--=BC A X ; (B) 11--=C BA X ; (C) 11--=A BC X ; (D) 11--=BA C X .5. 设A 为n 阶方阵,A 可以相似对角化的( )是A 有n 个不同的特征值.(A) 充分必要条件 (B) 必要而非充分的条件 (C) 充分而非必要的条件 (D) 既不充分也非必要的条件三、计算下列各题(每小题10分,共30分)1. 计算行列式 11120132.12231420------第 页 共6页32. 解矩阵方程,X B AX +=其中21125111,3001214A B -⎡⎤⎡⎤⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦. X=[-1 5]5/4 2 .-1/2 .-1 3.求向量组]1,3,2,1[1-=α, ]1,10,11,5[2--=α,]9,1,8,3[3-=α, ]19,9,2,0[4-=α的秩与它的一个极大线性无关组.四、解答下列各题(每小题12分,共24分)1.讨论当b取何值时, 非齐次线性方程组123412341234237335135543x x x xx x x xx x x x b+++=⎧⎪+++=⎨⎪++-=⎩有解; 当有解时, 求方程组的通解.第页共6页4第 页 共6页5232232133),,(x x x x x f +=323121244x x x x x x -++ 化为标准形.第 页 共6页6 五、证明题(每小题8分, 共16分)1. 设12321311A λ-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦, 如果存在三阶矩阵 0,B ≠ 满足AB =0, 试求λ的值,并证明. rank B *=0, 其中B *是B 的伴随矩阵.2. 设A 是一个三阶矩阵,向量组123,,()I ααα中的三个向量分别是A 属于特征值0,1,3的特征向量, 向量组)(,,421II ααα线性相关。
(完整word版)线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。
① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。
四川大学数一二线性代数期末考试试卷A

第 页 共6页1四川大学期末考试试卷(A )科 目:《大学数学》(线性代数)一、填空题(每小题3分,共15分)1. 232323a a ab bb c c c = __abc()_____.2. 向量组1(2,5,5)α=,2(2,0,1)α=,3(2,3,1)α=,4(7,8,11)α=-线性_______.3. 设A =378012002⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦, A *是A 的伴随矩阵, 则 |15-A*| = _________.4. 当t 满足______的条件时, 22212311223(,,)222f x x x x tx x x x =+++为正定二次5. 设A, B 都是3阶矩阵, 秩(A )=3, 秩(B )=1, C =AB 的特征值为1, 0, 0, 则C =AB __相似对角化.第 页 共6页2 二、选择题(每小题3分,共15分)1. 设矩阵,23⨯A ,32⨯B 33⨯C , 则下列式子中, ( )的运算可行.(A) AC; (B) C AB -; (C) CB ; (D) BC CA -.2. 设D=123012247-, ij A 表示D 中元素ij a 的代数余子式, 则3132333A A A ++=( ).(A) 0; (B) 1; (C) 1-; (D) 2 . 3. 设A 为4m ⨯矩阵, 秩(A)=2,123,,X X X 是非齐次线性方程组AX =β的三个线性无关解向量, 则( )为AX =0的通解.(A) 11223;k X k X X +- (B) 123();X k X X +-(C)1122123(1);k X k X k k X ++-- (D) 1122123().k X k X k k X +-+4. 设A,B,C 都为n 阶矩阵, 且|AC|≠0, 则矩阵方程AXC=B 的解为( ).(A) 11--=BC A X ; (B) 11--=C BA X ; (C) 11--=A BC X ; (D) 11--=BA C X .5. 设A 为n 阶方阵,A 可以相似对角化的( )是A 有n 个不同的特征值.(A) 充分必要条件 (B) 必要而非充分的条件 (C) 充分而非必要的条件 (D) 既不充分也非必要的条件三、计算下列各题(每小题10分,共30分)1. 计算行列式 11120132.12231420------第 页 共6页32. 解矩阵方程,X B AX +=其中21125111,3001214A B -⎡⎤⎡⎤⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦.X=[-1 5]5/4 2 .-1/2 .-1 3.求向量组]1,3,2,1[1-=α, ]1,10,11,5[2--=α,]9,1,8,3[3-=α, ]19,9,2,0[4-=α的秩与它的一个极大线性无关组.四、解答下列各题(每小题12分,共24分)1.讨论当b取何值时, 非齐次线性方程组123412341234237335135543x x x xx x x xx x x x b+++=⎧⎪+++=⎨⎪++-=⎩有解; 当有解时, 求方程组的通解.第页共6页4第 页 共6页5232232133),,(x x x x x f +=323121244x x x x x x -++ 化为标准形.第 页 共6页6 五、证明题(每小题8分, 共16分)1. 设12321311A λ-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦, 如果存在三阶矩阵 0,B ≠ 满足AB =0, 试求λ的值,并证明. rank B *=0, 其中B *是B 的伴随矩阵.2. 设A 是一个三阶矩阵,向量组123,,()I ααα中的三个向量分别是A 属于特征值0,1,3的特征向量, 向量组)(,,421II ααα线性相关, 证明: 向量组)(,,4321III αααα-线性无关.。
2018年线代期末试卷

10、设 n 阶矩阵 A 满足 A2 A 2I ,则下列矩阵中哪个可能不可逆( B )
(A) A 2I
(B) A I
(C) A I
(D) A
二、计算题(本题共 4 小题,满分 32 分)
5123 11、(8 分)计算行列式 D 3 5 1 2 的值。
2351 1235
11 1 2 3 11 1 2
4、设 A 为 n 阶可逆方阵,A* 为 A 的伴随矩阵,若 A 的一个特征值为 ,则 A* 必 有一个特征值 A / 。
5、二次型 f (x1, x2 , x3 ) 5x12 x22 cx32 4x1x2 2x1x3 2x2 x3 为正定的,则 c 的取值
范围是 c>2
。
6、已知 4 阶方阵 A 的第三列元素依次为 1,3,-2,2,它们的余子式的值分别 为 3,-2,1,1,则 A =( A )
c1c 2
r 2r1
3
c1
4
1
1
答案: D 11 5 1 2 0 4 1 1 112 3 2 (5 分)
11 c1c3
c1c 4
3
5
1 0 r3r1 r 4r1
2
3
2
11 2
11 2 3 5 0 1 1 2
11 39 429 (8 分)
1 0 2 0
12、(8
分)已知矩阵
A
1 11
1 2 1
a5 k1a1 k2a2 k3a3 k4a4 ,则 a5 k1(l2a2 l3a3 l4a4 ) k2a2 k3a3 k4a4 ,这说明
a5 能由 a2 , a3, a4 线性表示,矛盾。所以 a5 不能由 a2 , a3, a4 线性表示。 (6 分)