1 催化裂化的目的和意义
1 催化裂化的目的和意义

1 催化裂化的目的和意义石油炼制工业是国民经济的重要支柱产业,其产品被广泛用于工业、农业、及交通运输和国防建设等领域。
催化裂化(FCC)作为石油炼制企业的主要生产装置,在石油加工中占有相当重要的地位,是实现原油深度加工、提高轻质油收率、品质和经济效益的有效途径催化裂化使原油二次加工中重要的加工过程,是液化石油气、汽油、煤油和采油、、柴油的主要生产手段,在炼油厂中站有举足轻重的地位。
传统原料采用原油蒸馏所得到的重质馏分油,主要是直镏减压馏分油(VGO),也包括焦化重馏分油(CGO)。
近20年一些重质油或渣油也作为催化裂化的原料,例如减压渣油、溶剂脱沥青油、加氢处理的重油等。
催化裂化工艺简介催化裂化的工艺原理是:反应物(蜡油、脱沥青油、渣油)在500℃左右、0.2—0.4MPa 及与催化剂接触的作用下发生裂化、异构化、环化、芳化、脱氢化等诸多化学反应,反应物为汽油、轻柴油、重柴油,副产物为干气、焦炭、油浆等。
催化剂理论上在反应过程中不损耗,而是引导裂化反应生成更多所需的高辛烷值烃产品。
催化裂化过陈友相当的灵活性,允许制造车用和航空汽油以及粗柴油产量的变化来满足燃油市场的主要部分被转化成汽油和低沸点产品,通常这是一个单程操作。
在裂化反应中,所生产的焦炭被沉积在催化剂上,它明显地减少了催化剂的活性,所以除去沉积物是非常必要的,通常是通过燃烧方式是催化剂再生来重新恢复其活性。
重油催化裂化裂化的特点(1)焦炭产率高。
重油催化裂化的焦炭产率高达8~12wt%,而馏分油催化裂化的焦炭产率通常为5~6wt%。
(2)重金属污染催化剂。
与馏分油相比,重油含有较多的重金属,在催化裂化过程中这些重质金属会沉淀在催化剂表面,导致催化剂或中毒。
(3)硫、氮杂质的影响。
重油中的硫、氮等杂原子的含量相对较高,导致裂化后轻质油品中的硫、氮含量较高,影响产品的质量;另一方面,也会导致焦炭中的硫、氮含量较高,在催化剂烧焦过程会产生较多的硫、氮氧化物,腐蚀设备,污染环境。
催化裂化在21世纪炼油工业中的地位和作用

催化裂化在21世纪炼油工业中的地位和作用催化裂化是指将高分子碳氢化合物在催化剂的作用下裂解成低分子碳
氢化合物的一种化学反应,是炼油工业中重要的加工方式之一。
它的地位
和作用主要有以下几个方面。
1.催化裂化可以大幅提高油品的产率。
通过催化裂化,可以将重质油
转化成轻质油,从而使得单位原油的加工产出量增加,提高炼油厂的生产
效率和利润水平。
2.催化裂化可以改善油品的品质。
由于催化裂化可以降低油品的密度
和粘度,同时提高其抗爆性能和抗污染能力,因而可改善车用油品的使用
性能,提高市场竞争力。
3.催化裂化可以减少环境污染。
由于其加工过程相对较为简单和高效,因此在油品的生产过程中可以减少排放高污染物,降低炼油厂的环境压力。
4.催化裂化可以促进石油化工的发展。
催化裂化作为一种先进的石油
加工技术,对于石油化工行业的发展起着重要的推动作用。
同时,随着技
术的不断革新和发展,催化裂化还能够发掘更多可能性,为石油化工领域
的创新提供更多可能性。
催化裂化化学反应原理教学课件

工业应用与技术 发展
本课程还介绍了催化裂化技 术在石油工业中的实际应用 ,以及近年来催化裂化技术 的发展趋势和最新研究成果 。
对未来学习的建议与展望
深化理论基础
建议学习者进一步深化对催化裂化化学反应原理的理解, 掌握相关的基础理论和概念。
实践与实验
通过实践和实验,学习者可以更深入地理解催化裂化过程 ,提高实际操作能力和问题解决能力。建议学习者积极参 与相关的实验和实践项目。
新型催化剂的开发与应用
01
02
03
纳米催化剂
利用纳米技术制备具有特 定结构和性质的催化剂, 以提高催化活性、稳定性 和选择性。
多功能催化剂
开发具有多种活性组分的 复合催化剂,实现多种催 化功能的协同作用。
生物催化剂
探索生物催化剂在催化裂 化中的应用,利用酶的专 一性和高效性提高反应效 率。
绿色与可持续发展的催化裂化技术
料。
焦炭的形成是由于部分烃未能 发生裂化反应而残留在催化剂
上。03催化裂Fra bibliotek工艺流程原料预处理
原料筛选
去除原料中的杂质和过大颗粒, 保证原料质量和稳定性。
加热和混合
将原料加热至适宜温度,并进行 均匀混合,以提高反应效率。
反应-再生系统
反应阶段
在适宜的温度和压力下,原料在催化 剂的作用下进行裂化反应,生成小分 子烃类物质。
催化剂的作用与 选择
催化剂在催化裂化过程中起 着关键作用,能够降低反应 活化能,提高反应速率。本 课程介绍了不同类型的催化 剂及其在催化裂化过程中的 作用,以及如何根据实际需 求选择合适的催化剂。
化学反应机理与 动力学
化学反应机理是理解催化裂 化过程的基础。本课程深入 探讨了催化裂化过程中的化 学反应机理,包括烃类分子 的裂解和重整等,同时介绍 了反应动力学的基本概念和 模型。
催化裂化中主要反应

催化裂化中主要反应催化裂化(Catalytic Cracking)是一种石油加工工艺,主要用于将较重的石油馏分转化为较轻的石油产品,如汽油和液化石油气(LPG)。
催化裂化中发生的主要反应包括裂化反应、重排反应、氢转移反应和脱氢反应等。
裂化反应是催化裂化中最为重要的反应之一。
在裂化反应中,长链的烷烃分子被分解成较短的烷烃分子和烯烃分子。
裂化反应可以在相对较高的温度条件下发生,常采用催化剂作为催化剂。
裂化反应的主要目的是增加汽油产率,通过裂化长链烷烃来获得更多的较轻的烷烃和烯烃。
重排反应是催化裂化中另一个重要的反应。
在重排反应中,烷烃分子的碳骨架重新排列,以形成更稳定的分子结构。
重排反应可以发生在较低的温度下,常采用特定的催化剂来促进反应。
重排反应可以改善燃料的辛烷值,并提高产品的抗爆燃性能。
氢转移反应是催化裂化中的另一个关键反应。
在氢转移反应中,氢气和烃类分子进行反应,形成饱和烃和不饱和烃。
氢转移反应可以在相对较低的温度和压力条件下发生。
这种反应可以改善产品的燃料质量,减少不饱和烃和芳烃含量,提高产品的稳定性和抗老化能力。
脱氢反应是催化裂化中另一个重要的反应。
在脱氢反应中,烷烃分子失去一部分氢原子,形成烯烃和氢气。
脱氢反应可以在相对较高的温度和压力条件下发生,常采用特定的催化剂来促进反应。
脱氢反应可以改善产品的辛烷值,提高产品的抗爆燃性能。
除了上述主要反应外,催化裂化中还可能发生其他次要反应,如重聚反应、异构化反应和酸性稀溶反应等。
重聚反应是指烯烃分子在裂化过程中重新结合成为高分子量的芳烃和环烷烃。
异构化反应是指烷烃分子在裂化过程中重新排列形成不同碳骨架的同分异构体。
酸性稀溶反应是指酸性条件下,烃类分子与酸反应形成芳烃和环烷烃。
综上所述,催化裂化中主要发生裂化反应、重排反应、氢转移反应和脱氢反应等。
这些反应通过改变烃类分子的碳骨架和分子结构,实现石油馏分的转化和增值。
催化裂化技术在石油加工工业中起着重要的作用,提高了石油产品的质量和产量,满足了人们对燃料和化工原料的需求。
1催化裂化的目的和意义

1催化裂化的目的和意义催化裂化是一种重要的石油加工技术,旨在将长链烃分子切割成较短链的烃化合物,并生成更多有用的产品,如汽油、柴油等。
其目的和意义在于提高石油产品的产量和质量,满足市场的需求,并促进能源的有效利用和环境保护。
首先,催化裂化可以提高石油产品的产量和质量。
炼油厂通过裂化技术将较重的长链烃分子切割成较轻的短链烃分子,从而提高汽油和柴油的产量。
这不仅可以满足日益增长的交通需求,还可以提高石油产品的质量,减少有害物质的排放,符合环保要求。
其次,催化裂化可以扩大炼油厂的生产规模和经济效益。
通过裂化技术,炼油厂可以提高石油产品的产量和品质,增加收入,降低生产成本,提高利润率。
这对于提高炼油厂的竞争力,保持市场地位至关重要。
此外,催化裂化可以促进能源的有效利用和环境保护。
裂化技术有助于提高石油产品的能源密度和利用效率,减少能源的浪费和环境污染。
此外,通过控制裂化过程和优化生产工艺,可以减少有害废气的排放,降低对环境的影响,保护生态环境。
最后,催化裂化还具有重要的理论和实践意义。
裂化技术的研究和应用,有助于深化对石油化工过程的认识和理解,推动石油化工技术的发展和创新。
同时,裂化技术的不断完善和提高,也为其他相关领域的研究和应用提供了借鉴和启示。
总之,催化裂化是一种重要的石油加工技术,具有提高石油产品产量和质量、扩大生产规模和经济效益、促进能源有效利用和环境保护、以及推动石油化工技术发展和创新等重要目的和意义。
通过不断优化和提升裂化技术,可以更好地满足市场需求,促进行业健康发展,推动经济社会可持续发展。
催化裂化知识

催化裂化知识催化裂化是一种重要的炼油工艺,通过催化剂的作用将重质石油馏分转化为轻质产品。
在催化裂化过程中,石油馏分经过加热后与催化剂接触,发生裂化反应,生成较轻质的烃类化合物。
催化裂化技术广泛应用于石油炼制行业,使得石油资源得以充分利用。
催化裂化的原理是通过催化剂的作用降低反应的活化能,加快反应速率。
催化剂是一种能够提供活性位点的物质,它能够吸附反应物分子并改变其化学键,从而促进反应的进行。
常用的催化剂有酸性催化剂、碱性催化剂和金属催化剂等。
在催化裂化过程中,石油馏分首先被预热至适宜的温度,然后进入催化剂床层。
在催化剂的作用下,石油馏分中的大分子化合物发生裂化反应,生成烃类产品。
裂化反应主要包括裂解、重排和异构化等过程。
裂解是指将长链烃分子裂解为短链烃分子,重排是指短链烃分子发生位置变化,异构化是指短链烃分子发生结构变化。
催化裂化的反应条件主要包括温度、压力和催化剂的选择等。
温度是影响催化裂化反应速率和产物分布的重要因素。
适宜的温度能够提高反应速率,但过高的温度会导致生成焦炭等副产物。
压力对催化裂化反应的影响相对较小,一般较低的压力即可满足反应的需求。
催化剂的选择对反应的效果有着重要影响,不同的催化剂对产品分布、产率和选择性有不同的影响。
催化裂化技术的应用使得石油炼制过程更加灵活多样,能够根据市场需求灵活调整产品结构。
通过合理的催化剂设计和反应条件控制,可以实现不同产品的选择性裂化。
催化裂化不仅能够提高汽油产率,还能够产生重要的石化原料,如乙烯、丙烯等。
催化裂化技术的发展也为石油炼制行业的绿色转型提供了重要支持。
然而,催化裂化过程中也存在一些问题。
首先,催化剂的失活是一个严重的问题,随着反应的进行,催化剂会逐渐失去活性,需要定期更换。
其次,催化裂化反应的过程较复杂,需要综合考虑反应的热力学和动力学特性,以及催化剂的选择和反应条件的控制。
此外,催化裂化过程中还会产生大量的副产物,如焦炭和烟气,对环境造成一定的污染。
催化催化裂化技术

催化催化裂化技术催化裂化技术是一种重要的炼油工艺,可以将重质石油馏分转化为高附加值的轻质产品。
本文将从催化裂化技术的原理、应用和发展前景等方面进行探讨,以期为读者提供对该技术的全面了解。
一、催化裂化技术的原理催化裂化技术是通过催化剂的作用将重质石油馏分分解为较轻的产品。
其主要原理是在高温和高压的条件下,将原料油与催化剂接触,使其发生裂化反应。
这种反应可以将长链烃分子裂解成短链烃分子,从而提高汽油和燃料油的产率。
催化裂化反应主要分为两个阶段:热裂化和催化裂化。
在热裂化阶段,原料油在高温下分解成烃气和液体烃。
然后,在催化剂的作用下,烃气和液体烃进一步反应,生成较轻的产品,如汽油、液化气和柴油等。
二、催化裂化技术的应用催化裂化技术在炼油行业中具有广泛的应用。
首先,它可以提高汽油的产率。
由于汽车的普及,对汽油的需求量不断增加。
催化裂化技术可以将重质石油馏分转化为轻质的汽油,从而满足市场需求。
催化裂化技术可以生产出高质量的柴油。
在催化裂化过程中,石油馏分中的硫、氮和金属等杂质可以得到有效去除,从而提高柴油的质量。
这对于减少柴油排放的污染物具有重要意义。
催化裂化技术还可以生产出液化气、石脑油和石化原料等产品。
这些产品在化工、冶金和化肥等行业中具有广泛的应用。
三、催化裂化技术的发展前景随着能源需求的增加和石油资源的日益枯竭,催化裂化技术在未来的发展前景十分广阔。
一方面,随着汽车工业的高速发展,对汽油的需求将持续增加,催化裂化技术将成为满足市场需求的重要手段。
另一方面,随着环境保护意识的提高,对燃料油质量的要求也越来越高。
催化裂化技术可以提高燃料油的质量,减少对环境的污染,因此在未来的发展中具有重要的作用。
随着科技的不断进步,催化剂的研发和改进也将推动催化裂化技术的发展。
新型的催化剂可以提高反应的选择性和活性,从而提高产品的产率和质量。
催化裂化技术作为一种重要的炼油工艺,在提高石油产品产率和质量方面具有重要的作用。
催化裂化的工艺特点及基本原理

催化裂化的工艺特点及基本原理催化裂化是一种重要的石油加工工艺,其开发和应用对于提高石油产业发展水平具有重要的意义。
催化裂化工艺的特点和基本原理如下:一、工艺特点:1.高选择性:催化裂化工艺可以将石油馏分中的大分子烃化合物按照其碳数分解为较低碳数的烃化合物,其中可选择的烃化合物主要是汽油和液化气。
因此,催化裂化可以提高汽油和液化气产率,达到更好的操作经济效益。
2.产物分布广:催化裂化反应不仅可以生成汽油和液化气,还可以生成较低碳数的烃化合物,如乙烯、丙烯等。
因此,催化裂化反应可以提供多种不同碳数的烃化合物,满足不同需求。
3.增塔体积积极:催化裂化工艺采用固定床反应器,反应器内填充了催化剂颗粒,因此反应器体积较大。
大体积的反应器可以增加催化裂化反应的容量,提高石油裂解速率,并且还可以增加反应过程的稳定性和可控性。
4.废气利用:催化裂化反应产生的废气中含有非常丰富的烃化合物和能量,可以通过适当的处理和回收利用,从而得到更好的经济效益,并减少对环境的污染。
二、基本原理:催化裂化反应是通过催化剂的作用来进行的,其基本原理如下:1.裂解反应:石油中的长链烃化合物在催化剂的作用下发生热裂解反应,将大分子烷烃分解成较小分子的烃化合物。
这种反应是一个链状反应过程,会生成一系列的短链烃化合物和碳氢烃中间体。
2.重排反应:短链烃化合物和碳氢烃中间体在催化剂的作用下发生重排反应,重新组合成不同碳数的烃化合物。
3.芳构化反应:在催化裂化过程中,由于催化剂特殊的性质,烃化合物还会发生芳构化反应,生成芳烃类化合物,如苯、甲苯等。
4.积碳反应:由于裂化过程产生的碳元素会在催化剂表面析出,形成碳黑,导致催化剂失活。
因此,催化裂化还需要定期对催化剂进行再生,以保持其活性。
综上所述,催化裂化工艺具有高选择性、广泛的产物分布、增塔体积积极和废气利用等特点。
其基本原理包括裂解反应、重排反应、芳构化反应和积碳反应。
催化裂化工艺的开发和应用有助于提高石油产业的经济效益和环境可持续性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 催化裂化的目的和意义石油炼制工业是国民经济的重要支柱产业,其产品被广泛用于工业、农业、及交通运输和国防建设等领域。
催化裂化(FCC)作为石油炼制企业的主要生产装置,在石油加工中占有相当重要的地位,是实现原油深度加工、提高轻质油收率、品质和经济效益的有效途径催化裂化使原油二次加工中重要的加工过程,是液化石油气、汽油、煤油和采油、、柴油的主要生产手段,在炼油厂中站有举足轻重的地位。
传统原料采用原油蒸馏所得到的重质馏分油,主要是直镏减压馏分油(VGO),也包括焦化重馏分油(CGO)。
近20年一些重质油或渣油也作为催化裂化的原料,例如减压渣油、溶剂脱沥青油、加氢处理的重油等。
催化裂化工艺简介催化裂化的工艺原理是:反应物(蜡油、脱沥青油、渣油)在500℃左右、0.2—0.4MPa 及与催化剂接触的作用下发生裂化、异构化、环化、芳化、脱氢化等诸多化学反应,反应物为汽油、轻柴油、重柴油,副产物为干气、焦炭、油浆等。
催化剂理论上在反应过程中不损耗,而是引导裂化反应生成更多所需的高辛烷值烃产品。
催化裂化过陈友相当的灵活性,允许制造车用和航空汽油以及粗柴油产量的变化来满足燃油市场的主要部分被转化成汽油和低沸点产品,通常这是一个单程操作。
在裂化反应中,所生产的焦炭被沉积在催化剂上,它明显地减少了催化剂的活性,所以除去沉积物是非常必要的,通常是通过燃烧方式是催化剂再生来重新恢复其活性。
重油催化裂化裂化的特点(1)焦炭产率高。
重油催化裂化的焦炭产率高达8~12wt%,而馏分油催化裂化的焦炭产率通常为5~6wt%。
(2)重金属污染催化剂。
与馏分油相比,重油含有较多的重金属,在催化裂化过程中这些重质金属会沉淀在催化剂表面,导致催化剂或中毒。
(3)硫、氮杂质的影响。
重油中的硫、氮等杂原子的含量相对较高,导致裂化后轻质油品中的硫、氮含量较高,影响产品的质量;另一方面,也会导致焦炭中的硫、氮含量较高,在催化剂烧焦过程会产生较多的硫、氮氧化物,腐蚀设备,污染环境。
(4)催化裂化条件下,重油不能完全气化。
重油在催化裂化条件下只能部分气化,未气化的小液滴会附着在催化剂表面上,此时的传质阻力不能忽略,反应过程是一个复杂的气液固三相催化反应过程。
催化裂化面临的问题作为炼油厂的核心加工装置催化裂化也面临着越来越多的挑战。
不断严格的环保要求,主要是汽油规格的提升对烯烃和硫含量的要求以及烟气排放量的限制;对产品需求比例的要求的变化,如市场对柴油需求不力和数量的增加,即所谓的柴油化趋势。
这些都对现有的催化裂化装置与催化裂化的进一步发展形成很难、很大的冲击。
而且除了采用新型有效的降低催化裂化汽油和柴油的硫含量外,还要考虑各种技术的费用问题。
我国催化裂化所面临的问题:(1)我国FCC单套平均能力小;(2)装置耗能高;(3)FCC催化剂发展水平不高;(4)我国FCC装置开工周期短,这也是我国个国外催化裂化技术的主要差距。
催化裂化(FCC)是炼油企业获取经济效益的重要手段,尽管催化裂化技术以相对成熟,但仍是改制重瓦斯油和渣油的核心技术,尤其近几年来在炼油效益低迷和环保法规日益严格的双重压力下,仍需不断开发与催化裂化相配套的新技术以迎接新的挑战。
基于我国原油资源有资源特点和二次加工能力中FCC占绝大比重的现状,应提高FCC综合技术水平,缩小同先进水平的差距,与国外大公司竞争。
2催化裂化在国内外的发展最早的工业催化裂化装置出现在1936年。
70多年来无论是在技术上还是在规模上都有巨大的发展,从技术上发展的角度来说,最基本的是反应—再生型式和催化剂性能两个方面的发展。
催化裂化是复杂的平行顺序反应过程,原料油在催化剂上进行催化裂化会发生缩合反应生成焦炭。
这些交谈会附着在催化剂表面是催化剂的活性降低。
因此用空气烧去积炭的再生过程是必不可少的。
催化剂在催化裂化的发展中起着重要的作用。
先后使用了活性白兔作催化剂;来采用人工合成的硅酸铝催化剂;分子筛催化剂,由于它具有活性选择性和稳定性好等特点,被广泛应用,并且促进了催化裂化装置的流程和设备的重大改革。
除了促进替身管反应级数的发展外还促进了再生技术的迅速发展。
现在催化裂化工艺技术已发展为一个重质油轻质转化过程,特别是我国,形成了炼油工业绝对以催化裂化工艺为主的局面。
我国催催化裂化技术的发展方向。
(1)为了有力降低汽油的烃含量,在定量动力学研究基础上,深入研究不同操作条件的影响,促使向异构化、芳构化和氢转移反应有利于降低汽油的烯烃的方向进行,开发降烯烃催化剂和助剂,使催化裂化汽油的烯烃含量大幅度降低。
(2)为了满足我国的车用汽油的组成状况,为了充分利用现有的催化能力,尽量减少投入,降低汽油,柴油质量升级所付出的代价,开发了应技术,降低了催化裂化汽油的烃含量和硫含量。
(3)充分利用原料,并向化工领域延伸,用常压渣油等种植原料生产乙烯,丙烯等。
我国重质油催化裂化沉降器结焦研究发展我国在重油催化裂化沉降器结焦的发展在重油催化裂化中,由于渣油具有较大的结焦倾向,我国多数炼油厂的重油催化裂化装置(RFCCU)都发生过严重的结焦结交部分包括提升管、沉降器顶部、沉降器内旋风分离器、大油气管线、分流塔底和油浆系统等,其中沉降器的结焦危害尤为严重。
沉降器的严重结焦可导致催化裂化装置分正常停工,直接影响到催化裂化装置的长周期安全运行和厂子的经济效益。
沉降器结焦概述沉降器是RFCCU反应再生系统的重要组成部分,其主要作用是将反应油气与催化剂分离开来,并将待生催化剂倒入再生器进行烧焦再生,反应油气则有大油气管线去分馏塔进行馏分切割。
影响沉降器结焦的主要因素沉降结焦是一系列物理变化和化学变化共同作用的结果,反应油气含有催化剂颗粒及其重要组分的冷凝式沉降器结焦的物理原因,而重芳烃、胶质、沥青质的高温缩合和油气中烯烃和二烯烃的聚合、环化反应则是沉降器结焦的化学因素。
沉降器结焦的机理分析许多研究表明,沉降器中油气的气、液相分别遵循从不同的结焦机理,抑制沉降器结焦的关键在于防止反应油气中重组分的冷凝和缩短反应油气的停留时间。
抑制沉降器结焦的措施通过对沉降器结焦机理的研究和工业实践,目前常用的防止结焦的措施主要有:①增加防焦蒸汽采用二级孔喷嘴,使喷嘴指向沉淀器油气泄流空间,避免出现死角;②采用新型快速分离装置,减少油气在沉淀器内停留时间,如采用粗旋、三叶形密闭直联快速分离器等,使油气停留时间由20~30s减少到4~9s;③采用提升管反应终止剂技术,减少因果裂化反应生成的不饱和二烯烃;④优化沉降器结构设计,消除汽油平动死区;⑤平稳操而增大,而后又逐渐减小。
因为开始时随着引发剂的加入,产生了大分子自由基,其浓度随着DCP的量增大而增加,接枝速率加快,所以接枝率增大,但DCP浓度增加一定量时,PP降解严重,使接枝率降低。
脱除催化裂化汽油中硫含量的技术及其新进展我国于2003年7月1日在北京、上海、广州大城市开始执行汽油新标准,硫含量<200μg/g。
美国2004年汽油中硫含量平均为120μg/g,2005年起炼油行业平均为30μg/g,为炼油业将投资30—50亿美元,以实现30μg/g的低硫汽油新标准。
随着对汽车排放污染的进一步严格控制,把汽油中硫含量降到最低,甚至为“无硫”汽油,是各国竞相研究的重要课题。
确定催化汽油中的硫类型和含量分布情况是催化裂化汽油脱硫技术研究的出发点。
根据汽油中硫类型和含量分布采取合适的脱硫技术,是解决催化裂化汽油中硫的技术关键。
脱硫技术和工艺的发展应该主要以脱除这类有机硫为主,即围绕催化裂化汽油脱硫过程中如何促进吩类和硫醚类化合物转化,是降低催化汽油硫含量的关键。
对催化原料进行加氢预处理是降低催化汽油硫含量最为有效的方法,但这需要在高压条件下操作,氢耗、能耗都高,同时需要制氢装置,因为投资和生产成本显著增加。
催化裂化汽油的选择性加氢脱硫和非选择性加氢脱硫的优点是既可有效脱硫,又可降烯烃,我国的催化裂化汽油中硫含量和烯烃含量均高,因此催化裂化汽油加氢脱硫应该是一种针对性和实用性很强的技术,目前关键是脱硫催化剂的开发,是脱硫汽油的辛烷值损失很小。
,因此催化裂化汽油的分离、汽油氧化法、生物脱硫、吸附脱硫和催化蒸馏脱硫等技术的发展都很重要。
近几年催化裂化技术进展和改进催化裂化催化剂性能必须满足催化裂化的不同要求,如原料、装置工艺、产物分布、油品质量、环保法规等。
炼厂增效和装置运行需求决定了催化裂化催化剂的性能要求,近年来除了对催化剂的常规要求如满足抗磨损、低价格、目的产品收率高、汽油辛烷值较高等方面的要求外,催化剂在适合加工重油原料、改善油品质量(如汽油烯烃、硫含量)、满足特殊的产品分布需求(如多产柴油、低碳烯烃等)、满足转化和产品需要的催化裂化新工艺相匹配的催化剂以及适应环境保护的需要等方面做了许多工作。
国内石科院、等单位在催化材料的研究以及与催化剂有关的分子筛、基质等材料的开发方面取得了较大的进展。
在渣油FCC催化剂方面注重原位合成分子筛技术、分子筛超稳化改性技术、基质抗重金属技术以及基质孔结构和酸性控制技术等;在降烯烃催化剂方面多采用REUSY沸石或复合沸石作为降烯烃催化剂的活性组分,如RIPP开发了特殊氧化物改进性分子筛表面技术,兰州石化研究院开发了HRSY系列以高稀土超稳Y沸石和超稳稀土Y沸石为主的多元活性组分以及多元活性组分的符合改进性技术;在多产烯烃催化剂方面,注重择形分子筛ZSM—5及其改性技术。
重质原油/含酸原油的加工、向石油化工延伸增加炼油装置效益以及因环保要求提高燃料油产品质量和限制装置污染物排放是今后工作的重点,新的FCC工艺技术的开发主要围绕这些主题进行。
同时一些新的设备,如新型喷嘴、快分、终端设备、气提装置和再生器等都有已经成功地在工业FCC装置使用。
FCC装置是的大型化使得干气的利用具有经济性,而FCC 装置加工含氧化物也是一些炼油企业提高效益的有效途径。
国外催化裂化技术的发展及现状渣油催化裂化技术(RFCC)工艺主要有UOP公司的MSCC技术,在MSCC过程中催化剂向下流动形成催化剂帘,这几种工艺在世界各地运行多年(4)目前,RFCC加工原油残炭可达3--10%,镍钒含量可达10--40μg/g,平衡剂上金属沉积量高达10000μg/g。
另外,还有Mobil公司的超短接触FCC工艺、WesternOntario大学的渣油超短裂解工艺,催化裂化反应过程的核心受提升管反应器技术一直为突破。
多产烯烃的工艺技术该技术主要特点;(1)设立第二提升管有二次裂化;(2)使用高ZMS-5含量的助剂;(3)采用密闭式旋风分离器。
(4)优化工艺与催化剂的选择性组分裂化;(5)乙烯和丁烯移位反应生成丙烯;在中试结果表明丙烯的产率高。
轻烃预提升技术UOP公司在干气预提升技术是目前应用效果较好的轻预提升技术。