四川省成都市成都七中(高新校区)2020-2021上九年级上学期半期考试数学题卷 答案
2020-2021成都七中(高新校区)九年级数学上期中第一次模拟试题含答案

2020-2021成都七中(高新校区)九年级数学上期中第一次模拟试题含答案一、选择题1.﹣3的绝对值是()A.﹣3B.3C.-13D.132.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A.68°B.20°C.28°D.22°4.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.A B.B C.C D.D5.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A.310B.925C.425D.1106.已知实数x满足(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0,那么x2﹣2x+1的值为()A.﹣1或3B.﹣3或1C.3D.17.如图,从一张腰长为90cm,顶角为120 的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A .15cmB .12cmC .10cmD .20cm8.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( )A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 9.将函数y=kx 2与y=kx+k 的图象画在同一个直角坐标系中,可能的是( )A .B .C .D .10.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .811.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 A .4个B .3个C .2个D .1个12.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =二、填空题13.如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于D .若AC =6,BD 2,则BC 的长为_____.14.已知:如图,CD 是O 的直径,AE 切O 于点B ,DC 的延长线交AB 于点A ,20A ∠=,则DBE ∠=________度.15.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.16.圆锥的底面半径为14cm ,母线长为21cm ,则该圆锥的侧面展开图的圆心角为_____ 度.17.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.18.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________ 19.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.20.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.三、解答题21.某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?22.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据:抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率mn0.630.600.630.600.620.610.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.23.如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O 上,BD平分∠ABC交AC 于点E,DF⊥BC交BC的延长线于点F.(1)求证:FD是⊙O的切线;(2)若BD=8,sin∠DBF=35,求DE的长.24.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣5,1),B (﹣2,2),C (﹣1,4),请按下列要求画图:(1)将△ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1;(2)画出与△ABC 关于原点O 成中心对称的△A 2B 2C 2,并直接写出点A 2的坐标.25.已知二次函数243y x x =-+.(1)求函数图象的顶点坐标,对称轴和与坐标轴的交点坐标,并画出函数的大致图象. (2)若1122(,),(,)A x y B x y 是函数243y x x =-+图象上的两点,且121x x <<,请比较12y y 、的大小关系(直接写出结果).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据负数的绝对值是它的相反数,可得出答案. 【详解】根据绝对值的性质得:|-3|=3.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 2.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.3.D解析:D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.4.B解析:B【解析】试题分析:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选B.考点:动点问题的函数图象.5.A解析:A【解析】【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.6.D解析:D【解析】【分析】设x2﹣2x+1=a,则(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0化为a2+2a﹣3=0,求出方程的解,再判断即可.【详解】解:设x2﹣2x+1=a,∵(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0, ∴a 2+2a ﹣3=0, 解得:a =﹣3或1,当a =﹣3时,x 2﹣2x +1=﹣3, 即(x ﹣1)2=﹣3,此方程无实数解; 当a =1时,x 2﹣2x +1=1,此时方程有解, 故选:D . 【点睛】此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.7.A解析:A 【解析】 【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r . 【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠==,=, 30A B ︒∴∠∠==, 1452OE OA cm ∴==,∴弧CD 的长1204530180ππ⨯==,设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.B解析:B 【解析】 【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决. 【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯,解得:116k,此时116k 且0k ≠; 综上,116k .故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.9.C解析:C 【解析】 【分析】根据题意,利用分类讨论的方法,讨论k >0和k <0,函数y=kx 2与y=kx+k 的图象,从而可以解答本题. 【详解】 当k >0时,函数y=kx 2的图象是开口向上,顶点在原点的抛物线,y=kx+k 的图象经过第一、二、三象限,是一条直线,故选项A 、B 均错误, 当k <0时,函数y=kx 2的图象是开口向下,顶点在原点的抛物线,y=kx+k 的图象经过第二、三、四象限,是一条直线,故选项C 正确,选项D 错误, 故选C . 【点睛】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.B解析:B 【解析】 【分析】根据旋转的性质和图形的特点解答. 【详解】∵图案绕点O 旋转120°后可以和自身重合,∠AOB 为120° ∴图形中阴影部分的面积是图形的面积的13, ∵图形的面积是12cm 2,∴图中阴影部分的面积之和为4cm 2;故答案为B.【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.11.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.12.D解析:D【解析】【分析】分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.【详解】解:A、∵方程M有两个不相等的实数根,∴△=b2−4ac>0,∵方程N的△=b2−4ac>0,∴方程N也有两个不相等的实数根,故不符合题意;B、把x=4代入ax2+bx+c=0得:16a+4b+c=0,∴110 164c b a++=,∴即14是方程N的一个根,故不符合题意;C、∵方程M有两根符号相同,∴两根之积ca>0,∴ac>0,即方程N的两根之积>0,∴方程N的两根符号也相同,故本选项不符合题意;D、如果方程M和方程N有一个相同的根,那么这个根也可以是x=-1,故本选项符合题意;故选:D.【点睛】本题考查了根的判别式、根与系数的关系以及一元二次方程的解,逐一分析四个选项的正误是解题的关键.二、填空题13.8【解析】【分析】连接AD根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°故可得出AD=BD再由AB是⊙O的直径可知△ABD是等腰直角三角形利用勾股定理求出AB的长在Rt△ABC中利用勾股定解析:8【解析】【分析】连接AD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【详解】连接AD,∵∠ACB=90°,∴AB是⊙O的直径.∵∠ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=52.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB=22+=10.AD BD∵AC=6,∴BC=2222-=-=8.AB AC106故答案为:8.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.14.55【解析】【分析】连接BC由CD是⊙O的直径知道∠CBD=90°由AE是⊙O的切线知道∠DBE=∠1∠2=∠D又∠1+∠D=90°即∠1+∠2=90°;而∠A+∠2=∠1由此即可求出∠1即求出∠D解析:55【解析】【分析】连接BC,由CD是⊙O的直径知道∠CBD=90°,由AE是⊙O的切线知道∠DBE=∠1,∠2=∠D,又∠1+∠D=90°,即∠1+∠2=90°;而∠A+∠2=∠1,由此即可求出∠1,即求出∠DBE.【详解】如图,连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°①,∠A+∠2=∠1②,-②得∠1=55°即∠DBE=55°.故答案为:∠DBE=55°.【点睛】本题考查的是弦切角的性质及圆周角定理,三角形内角与外角的关系,是一道较简单的题目.15.【解析】试题分析:解:连接OD∵CD是⊙O切线∴OD⊥CD∵四边形ABCD 是平行四边形∴AB∥CD∴AB⊥OD∴∠AOD=90°∵OA=OD∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.16.240【解析】【分析】根据弧长=圆锥底面周长=28πcm圆心角=弧长180母线长π计算【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm扇形的圆心角=弧长×180÷母线长÷π=28π×解析:240【解析】【分析】根据弧长=圆锥底面周长=28πcm,圆心角=弧长⨯180÷母线长÷π计算.【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm,扇形的圆心角=弧长×180÷母线长÷π=28π×180÷21π=240°.故答案为:240.【点睛】此题主要考查弧长=圆锥底面周长及弧长与圆心角的关系,熟练掌握公式及关系是解题关键.17.【解析】【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;23解析:3 4【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=3 4 .故其概率为:34.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.18.x<-1或x>3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y随x的增大而增大当时y随x的增大而减小∵∴当函数值y>0时x的取值范围是x<-1或x>3故答案为解析:x<-1或x>3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小, ∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3 故答案为:x <-1或x >3. 【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.19.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概解析:14【解析】 【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率. 【详解】 如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果, ∴小亮和大刚两人恰好分在同一组的概率是41164=, 故答案为:14. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答20.9【解析】【分析】根据旋转的性质得到△ABC≌△A1BC1A1B=AB=6所以△A1BA 是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S 阴影=S△A1BA+S△A1BC1﹣S△解析:9 【解析】 【分析】根据旋转的性质得到△ABC ≌△A 1BC 1,A 1B=AB=6,所以△A 1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA 是等腰三角形,∠A1BA=30°,∴S△A1BA= 12×6×3=9,又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故答案为9.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.三、解答题21.(1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克【解析】【分析】(1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.【详解】(1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.22.(1)见表格解析;(2)见解析;(3)0.39.【解析】【分析】(1)先由频率=频数÷试验次数算出频率;(2)根据表格作出折线统计图即可;(3)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率.【详解】解:(1)抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率0.630.600.620.630.620.600.620.610.610.61(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.【点睛】考核知识点:用频率表示概率.求出频率是关键.23.(1)详见解析;(2)9 2【解析】【分析】(1)连接OD,根据角平分线的定义得到∠ABD=∠DBF,由等腰三角形的性质得到∠ABD=∠ODB,等量代换得到∠DBF=∠ODB,推出∠ODF=90°,根据切线的判定定理得到结论;(2)连接AD,根据圆周角定理得到∠ADE=90°,根据角平分线的定义得到∠DBF=∠ABD,解直角三角形得到AD=6,在Rt△ADE中,解直角三角形得到DE=92.【详解】(1)连接OD,∵BD平分∠ABC交AC于点E,∴∠ABD=∠DBF,∵OB=OD,∴∠ABD=∠ODB,∴∠DBF=∠ODB,∵∠DBF+∠BDF=90°,∴∠ODB+∠BDF=90°,∴∠ODF=90°,∴FD是⊙O的切线;(2)连接AD,∵AB是⊙O的直径,∴∠ADE=90°,∵BD平分∠ABC交AC于点E,∴∠DBF=∠ABD,在Rt△ABD中,BD=8,∵sin∠ABD=sin∠DBF=35,∴AB=10,AD=6,∵∠DAC=∠DBC,∴sin∠DAE=sin∠DBC=35,在Rt△ADE中,sin∠DAC=35,设DE=3x,则AE=5x,∴AD=4x,∴tan∠DAE=34 DE x AD x∴DE=92.【点睛】本题考查了切线的判定和性质,角平分线的性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.24.(1)画图形如图所示见解析,(2)画图形如图所示见解析,点A2(5,-1)【解析】 【分析】(1)将三个顶点分别向右平移4个单位长度、再向下平移1个单位长度,得到对应点,再顺次连接即可得;(2)将△ABC 的三个顶点关于原点O 成中心对称的对称点,再顺次连接可得. 【详解】(1)画图形如图所示,(2)画图形如图所示,点A 2(5,-1)【点睛】本题主要考查作图-旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义及其性质,并据此得出变换后的对应点.25.(1)顶点(2,1)-;对称轴:直线2x =;与x 轴交点为(1,0)和(3,0),与y 轴交点为(0,3),图象见解析;(2)12y y >. 【解析】 【分析】(1)根据二次函数解析式即可确定出顶点坐标、对称轴、与两坐标轴的交点坐标,再在坐标系中画出函数图象即可; (2)根据二次函数的图象解答. 【详解】解:(1)二次函数y =x 2﹣4x +3=(x ﹣2)2﹣1,当x =0,y =3,当y =0时,x 2﹣4x +3=0,解得:11x =,23x =,∴抛物线的顶点为(2,﹣1),对称轴为直线x =2,与x 轴交点为(1,0)和(3,0),与y 轴交点为(0,3),画出图象,如图所示:(2)∵当x <1时,y 随x 的增大而减小,∴当121x x <<时,12y y >. 【点睛】此题考查了抛物线的图象与性质和二次函数与坐标轴的交点,熟练掌握二次函数的性质是解本题的关键.。
2020-2021学年四川成都九年级上数学期中试卷

2020-2021学年四川成都九年级上数学期中试卷一、选择题1. 下列说法正确的是( )A.8的立方根是2B.−4的平方根是−2C.16的平方根是4D.1的立方根是±12. 如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A. B.C. D.3. 2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A.3.6×103B.3.6×104C.3.6×105D.36×1044. 二次根式√x−1中,x的取值范围是( )A.x≥1B.x>1C.x≤1D.x<15. 在平面直角坐标系中,点P(−3, −5)关于原点对称的点的坐标是( )A.(3, −5)B.(−3, 5)C.(3, 5)D.(−3, −5)6. 下列计算正确的是( )A.x2+x2=x4B.(x−y)2=x2−y2C.(x2y)3=x6yD.(−x)2⋅x3=x57. 某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是( ) A.42件 B.45件 C.46件 D.50件8. 如图,直线l1 // l2 // l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为( )A.2B.3C.4D.1039. 分式方程x+1x+1x−2=1的解是( )A.x=1B.x=−1C.x=3D.x=−310. 若ab>0,则一次函数y=ax−b与反比例函数y=abx在同一坐标系中的大致图象是( )A. B.C. D.二、填空题如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为________.三、解答题(1)计算: √9−4|√3−1|+(2014−π)0−2−1;(2)解不等式组: {3x −1>5,2(x +2)<x +7.先化简,再求值:(1−4x+3)÷x 2−2x+12x+6,其中x =√2+1.2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题: (1)这次被调查的同学共有________人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为________;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.综合实践课上,某兴趣小组同学用航拍无人机进行测高实践,如图为实践时绘制的截面图.无人机从地面点B 垂直起飞到达点A 处,测得学校1号楼顶部E 的俯角为60∘,测得2号楼顶部F 的俯角为45∘,此时航拍无人机的高度为50米.已知1号楼的高度为20米,且EC 和FD 分别垂直地面于点C 和D ,B 为CD 的中点,求2号楼的高度.如图,在平面直角坐标系xOy 中,一次函数y=12x +5和y =−2x 的图象相交于点A ,反比例函数y =kx的图象经过点A .(1)求反比例函数的表达式.(2)设一次函数y =12x +5的图象与反比例函数y =kx 的图象的另一个交点为B ,连接OB ,求△ABO 的面积.如图1,以正方形ABCD 的相邻两边AD ,CD 为边向外作等边三角形,得到△ADE ,△DCF ,点G ,H 分别是AE ,CF 的中点,连接AF ,GH .(1)问题发现:GHAF=________;(2)猜想论证:如图2,若四边形ABCD是矩形,其他条件不变,则(1)中结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)拓展延伸:如图3,在(2)的条件下,点P,Q分别为AF,GH的中点,连接PQ,DQ,猜想PQ,DQ的位置关系,并加以证明.四、填空题如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连结BD,DP,BD 与CF相交于点H.给出下列结论:①△ABE≅△DCF;②FPPH=35;③DP2=PH⋅PB;④S△BPDS正方形ABCD=√3−14.其中正确的是________.(写出所有正确结论的序号)五、解答题某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时,月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?如图,在正方形ABCD中,AB=6,M是对角线BD上的一个动点(0<DM<12BD),连接AM,过点M作MN⊥AM交BC于点N.(1)如图①,求证:MA=MN;(2)如图②,连接AN,O为AN的中点,MO的延长线交边AB于点P,当S△AMNS△BCD=1318时,求AN和PM的长;(3)如图③,过点N作NH⊥BD于H,当AM=2√5时,求△HMN的面积.如图1,直线y=−x+4与x轴交于点B,与y轴交于点C,交双曲线y=kx(x<0)于点N,S△OBN=10.(1)求双曲线的解析式;(2)已知点H是双曲线上一动点,若S△HON=203,求点H的坐标;(3)如图2,平移直线BC交双曲线于点P,交直线y=−6于点Q,连接PC,QB,并延长PC,QB交于第一象限内一点G,若PG=GQ,求平移后的直线PQ的解析式.参考答案与试题解析2020-2021学年四川成都九年级上数学期中试卷一、选择题1.【答案】A【考点】平方根立方根的性质【解析】根据立方根的定义即可判定.【解答】解:A,23=8,8的立方根是2,故选项正确;B,负数没有平方根,故选项错误;C,16的平方根是±4,故选项错误;D,1的立方根是1,故选项错误.故选A.2.【答案】B【考点】简单组合体的三视图【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选B.3.【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:36000用科学记数法表示为3.6×104. 故选B.4.【答案】A【考点】二次根式有意义的条件【解析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x−1≥0,解得x≥1.故选A.5.【答案】C【考点】关于原点对称的点的坐标【解析】解答此题的关键在于理解关于原点对称的点的坐标的相关知识,掌握两个点关于原点对称时,它们的坐标的符号相反,即点P(x, y)关于原点的对称点为P’(−x, −y).【解答】解:P(−3, −5)关于原点对称的点坐标是(3, 5).故选C.6.【答案】D【考点】整式的混合运算幂的乘方与积的乘方【解析】此题暂无解析【解答】解:A中,x2+x2=2x2,故A错误;B中,(x−y)2=x2+y2−2xy,故B错误;C中,(x2y)3=x6y3,故C错误;D中,(−x)2⋅x3=x5,故D正确.故选D.7.【答案】C【考点】中位数【解析】将数据按从小到大的顺序排列,根据中位数的定义求解即可.【解答】解:将数据按从小到大的顺序排列为:42,45,46,50,50,∴中位数为46.故选C.8.【答案】D【考点】平行线分线段成比例【解析】根据平行线分线段成比例定理得出比例式,代入求出即可.【解答】解:∵直线l1 // l2 // l3,∴ABBC =DEEF.∵AB=5,BC=6,EF=4,∴56=DE4,∴DE=103.故选D.9.【答案】A【考点】解分式方程——可化为一元一次方程【解析】观察可得最简公分母是x(x−2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:x+1x +1x−2=1,去分母,方程两边同时乘以x(x−2)得:(x+1)(x−2)+x=x(x−2),整理得:−2=−2x,解得:x=1,经检验,x=1是原分式方程的解.故选A.10.【答案】C【考点】反比例函数的图象【解析】根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.【解答】解:根据题意可得,ab>0,故排除B,D;A,根据一次函数可判断a>0,b<0,根据反比例函数可判断ab>0,与一次函数判断的a,b相矛盾,本选项错误;C,根据一次函数可判断a<0,b<0,根据反比例函数可判断ab>0,与一次函数判断的a,b相符合,本选项正确.故选C.二、填空题【答案】√30【考点】作图—基本作图矩形的性质勾股定理线段垂直平分线的性质【解析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图所示,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD=√32−22=√5,在Rt△ADC中,AC=√(√5)2+52=√30.故答案为:√30.三、解答题【答案】解:(1)原式=3−4(√3−1)+1−12=152−4√3.(2)解不等式组:{3x−1>5,①2(x+2)<x+7,②由①得:x >2, 由②得:x <3,故不等式的解集为2<x <3. 【考点】 绝对值 实数的运算 解一元一次不等式组 【解析】 【解答】解:(1)原式=3−4(√3−1)+1−12 =152−4√3.(2)解不等式组: {3x −1>5,①2(x +2)<x +7,②由①得:x >2,由②得:x <3,故不等式的解集为2<x <3. 【答案】 解:原式=x−1x+3⋅2(x+3)(x−1)2=2x−1.当x =√2+1时, 原式=√2+1−1=√2.【考点】分式的化简求值 【解析】 此题暂无解析 【解答】 解:原式=x−1x+3⋅2(x+3)(x−1)2=2x−1.当x =√2+1时, 原式=√2+1−1=√2.【答案】 180 126∘(3)列表如下:∴ 恰好选中甲、乙两位同学的概率为212=16. 【考点】 条形统计图 扇形统计图 列表法与树状图法【解析】(1)根据跳水的人数和跳水所占的百分比即可求出这次被调查的学生数; (2)用360∘乘以篮球的学生所占的百分比即可;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案. 【解答】解:根据题意得:54÷30%=180(人). 故答案为:180. (2)根据题意得:360∘×(1−20%−15%−30%)=126∘. 故答案为:126∘. (3)列表如下:∴ 恰好选中甲、乙两位同学的概率为212=16.【答案】解:过点E 作EG ⊥AB 于点G ,过点F 作FH ⊥AB 于点H ,如图所示,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD.∵B为CD的中点,∴EG=CB=BD=HF.由题意得:∠EAG=90∘−60∘=30∘,∠AFH=45∘.在Rt△AEG中,AG=AB−GB=50−20=30(米),∴EG=AG⋅tan30∘=30×√33=10√3(米).在Rt△AHF中,AH=HF=BD=EG=10√3(米),∴FD=HB=AB−AH=50−10√3(米),∴2号楼的高度为(50−10√3)米.【考点】解直角三角形的应用-仰角俯角问题矩形的性质【解析】过点E作EG⊥AB于G,过点F作FH⊥AB于H,可得四边形ECBG,HBDF是矩形,在Rt△AEG中,根据三角函数求得EG,在Rt△AHP中,根据三角函数求得AH,再根据线段的和差关系即可求解.【解答】解:过点E作EG⊥AB于点G,过点F作FH⊥AB于点H,如图所示,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD.∵B为CD的中点,∴EG=CB=BD=HF.由题意得:∠EAG=90∘−60∘=30∘,∠AFH=45∘.在Rt△AEG中,AG=AB−GB=50−20=30(米),∴EG=AG⋅tan30∘=30×√33=10√3(米).在Rt△AHF中,AH=HF=BD=EG=10√3(米),∴FD=HB=AB−AH=50−10√3(米),∴2号楼的高度为(50−10√3)米.【答案】解:(1)由{y=12x+5,y=−2x,得{x=−2,y=4,∴A(−2, 4),∵反比例函数y=kx的图象经过点A,∴k=−2×4=−8,∴反比例函数的表达式是y=−8x.(2)解{y=−8x,y=12x+5,得{x=−2,y=4,或{x=−8,y=1,∴B(−8, 1),由直线AB的解析式为y=12x+5得到直线与x轴的交点为(−10, 0),∴S△AOB=12×10×4−12×10×1=15.【考点】反比例函数与一次函数的综合三角形的面积待定系数法求反比例函数解析式【解析】(1)联立方程求得A的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B的坐标,进而求得直线与x轴的交点,然后利用三角形面积公式求得即可.【解答】解:(1)由{y=12x+5,y=−2x,得{x=−2,y=4,∴A(−2, 4),∵反比例函数y=kx的图象经过点A,∴k=−2×4=−8,∴反比例函数的表达式是y=−8x.(2)解{y=−8x,y=12x+5,得{x=−2,y=4,或{x=−8,y=1,∴B(−8, 1),由直线AB的解析式为y=12x+5得到直线与x轴的交点为(−10, 0),∴S△AOB=12×10×4−12×10×1=15.【答案】2√33(2)结论成立.理由:如图,连结DG,DH,∵ 四边形ABCD是矩形,∴ ∠ADC=90∘.∵ △ADE,△DCF都是等边三角形,∴ DA=DE,DC=DF,∠ADE=∠CDF=60∘. ∵ AG=GE,CH=FH,∴ ∠ADG=∠CDH=30∘,∴ ∠ADF=∠GDH=150∘.∵ADDG =DFDH=2√33,∴ △DGH∽△DAF,∴GH AF =ADDG=2√33.(3)PQ⊥DQ.理由:如图,连结DG,DH,DP,由(2)可知:△DGH∽△DAF,∴ ∠DGQ=∠DAP.∵ DQ,DP分别是△GDH,△ADF的中线,∴DPDQ =DADG=2√33,∴ADDP =DGDQ.∵ADDG=PAQG,∴ △DGQ∼△DAP,∴ ∠GDQ=∠ADP,∴ ∠ADG=∠PDQ,∴ △ADG∼△PDQ,∴ ∠DQP=∠DGA.∵ DA=DE,AG=GE,∴ DG⊥AE,∴ ∠DGA=90∘,∴ ∠DQP=90∘,∴ DQ⊥PQ.【考点】正方形的性质等边三角形的性质特殊角的三角函数值相似三角形的性质与判定【解析】此题暂无解析【解答】解:(1)如图,连结DG,DH,∵ 四边形ABCD是正方形,∴ AD=CD,∠ADC=90∘.∵ △ADE,△DCF都是等边三角形,∴ DA=DE,DC=DF,∠ADE=∠CDF=60∘.∵ 点G,H分别是AE,CF的中点,∴ ∠GDA=∠CDH=30∘,∴ ∠ADF=∠GDH=150∘.∵ADDG=DFDH=2√33,∴ △DGH∼△DAF,∴GHAF=ADDG=2√33.故答案为:2√33.(2)结论成立.理由:如图,连结DG,DH,∵ 四边形ABCD是矩形,∴ ∠ADC=90∘.∵ △ADE,△DCF都是等边三角形,∴ DA=DE,DC=DF,∠ADE=∠CDF=60∘. ∵ AG=GE,CH=FH,∴ ∠ADG=∠CDH=30∘,∴ ∠ADF=∠GDH=150∘.∵ADDG =DFDH=2√33,∴ △DGH∽△DAF,∴GHAF=ADDG=2√33.(3)PQ⊥DQ.理由:如图,连结DG,DH,DP,由(2)可知:△DGH∽△DAF,∴ ∠DGQ=∠DAP.∵ DQ,DP分别是△GDH,△ADF的中线,∴DPDQ=DADG=2√33,∴ADDP=DGDQ.∵ADDG=PAQG,∴ △DGQ∼△DAP,∴ ∠GDQ=∠ADP,∴ ∠ADG=∠PDQ,∴ △ADG∼△PDQ,∴ ∠DQP=∠DGA.∵ DA=DE,AG=GE,∴ DG⊥AE,∴ ∠DGA=90∘,∴ ∠DQP=90∘,∴ DQ⊥PQ.四、填空题【答案】①③④【考点】全等三角形的性质与判定相似三角形的性质与判定正方形的性质解直角三角形三角形的面积【解析】【解答】解:∵△BPC等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60∘.在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90∘,∴∠ABE=∠DCF=30∘.在△ABE与△DCF中,{∠A=∠CDF,∠ABE=∠DCF,AB=DC,∴△ABE≅△DCF(ASA),故①正确;∵PC=BC=CD,∠PCD=30∘,∴∠PDC=75∘,∴∠FDP=15∘.∵∠DBA=45∘,∴∠PBD=15∘,∴∠FDP=∠PBD.∵∠DFP=∠BPC=60∘,∴△DFP∼△BPH,∴PFPH=DFPB=DFCD=√33,故②错误;∵∠PDH=∠PCD=30∘.又∠DPH=∠DPC,∴△DPH∼△CPD,∴PDCD=PHPD,∴PD2=PH⋅CD.∵PB=CD,∴ PD 2=PH ⋅PB ,故③正确;如图,过点P 作PM ⊥CD 于M ,PN ⊥BC 于N ,设正方形ABCD 的边长是4, △BPC 为正三角形,∴ ∠PBC =∠PCB =60∘,PB =PC =BC =CD =4, ∴ ∠PCD =30∘, ∴ PN =PB ⋅sin 60∘=4×√32=2√3,PM =PC ⋅sin 30∘=2, S △BPD =S 四边形PBCD −S △BCD =S △PBC +S △PDC −S △BCD=12×4×2√3+12×2×4−12×4×4 =4√3+4−8=4√3−4, ∴ S △BPDS正方形ABCD=√3−14,故④正确. 故答案为:①③④.五、解答题【答案】解:(1)根据题意得:y =(30+x −20)(230−10x)=−10x 2+130x +2300, 自变量x 的取值范围是:0<x ≤10.(2)当y =2520时,得−10x 2+130x +2300=2520, 解得x 1=2,x 2=11(不合题意,舍去), 当x =2时,30+x =32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y =−10x 2+130x +2300 =−10(x −6.5)2+2722.5.∵ a =−10<0,函数开口向下, ∴ 当x =6.5时,y 有最大值为2722.5.答:每件玩具的售价定为6.5元时可使月销售利润最大,最大的月利润是2722.5. 【考点】根据实际问题列二次函数关系式 一元二次方程的应用——利润问题 解一元二次方程-因式分解法 二次函数的应用【解析】(1)根据题意知一件玩具的利润为(30+x −20)元,月销售量为(230−10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y =2520时代入y =−10x 2+130x +2300中,求出x 的值即可.(3)把y =−10x 2+130x +2300化成顶点式,求得当x =6.5时,y 有最大值,再根据0<x ≤10且x 为正整数,分别计算出当x =6和x =7时y 的值即可. 【解答】解:(1)根据题意得:y =(30+x −20)(230−10x)=−10x 2+130x +2300, 自变量x 的取值范围是:0<x ≤10.(2)当y =2520时,得−10x 2+130x +2300=2520, 解得x 1=2,x 2=11(不合题意,舍去), 当x =2时,30+x =32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y =−10x 2+130x +2300 =−10(x −6.5)2+2722.5.∵ a =−10<0,函数开口向下, ∴ 当x =6.5时,y 有最大值为2722.5.答:每件玩具的售价定为6.5元时可使月销售利润最大,最大的月利润是2722.5. 【答案】(1)证明:过点M 作MF ⊥AB 于点F ,作MG ⊥BC 于点G ,如图所示:∴ ∠AFM =∠MFB =∠NGM =90∘. ∵ 四边形ABCD 是正方形,∴ ∠ABC =∠DAB =90∘,AD =AB ,∠ABD =∠DBC =45∘. ∵ MF ⊥AB ,MG ⊥BC , ∴ MF =MG . ∵ ∠ABC =90∘,∴ 四边形FBGM 是正方形, ∴ ∠FMG =90∘,∴ ∠FMN +∠NMG =90∘. ∵ MN ⊥AM ,∴ ∠AMF +∠FMN =90∘, ∴ ∠AMF =∠NMG . 在△AMF 和△NMG 中,{∠AFM=∠NGM,MF=MG,∠AMF=∠NMG,∴△AMF≅△NMG(ASA),∴MA=MN.(2)解:在Rt△AMN中,由(1)知:MA=MN,∴∠MAN=45∘.∵∠DBC=45∘,∴∠MAN=∠DBC,∴Rt△AMN∼Rt△BCD,∴S△AMNS△BCD =(ANBD)2.在Rt△ABD中,AB=AD=6,∴BD=6√2,∴2(6√2)2=1318,解得:AN=2√13,∴在Rt△ABN中,BN=√AN2−AB2=√(2√13)2−62=4.∵在Rt△AMN中,MA=MN,O是AN的中点,∴OM=OA=ON=12AN=√13,OM⊥AN,∴∠AOP=90∘,∴∠AOP=∠ABN.∵∠PAO=∠NAB,∴△PAO∼△NAB,∴OPBN =OABA,即OP4=√136,解得:OP=2√133,∴PM=OM+OP=√13+2√133=5√133.(3)解:过点A作AF⊥BD于点F,如图所示:∴∠AFM=90∘,∴∠FAM+∠AMF=90∘.∵MN⊥AM,∴∠AMN=90∘,∴∠AMF+∠HMN=90∘,∴∠FAM=∠HMN.∵NH⊥BD,∴∠AFM=∠MHN=90∘.在△AFM和△MHN中,{∠FAM=∠HMN,∠AFM=∠MHN,AM=MN,∴△AFM≅△MHN(AAS),∴AF=MH.在等腰直角△ABD中,AF⊥BD,∴AF=12BD=3√2,∴MH=3√2.∵AM=2√5,∴MN=2√5,∴HN=√MN2−MH2=√2,∴S△HMN=12MH⋅HN=12×3√2×√2=3,∴△HMN的面积为3.【考点】正方形的判定与性质全等三角形的性质与判定相似三角形的性质与判定勾股定理三角形的面积等腰三角形的性质:三线合一【解析】(1)过点M作MF⊥AB于F,作MG⊥BC于G,由正方形的性质得出∠ABD=∠DBC=45∘,由角平分线的性质得出MF=MG,证得四边形FBGM是正方形,得出∠FMG=90∘,证出∠AMF=∠NMG,证明△AMF≅△NMG,即可得出结论;(2)证明Rt△AMN∽Rt△BCD,得出S△AMNS△BCD=(ANBD)2,求出AN=2√13,由勾股定理得出BN=√AN2−AB2=4,由直角三角形的性质得出OM=OA=ON=12AN=√13,OM⊥AN,证明△PAO∽△NAB,得出OPBN=OAAB,求出OP=2√133,即可得出结果;(3)过点A作AF⊥BD于F,证明△AFM≅△MHN得出AF=MH,求出AF=12BD=12×6√2=3√2,得出MH =3√2,MN =2√5,由勾股定理得出HN =√MN 2−MH 2=√2,由三角形面积公式即可得出结果. 【解答】(1)证明:过点M 作MF ⊥AB 于点F ,作MG ⊥BC 于点G ,如图所示:∴ ∠AFM =∠MFB =∠NGM =90∘.∵ 四边形ABCD 是正方形,∴ ∠ABC =∠DAB =90∘,AD =AB ,∠ABD =∠DBC =45∘. ∵ MF ⊥AB ,MG ⊥BC , ∴ MF =MG . ∵ ∠ABC =90∘,∴ 四边形FBGM 是正方形, ∴ ∠FMG =90∘,∴ ∠FMN +∠NMG =90∘. ∵ MN ⊥AM ,∴ ∠AMF +∠FMN =90∘, ∴ ∠AMF =∠NMG . 在△AMF 和△NMG 中, {∠AFM =∠NGM ,MF =MG ,∠AMF =∠NMG ,∴ △AMF ≅△NMG(ASA), ∴ MA =MN .(2)解:在Rt △AMN 中,由(1)知:MA =MN , ∴ ∠MAN =45∘.∵ ∠DBC =45∘, ∴ ∠MAN =∠DBC ,∴ Rt △AMN ∼Rt △BCD , ∴S △AMN S △BCD=(AN BD)2. 在Rt △ABD 中,AB =AD =6, ∴ BD =6√2, ∴ 2(6√2)2=1318,解得:AN =2√13, ∴ 在Rt △ABN 中,BN =√AN 2−AB 2=√(2√13)2−62=4. ∵ 在Rt △AMN 中,MA =MN ,O 是AN 的中点,∴ OM =OA =ON =12AN =√13,OM ⊥AN ,∴ ∠AOP =90∘, ∴ ∠AOP =∠ABN . ∵ ∠PAO =∠NAB , ∴ △PAO ∼△NAB , ∴ OPBN =OABA ,即OP4=√136, 解得:OP =2√133, ∴ PM =OM +OP =√13+2√133=5√133.(3)解:过点A 作AF ⊥BD 于点F ,如图所示:∴ ∠AFM =90∘,∴ ∠FAM +∠AMF =90∘. ∵ MN ⊥AM , ∴ ∠AMN =90∘,∴ ∠AMF +∠HMN =90∘, ∴ ∠FAM =∠HMN . ∵ NH ⊥BD ,∴ ∠AFM =∠MHN =90∘. 在△AFM 和△MHN 中,{∠FAM =∠HMN ,∠AFM =∠MHN ,AM =MN ,∴ △AFM ≅△MHN(AAS), ∴ AF =MH .在等腰直角△ABD 中,AF ⊥BD , ∴ AF =12BD =3√2, ∴ MH =3√2. ∵ AM =2√5, ∴ MN =2√5,∴ HN =√MN 2−MH2=√2,∴ S △HMN =12MH ⋅HN =12×3√2×√2=3,∴ △HMN 的面积为3. 【答案】解:(1)如图,作NG ⊥x 轴于点G .∵ 直线y =−x +4与x 轴交于点B ,与y 轴交于点C ,∴ B(4,0),C(0,4). ∵ S △NOB =12⋅OB ⋅NG ,∴ 12×4×NG =10, ∴ NG =5, ∴ N(−1,5).∵ 反比例函数y =kx 经过点N(−1,5),∴ k =−5, ∴ y =−5x .(2)如图,作NM ⊥x 轴于点M ,HE ⊥x 轴于点E ,设H(m,−5m ). ∵ S △HEO =S △NMO ,又S 四边形HEON =S △HNO +S △HEO =S △NMO +S 梯形MNHE , ∴ S △OHN =S 梯形NMHE , ∴ 12⋅(5−5m )⋅|m +1|=203.当m <−1时,整理得3m 2+8m −3=0, 解得m =−3或m =13(舍去),当0>m >−1时,整理得3m 2−8m −3=0, 解得m =−13或m =3(舍去),综上所述,满足条件的点H 的坐标为(−3,53)或(−13,15). (3)如图,∵ GP =GQ , ∴ ∠GPQ =∠GQP . ∵ BC//PQ ,∴ ∠GCB =∠GPQ ,∠GBC =∠GQP , ∴ ∠GCB =∠GBC , ∴ GC =GB . ∵ OC =OB ,∴ OG 垂直平分BC ,∴ P ,Q 关于直线OG 对称. ∵ 点P 在y =−5x 上,∴ 点Q 也在y =−5x 上. 又∵ 点Q 在直线y =−6上,∴ Q(56,−6).设直线PQ 的解析式为y =−x +b , ∴ −6=−56+b ,∴ b =−316,∴ 直线PQ 的解析式为y =−x −316.【考点】待定系数法求反比例函数解析式 三角形的面积一次函数图象上点的坐标特点 反比例函数与一次函数的综合 待定系数法求一次函数解析式 线段垂直平分线的性质【解析】 此题暂无解析 【解答】解:(1)如图,作NG ⊥x 轴于点G .∵ 直线y =−x +4与x 轴交于点B ,与y 轴交于点C ,∴ B(4,0),C(0,4). ∵ S △NOB =12⋅OB⋅NG , ∴12×4×NG =10, ∴ NG =5, ∴ N(−1,5).∵ 反比例函数y =kx 经过点N(−1,5), ∴ k =−5, ∴ y =−5x .(2)如图,作NM ⊥x 轴于点M ,HE ⊥x 轴于点E ,设H(m,−5m ). ∵ S △HEO =S △NMO ,又S 四边形HEON =S △HNO +S △HEO=S △NMO +S 梯形MNHE , ∴ S △OHN =S 梯形NMHE , ∴ 12⋅(5−5m )⋅|m +1|=203.当m <−1时,整理得3m 2+8m −3=0, 解得m =−3或m =13(舍去),当0>m >−1时,整理得3m 2−8m −3=0, 解得m =−13或m =3(舍去),综上所述,满足条件的点H 的坐标为(−3,53)或(−13,15).(3)如图,∵ GP =GQ , ∴ ∠GPQ =∠GQP .∵ BC//PQ ,∴ ∠GCB =∠GPQ ,∠GBC =∠GQP , ∴ ∠GCB =∠GBC , ∴ GC =GB . ∵ OC =OB ,∴ OG 垂直平分BC ,∴ P ,Q 关于直线OG 对称. ∵ 点P 在y =−5x 上, ∴ 点Q 也在y =−5x 上.又∵ 点Q 在直线y =−6上, ∴ Q(56,−6).设直线PQ 的解析式为y =−x +b , ∴ −6=−56+b , ∴ b =−316,∴ 直线PQ的解析式为y=−x−31.6。
2020-2021学年四川省成都七中嘉祥外国语学校九年级(上)期中数学试卷含答案

2020-2021学年四川省成都七中嘉祥外国语学校九年级(上)期中数学试卷一、选择题(共10个小题,每小题3分,本题满分共30分)1.(3分)下列立体图形中.主视图是圆的是()A.B.C.D.2.(3分)下列说法中不正确的是()A.对角线垂直的平行四边形是菱形B.四边相等的四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等3.(3分)为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条4.(3分)一元二次方程x2﹣4x+2=0根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.(3分)关于反比例函数y=﹣,下列结论中,错误的是()A.图象必过点(1,﹣3)B.若x>0,则y<0C.图象在第二、四象限内D.y随x的增大而增大6.(3分)已知y=2x2的图象是抛物线,若抛物线不动,把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x﹣2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x+2)2+27.(3分)a,b,c,d是四条线段,下列各组中这四条线段成比例的是()A.a=2cm,b=5cm,c=5cm,d=10cmB.a=5cm,b=3cm,c=10cm,d=6cmC.a=30cm,b=2cm,c=0.8cm,d=2cmD.a=5cm,b=0.02cm,c=7cm,d=0.3cm8.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF 的长度为()A.B.2C.4D.29.(3分)如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.B.C.D.10.(3分)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a+c=1;②4ac ﹣b2≥0;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的有()A.①③④B.②③C.①④D.③④二、填空题(共4个小题,每小题4分,本题满分共16分)11.(4分)分解因式:ax2+2ax﹣3a=.12.(4分)若点B是线段AC的黄金分割点(AB>BC),AC=2,则AB=(精确到0.1)13.(4分)将抛物线y=2(x﹣1)2+3绕着点A(2,0)旋转180°,则旋转后的抛物线的解析式为.14.(4分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC =5,则CE=.三、解答题(共54分)15.(12分)(1)计算:(﹣2)﹣3+﹣2sin30°+(2020﹣π)0+|﹣4|;(2)解不等式组,并求出正整数解.16.(6分)先化简,再求值.÷(﹣x+2),其中x满足x2+3x+2=0.17.(8分)2020年春节前夕“新型冠状病毒”爆发,疫情就是命令,防控就是使命.全国各地驰援武汉的医护工作者,践行医者仁心的使命与担当,舍小家,为大家,用自己的专业知识与血肉之躯构筑起全社会抗击疫情的钢铁长城.下面是2月9日当天全国部分省市驰援武汉医护工作者的人数统计图(不完整).请解答下列问题:(1)①上述省市2月9日当天驰援武汉的医护工作者的总人数为人;②请将条形统计图补充完整;(2)请求出扇形统计图中“山东”所对应扇形的圆心角的度数;(3)本次山东驰援武汉的医护工作者中,有5人报名去重症区,王医生和李医生就在其中,若从报名的5人中随机安排2人,求同时安排王医生和李医生的概率.18.(8分)图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC 和DEF是闸机的“圆弧翼”,两圆弧翼成轴对称,BC和EF均垂直于地面,扇形的圆心角∠ABC=∠DEF =28°,半径BA=ED=60cm,点A与点D在同一水平线上,且它们之间的距离为10cm.(1)求闸机通道的宽度,即BC与EF之间的距离(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.19.(10分)如图,在平面直角坐标系xOy中,函数y=﹣x+5的图象与函数y=(x<0)的图象相交于点A,并与x轴交于点C,S△AOC=15.点D是线段AC上一点,CD:AC=2:3.(1)求k的值;(2)直接写出不等式>﹣x+5(x<0)的解集;(3)若将△ODC绕点O逆时针旋转,得到△OD′C′,其中D′落在x轴负半轴上,判断点C′是否落在函数y=(x<0)的图象上,并说明理由.20.(10分)如图,Rt△ABC中,∠ACB=90°,D为AB中点,连接CD,过C作CE垂直于CD交BA延长线于E.(1)求证:△ECA∽△EBC;(2)若,求tan B;(3)在(2)的条件下,线段BC上有一点F,若CF:FB=1:2且EF=10,求AB的长.一、填空题(每小题4分,共20分)21.(4分)已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则=.22.(4分)已知a为正整数,且二次函数y=x2+(a﹣7)x+3的对称轴在y轴右侧,则a使关于y的分式方程有正整数解的概率为.23.(4分)在直角坐标系中,已知A(0,4)、B(2,4),C为x轴正半轴上一点,且OB平分∠ABC,过B的反比例函数y=交线段BC于点D,E为OC的中点,BE与OD交于点F,若记△BDF的面积为S1,△OEF的面积为S2,则=.24.(4分)如矩形ABCD中,AB=4,AD=5,点E是线段CD上的一点(不与端点重合),连接BE,将△BCE沿BE折叠,使点C落在C′处,连接C′C,C′D,当△C′CD是等腰三角形时,CE的长为.25.(4分)如图,sin∠O=,长度为2的线段DE在射线OB上滑动,点C在射线OA上,且OC=5,△CDE的两个内角的角平分线相交于点F,过点F作FG⊥DE,垂足为G,则FG的最大值为.二、解答题(满分30分)26.(8分)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)27.(10分)如图,矩形ABCD中,AB=a,BC=2a(a为常数,且a>0),P是线段BC上一动点,连接AP并将AP绕P顺时针旋转90°得到线段PE.连接DE,直线DE交BC于F.(1)如图,若a=4,BP=1,试求PF的长;(2)设BP=x,PF=y,试求y与x之间的函数关系式;(3)求P从B到C的运动过程中,CE的最小值,并求此时sin∠BAP的值.28.(12分)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=ax2+bx+c与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C,tan ∠ABO=,B(1,0),点A横坐标为﹣2,BC=4.(1)求抛物线的解析式,并写出顶点坐标;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.2020-2021学年四川省成都七中嘉祥外国语学校九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10个小题,每小题3分,本题满分共30分)1.(3分)下列立体图形中.主视图是圆的是()A.B.C.D.【解答】解:圆柱的主视图是长方形,圆锥的主视图是等腰三角形、正方体的主视图是正方形、球体的主视图是圆,故选:D.2.(3分)下列说法中不正确的是()A.对角线垂直的平行四边形是菱形B.四边相等的四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等【解答】解:A.对角线垂直的平行四边形是菱形;正确;B.四边相等的四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.3.(3分)为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条【解答】解:∵×100%=5%,∴20÷5%=400(条).故选:C.4.(3分)一元二次方程x2﹣4x+2=0根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【解答】解:∵Δ=(﹣4)2﹣4×1×2=8>0,∴方程有两个不相等的两个实数根.故选:D.5.(3分)关于反比例函数y=﹣,下列结论中,错误的是()A.图象必过点(1,﹣3)B.若x>0,则y<0C.图象在第二、四象限内D.y随x的增大而增大【解答】解:A、∵1×(﹣3)=﹣3,故图象必过点(1,﹣3),故选项A不符合题意;B、若x>0,则y=﹣<0,故选项B不符合题意;C、∵k=﹣3<0,故图象在第二、四象限内,故选项C不符合题意;D、∵k=﹣3<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,故选项D符合题意,故选:D.6.(3分)已知y=2x2的图象是抛物线,若抛物线不动,把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x﹣2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x+2)2+2【解答】解:先将x轴、y轴的平移转化为抛物线的平移,即可看做把抛物线沿x轴方向向左平移2个单位长度,沿y轴方向向下平移2个单位长度,原抛物线的顶点为(0,0),向左平移2个单位,再向下平移2个单位,那么新抛物线的顶点为(﹣2,﹣2).可设新抛物线的解析式为y=2(x﹣h)2+k,代入得:y=2(x+2)2﹣2.故选:B.7.(3分)a,b,c,d是四条线段,下列各组中这四条线段成比例的是()A.a=2cm,b=5cm,c=5cm,d=10cmB.a=5cm,b=3cm,c=10cm,d=6cmC.a=30cm,b=2cm,c=0.8cm,d=2cmD.a=5cm,b=0.02cm,c=7cm,d=0.3cm【解答】解:A、2×10≠5×5,这四条线段不成比例;B、3×10=6×5,这四条线段成比例;C、30×0.8≠2×2,这四条线段不成比例;D、0.02×7≠0.3×5,这四条线段不成比例;故选:B.8.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF 的长度为()A.B.2C.4D.2【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF==2.故选:D.9.(3分)如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.B.C.D.【解答】解:如图,过点B作BD⊥AC于D,由勾股定理得,AB==,AC==3,∵S△ABC=AC•BD=×3•BD=×1×3,∴BD=,∴sin∠BAC===.故选:B.10.(3分)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a+c=1;②4ac ﹣b2≥0;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的有()A.①③④B.②③C.①④D.③④【解答】解:①∵经过点(1,1)和(﹣1,0),∴a+b+c=1,a﹣b+c=0,∴b=,a+c=,故①错误;②∵Δ=b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2≥0,∴4ac﹣b2≤0,故②错误;③∵a<0,∵b2﹣4ac=(2a﹣)2>0,∴抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,设另一个交点的横坐标为x,∴﹣1•x==﹣1,即x=1﹣,∵a<0,∴﹣>0,∴x=1﹣>1,∴抛物线与x轴必有一个交点在点(1,0)的右侧;④对称轴为x=﹣=﹣;∴③④都正确,故选:D.二、填空题(共4个小题,每小题4分,本题满分共16分)11.(4分)分解因式:ax2+2ax﹣3a=a(x+3)(x﹣1).【解答】解:ax2+2ax﹣3a=a(x2+2x﹣3)=a(x+3)(x﹣1).故答案为:a(x+3)(x﹣1)12.(4分)若点B是线段AC的黄金分割点(AB>BC),AC=2,则AB= 1.2(精确到0.1)【解答】解:设AB=x,则BC=2﹣x,∵点B是线段AC的黄金分割点(AB>BC),∴=,即=,解得:x=﹣1≈1.2.故答案为:1.2.13.(4分)将抛物线y=2(x﹣1)2+3绕着点A(2,0)旋转180°,则旋转后的抛物线的解析式为y=﹣2(x﹣3)2﹣3.【解答】解:抛物线y=2(x﹣1)2+3的顶点为(1,3),设绕着点A(2,0)旋转180°得到(x,y),∴=2,=0,解得x=3,y=﹣3,∴绕着点A(2,0)旋转180°得到(3,﹣3),故旋转后的抛物线解析式是y=﹣2(x﹣3)2﹣3.故答案为:y=﹣2(x﹣3)2﹣3.14.(4分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC =5,则CE=.【解答】解:由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB===13,设EC=CD=DF=x,在Rt△ADF中,则有(12+x)2=x2+182,∴x=,∴CE=,故答案为:.三、解答题(共54分)15.(12分)(1)计算:(﹣2)﹣3+﹣2sin30°+(2020﹣π)0+|﹣4|;(2)解不等式组,并求出正整数解.【解答】解:原式=﹣+4﹣2×+1+4﹣=﹣+4﹣1+1+4﹣=﹣;(2),由①,得x≥﹣1;由②,得x<3.所以不等式组的解集是﹣1≤x<3.则该不等式组的正整数解为:1,2.16.(6分)先化简,再求值.÷(﹣x+2),其中x满足x2+3x+2=0.【解答】解:原式=÷(﹣),=÷,=,=,∵x2+3x+2=0,∴(x+1)(x+2)=0,则x+1=0,x+2=0,∴x1=﹣1,x2=﹣2,∵x+2≠0,∴x≠﹣2,∴x=﹣1,则原式==﹣.17.(8分)2020年春节前夕“新型冠状病毒”爆发,疫情就是命令,防控就是使命.全国各地驰援武汉的医护工作者,践行医者仁心的使命与担当,舍小家,为大家,用自己的专业知识与血肉之躯构筑起全社会抗击疫情的钢铁长城.下面是2月9日当天全国部分省市驰援武汉医护工作者的人数统计图(不完整).请解答下列问题:(1)①上述省市2月9日当天驰援武汉的医护工作者的总人数为5000人;②请将条形统计图补充完整;(2)请求出扇形统计图中“山东”所对应扇形的圆心角的度数;(3)本次山东驰援武汉的医护工作者中,有5人报名去重症区,王医生和李医生就在其中,若从报名的5人中随机安排2人,求同时安排王医生和李医生的概率.【解答】解:(1)①1000÷20%=5000,所以上述省市2月9日当天驰援武汉的医护工作者的总人数为5000人;故答案为5000;②山东援武汉的医护工作者的人数为5000﹣1000﹣797﹣953﹣5000(7%+6%+6%+6%+6%)=700(人),条形统计图补充为:(2)扇形统计图中“山东”所对应扇形的圆心角的度数=360°×=50.4°;(3)画树状图为:(用A、D表示王医生和李医生)共有20种等可能的结果数,其中同时安排王医生和李医生的结果数为2,所以同时安排王医生和李医生的概率==.18.(8分)图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC 和DEF是闸机的“圆弧翼”,两圆弧翼成轴对称,BC和EF均垂直于地面,扇形的圆心角∠ABC=∠DEF =28°,半径BA=ED=60cm,点A与点D在同一水平线上,且它们之间的距离为10cm.(1)求闸机通道的宽度,即BC与EF之间的距离(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.【解答】解:(1)连接AD,并向两方延长,分别交BC,EF于M,N,由点A,D在同一条水平线上,BC,EF均垂直于地面可知,MN⊥BC,MN⊥EF,所以MN的长度就是BC与EF之间的距离,同时,由两圆弧翼成轴对称可得,AM=DN,在Rt△ABM中,∠AMB=90°,∠ABM=28°,AB=60cm,∵sin∠ABM=,∴AM=AB•sin∠ABM=60•sin28°≈60×0.47=28.2,∴MN=AM+DN+AD=2AM+AD=28.2×2+10=66.4,∴BC与EF之间的距离为66.4cm;(2)设一个人工检票口平均每分钟检票通过的人数为x人,根据题意得,,解得:x=30,经检验,x=30是原方程的根,当x=30时,2x=60,答:一个智能闸机平均每分钟检票通过的人数为60人.19.(10分)如图,在平面直角坐标系xOy中,函数y=﹣x+5的图象与函数y=(x<0)的图象相交于点A,并与x轴交于点C,S△AOC=15.点D是线段AC上一点,CD:AC=2:3.(1)求k的值;(2)直接写出不等式>﹣x+5(x<0)的解集;(3)若将△ODC绕点O逆时针旋转,得到△OD′C′,其中D′落在x轴负半轴上,判断点C′是否落在函数y=(x<0)的图象上,并说明理由.【解答】解:(1)y=﹣x+5,当y=0时,x=5,即OC=5,C点的坐标是(5,0),过A作AN⊥x轴于N,如图1.∵S△AOC=15,∴×5×AN=15,解得:AN=6,即A点的纵坐标是6,把y=6代入y=﹣x+5得:x=﹣1,即A点的坐标是(﹣1,6),把A点的坐标代入y=得:k=﹣6;(2)不等式>﹣x+5(x<0)的解集是﹣1<x<0;(3)点C'不在函数y=﹣的图象上.如图2,过点D作DM⊥x轴,垂足为M,过点A作AN⊥x轴,垂足为N,∴DM∥AN,∴==,又∵点A的坐标为(﹣1,6),∴AN=6,∴DM=4,即点D的纵坐标为4,把y=4代入y=﹣x+5中,解得x=1,∴D(1,4);由题意可知,OD'=OD===,如图3,过点C'作C'G⊥x轴,垂足为G,∵S△ODC=S△OD'C′,∴OC•DM=OD'•C'G,即5×4=C'G,∴C'G=,在Rt△OC'G中,∵OG===,∴C'的坐标为(﹣,),∵(﹣)×≠﹣6,∴点C'不在函数y=﹣的图象上.20.(10分)如图,Rt△ABC中,∠ACB=90°,D为AB中点,连接CD,过C作CE垂直于CD交BA延长线于E.(1)求证:△ECA∽△EBC;(2)若,求tan B;(3)在(2)的条件下,线段BC上有一点F,若CF:FB=1:2且EF=10,求AB的长.【解答】(1)证明:∵EC⊥CD,∴∠ECD=90°,∵∠ACB=∠ECD=90°,∴∠ECA=∠DCB,∵∠ACB=90°,AD=DB,∴DC=DA=DB,∴∠DCB=∠B,∴∠ECA=∠B,∵∠CEA=∠BEC,∴△ECA∽△EBC.(2)解:过点C作CH⊥DE于H.在Rt△ECD中,∵=,∴可以假设EC=4k,CD=3k,则DE=5k,∵S△ECD=•EC•CD=•DE•CH,∴CH=k,∴DH===k,∵CD=DA=DB=3k,∴BH=DH+BD=k,∴tan B===.(3)解:过点F作FJ⊥AB于J.∵∠CHB=90°,CH=k,BH=k,∵CF:BF=1:2,FJ∥CH,∴===,∴FJ=k,BJ=k,∴EJ=EB﹣BJ=8k﹣k=k,∵∠EJF=90°,∴EF2=FJ2+EJ2,∴102=(k)2+(k)2,k=(负根已经舍弃),∴AB=6k=.一、填空题(每小题4分,共20分)21.(4分)已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则=4.【解答】解:∵m、n是一元二次方程x2+4x﹣1=0的两实数根,∴m+n=﹣4,m•n=﹣1,∴===4.故答案为4.22.(4分)已知a为正整数,且二次函数y=x2+(a﹣7)x+3的对称轴在y轴右侧,则a使关于y的分式方程有正整数解的概率为.【解答】解:∵二次函数y=x2+(a﹣7)x+3的对称轴在y轴右侧.∴﹣>0,∴a﹣7<0,∴a<7,∵a是正整数,∴a的值为1,2,3,4,5,6,分式方程可化为ay﹣4﹣2(y﹣1)=﹣y,解得y=,∵关于y的分式方程有正整数解,∴a﹣1>0,解得a>1,当a=2时,y=2,当a=3时,y=1(不合题意,舍去);∴a使关于y的分式方程有正整数解的概率为=.故答案为:.23.(4分)在直角坐标系中,已知A(0,4)、B(2,4),C为x轴正半轴上一点,且OB平分∠ABC,过B的反比例函数y=交线段BC于点D,E为OC的中点,BE与OD交于点F,若记△BDF的面积为S1,△OEF的面积为S2,则=.【解答】解:如图,过点B作BH⊥OC于H.∵A(0,4)、B(2,4),∴OA=4,AB=2,AB∥OC,∴∠ABO=∠BOC,∵OB平分∠ABC,∴∠ABO=∠OBC,∴∠BOC=∠OBC,∴CB=OC,设BC=OC=m,∵BH⊥OC,AB∥OC,∴∠AOH=∠OHB=∠ABH=90°,∴四边形ABHO是矩形,∴BH=OA=4,AB=OH=2,在Rt△BCH中,则有x2=42+(m﹣2)2,∴m=5,∴C(5,0),∴直线BC的解析式为y=﹣x+,∵反比例函数y=经过点B(2,4),∴k=8,由,解得或,∴D(3,),∴直线OD的解析式为y=x,∵OE=EC,∴E(,0),∴直线BE的解析式为y=﹣8x+20,由,解得,∴F(,2),∴S1=2×1﹣×1×﹣×1×﹣××=,S2=××2=,∴==,故答案为:.24.(4分)如矩形ABCD中,AB=4,AD=5,点E是线段CD上的一点(不与端点重合),连接BE,将△BCE沿BE折叠,使点C落在C′处,连接C′C,C′D,当△C′CD是等腰三角形时,CE的长为或.【解答】解:如图1中,当C′D=C′C时,过点C′作C′J⊥CD于J,C′H⊥BC于H.则四边形C′JCH是矩形,DJ=JC=C′H=2,∵BC=BC′=5,∠HBC′=90°,∴BH===,∴CH=JC′=5﹣,设EC=EC′=x,在Rt△EJC′中,则有x2=(2﹣x)2+(5﹣)2,∴x=.∴EC=,如图2中,当CD=CC′时,设EC=m,OE=n.∵BC=BC′,EC=EC′,∴BE垂直平分线段CC′,∴OC=OC′=2,OB===,由,可得m=.综上所述,EC的值为或.25.(4分)如图,sin∠O=,长度为2的线段DE在射线OB上滑动,点C在射线OA上,且OC=5,△CDE的两个内角的角平分线相交于点F,过点F作FG⊥DE,垂足为G,则FG的最大值为.【解答】解:如图1中,连接CF,过点F作FM⊥CD于M,FN⊥EC于N,过点C作CH⊥OE于H.∵△CDE的两个内角的角平分线相交于点F,FG⊥DE,FM⊥CD,FN⊥EC,∴FG=FM=FN,在Rt△OCH中,∵∠CHO=90°,OC=5,∴sin O==,∴CH=3,∴S△DEC=•DE•CH=•EC•FN+•CD•FM+•DE•FG,∴FG•(2+EC+CD)=6,∴当EC+CD的值最小时,FG的值最大,如图2中,过点C作CK∥DE,使得CK=DE=2,作点K关于直线OB的对称点J,连接CJ交OB于E,连接EJ交OB于T,截取ED=CD,此时CE+CD的值最小,最小值=CJ的长.由图1可知KT=TJ=3,在Rt△JKC中,∵∠JKC=90°,CK=2,JK=6,∴CJ===2,∴CE+CD的最小值=2,∴FG的最大值==.故答案为:.二、解答题(满分30分)26.(8分)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)【解答】解:(1)设件数为x,依题意,得3000﹣10(x﹣10)=2600,解得x=50,答:商家一次购买这种产品50件时,销售单价恰好为2600元;(2)当0≤x≤10时,y=(3000﹣2400)x=600x,当10<x≤50时,y=[3000﹣10(x﹣10)﹣2400]x,即y=﹣10x2+700x当x>50时,y=200x.(3)由y=﹣10x2+700x可知抛物线开口向下,当x=﹣=35时,利润y有最大值,此时,销售单价为3000﹣10(x﹣10)=2750元,答:公司应将最低销售单价调整为2750元.27.(10分)如图,矩形ABCD中,AB=a,BC=2a(a为常数,且a>0),P是线段BC上一动点,连接AP并将AP绕P顺时针旋转90°得到线段PE.连接DE,直线DE交BC于F.(1)如图,若a=4,BP=1,试求PF的长;(2)设BP=x,PF=y,试求y与x之间的函数关系式;(3)求P从B到C的运动过程中,CE的最小值,并求此时sin∠BAP的值.【解答】解:(1)如图1,过点E作EH⊥BC于H,∵将AP绕P顺时针旋转90°得到线段PE,∴AP=PE,∠APE=90°=∠ABP=∠PHE,∴∠BP A+∠EPH=90°,∠BAP+∠BP A=90°,∴∠BAP=∠EPH,在△BAP和△HPE中,,∴△BAP≌△HPE(AAS),∴BP=EH=1,AB=PH=4,∵EH⊥BC,CD⊥BC,∴∠EHF=∠DCF,又∵∠EFH=∠DFC,∴△EHF∽△DCF,∴,∴,∴FH=1,∴PF=PH﹣FH=4﹣1=3;(2)当点P在点F左边时,由(1)可得△BAP≌△HPE,△EHF∽△DCF,∴BP=EH=x,AB=PH=a,=,∴FH=FC,∴HC=FC=BC﹣BP﹣PH,∴×(2a﹣x﹣y)=2a﹣x﹣a,∴y=a﹣x;当点P在点F右边时,如图2,过点E作EM⊥BC,交BC的延长线于点M,在△BAP和△MPE中,,∴△BAP≌△MPE(AAS),∴BP=EM=x,AB=MP=a.∵DC∥EM,∴==,即=,∴=,解得y=x﹣a.(3)连接CE,∵PF=y=a﹣x,∴CF=2a﹣x﹣y=a,∴CD=CF,∴△CDF是等腰直角三角形,当CE⊥DF时,CE有最小值,∴∠DCE=∠ECF=45°,∴EC==a,∴EH==a,∴BP=a,∴AP==a,∴sin∠BAP===.28.(12分)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=ax2+bx+c与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C,tan ∠ABO=,B(1,0),点A横坐标为﹣2,BC=4.(1)求抛物线的解析式,并写出顶点坐标;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【解答】解:(1)∵tan∠ABO=,由直线的表达式知,a=﹣,故一次函数的表达式为y=﹣x+;当x=﹣2时,y=﹣x+=2,故点A(﹣2,2),∵点B(1,0),BC=4,则点C(﹣3,0),则c=﹣3,故抛物线的表达式为y=﹣x2+bx+c将点A、B的坐标代入上式得,解得,故抛物线的表达式为y=﹣x2﹣x+2;抛物线的对称轴为直线x=﹣1,故抛物线的顶点坐标为:(﹣1,);(2)当点N在y轴上时,△AMN为梦想三角形,如图1,过A作AD⊥y轴于点D,则AD=2,由点A、C的坐标知,AC==,由翻折的性质可知AN=AC=,在Rt△AND中,由勾股定理可得DN===3,由抛物线的表达式知,点D的坐标为(0,2),故OD=2,∴ON=2﹣3或ON=2+3,当ON=2+3时,则MN>OD>CM,与MN=CM矛盾,不合题意,∴N点坐标为(0,2﹣3);当M点在y轴上时,则M与O重合,过N作NP⊥x轴于点P,如图2,在Rt△AMD中,AD=2,OD=2,∴tan∠DAM==,∴∠DAM=60°,∵AD∥x轴,∴∠AMC=∠DAO=60°,又由折叠可知∠NMA=∠AMC=60°,∴∠NMP=60°,且MN=CM=3,∴MP=MN=,NP=MN=,∴此时N点坐标为(,);综上可知N点坐标为(0,2﹣3)或(,);(3)①当AC为平行四边形的边时,如图3,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中,,∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到x轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).。
四川省成都七中育才学校2020-2021学年九年级上学期期中数学试题

四川省成都七中育才学校2020-2021学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,由6个相同的小正方体搭成的几何体,那么从左面看几何体的平面图形是( )A .B .C .D . 2.若关于x 的一元二次方程x 2﹣2x+m=0有一个解为x=﹣1,则另一个解为( ) A .1 B .﹣3 C .3 D .43.下列说法正确的是( )A .对角线相等且互相平分的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两角分别相等的两个三角形相似D .两边成比例且一角相等的两个三角形相似4.如图,点P 是线段AB 的黄金分割点,AP BP >,若6AB =,则PB 的长是( )A.1) B .1) C .9-D .6-5.若关于x 的方程kx 2+4x ﹣1=0有实数根,则k 的取值范围是( )A .k≥﹣4且k≠0B .k≥﹣4C .k >﹣4 且k≠0D .k >﹣4 6.已知点1(1,)A y 、2(2,)B y 、3(2,)C y -都在反比例函数6y x=的图象上,则1y 、2y 、3y 的大小关系是( )A .312y y y <<B .123y y y <<C .213y y y <<D .321y y y << 7.某闭合电路中,电源电压为定值,电流()I A 与电阻()R Ω成反比例,如图表示该电路中电流I 与电阻R 的函数关系图象.则该电路中某导体电阻为()4Ω,导体内通过的电流为( )A .()1?.5AB .() 6AC .()23A D .()4A 8.某商店原来平均每天可销售某种水果150千克,每千克盈利7元,为了减少库存,经市场调查,这种水果每千克降价1元,那么每天可多售出20千克,若要平均每天盈利960元,则每千克应降价多元?设每千克降价x 元,则所列方程是A .(150+x )(7+x )=960B .(150+20x )(7-x )=960C .(150+20x )(7+x )=960D .(150+x )(7+20x )=9609.对于二次函数221y x =+,下列说法中正确的是( )A .图象的开口向下B .函数的最大值为1C .图象的对称轴为直线1x =D .当0x <时y 随x 的增大而减小 10.如图,DE 是ABC ∆的中位线,F 是DE 的中点,CF 的延长线交AB 于点G ,若CEF ∆的面积为218cm ,则DGF S ∆的值为( )A .24cmB .25cmC .26cmD .27cm二、填空题 11.在ABC ∆中,90C ∠=︒,则1sin 3B =,则tan A =__. 12.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米.13.如图,Rt ABC ∆中,90ACB ∠=︒,CD 是AB 边上的高,8AC =,6BC =,则AD =____________.14.抛物线2y ax b =+的形状与22y x =的图象的形状相同,开口方向相反,与y 轴交于点(0,2)-,则该抛物线的解析式为__.15.已知1x ,2x 是一元二次方程2220150x x --=的两根,则2121222016x x x x +--=__.16.已知222b c c a a b k a b c+++===,0a b c ++≠,将抛物线22y x =向右平移k 个单位,再向上平移2k 个单位后,所得抛物线的表达式为__.对于平移后的抛物线,当25x 时,y 的取值范围是__.17.如图,已知点1A 、2A 、2018A ⋯在函数22y x =位于第二象限的图象上,点1B 、2B ,⋯,2018B 在函数22y x =位于第一象限的图象上,点1C ,2C ,⋯,2018C 在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,⋯,2017201820182018C A C B 都是正方形,则正方形2017201820182018C A C B 的边长是___.18.如图,矩形ABCD 中,2AB BC =,点(1,0)D -,点A 、B 在反比例函数k y x =的图象上,CD 与y 轴的正半轴交于点E ,若E 为CD 的中点,则k 的值为__.19.一副含30和45︒角的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,12BC EF cm ==(如图1),点G 为边()BC EF 的中点,边FD 与AB 相交于点H ,此时线段BH 的长是__.现将三角板DEF 绕点G 按顺时针方向旋转(如图2),在CGF ∠从0︒到60︒的变化过程中,点H 相应移动的路径长共为__.(结果保留根号)三、解答题20.(1)解方程:(23)46x x x +=+(2)计算:40(1)2cos30tan 60(3)π-+︒-︒--21.化简求值 235(2)362x x x x x -÷+---, 已知 x 是一元二次方程x 2+3x-1=0 的实数根. 22.已知O 是坐标原点,A 、B 的坐标分别为(3,1)、(2,1)-.(1)画出OAB ∆绕点O 顺时针旋转90︒后得到的△11OA B ;(2)在y 轴的左侧以O 为位似中心作OAB ∆的位似图形△22OA B ,使新图与原图相似比为2:1;(3)求出△22OA B 的面积.23.成都七中育才学校2021年秋季运动会上,学生电视台用无人机航拍技术全程直播.如图,在无人机的镜头下,观测A 处的俯角为30,B 处的俯角为45︒,如果此时无人机镜头C 处的高度CD 为20米,点A 、B 、D 在同一条直线上,则A 、B 两点间的距离为多少米?(结果保留根号)24.如图,在直角坐标系中,矩形OABC 的顶点O 与原点重合,A 、C 分别在坐标轴上,2OA =,4OC =,直线1132y x =-+交AB ,BC 分别于点M ,N ,反比例函数2k y x=的图象经过点M ,N .(1)求反比例函数的解析式;(2)直接写出当12y y <时,x 的取值范围;(3)若点P 在y 轴上,且OPM ∆的面积与四边形BMON 的面积相等,求点P 的坐标. 25.如图,O 为正方形ABCD 对角线的交点,E 为AB 边上一点,F 为BC 边上一点,EBF ∆的周长等于BC 的长.(1)若24AB =,6BE =,求EF 的长;(2)求EOF ∠的度数;(3)若OE =,求AE CF的值. 26.在信息技术飞速发展的今天,智能手机的使用呈现出低龄化的趋势,中小学生使用智能手机成为十分普遍的现象,但智能手机给生活带来便利的同时,也对中小学生的身心发展带来一些不利影响,比如手机屏幕对视力的伤害、关注各种“垃圾新闻”对时间的浪费、沉迷手机游戏缺少运动、人际交往等等,这些现象引起了家长、学校、社会的广泛关注.对此,成都某中学学生会发出了“中小学生使用非智能手机”的倡议,鼓励同学们全面发展,追逐梦想,把更多时间用在将来能够成就自我的地方.据统计,今年9月该中学使用非智能手机的同学有128人,倡议发出后,11月使用非智能手机的同学上升到了200人.(1)若从9月到11月使用非智能手机的同学平均增长率相同,那么按此增长率增长到12月份该校使用非智能手机的同学将有多少人?(2)某于机制造商发现当下市场上售卖的非智能手机大多品质不佳、外观设计成就,难以满足市场的需要,所以该厂决定投入12万元全部用于生产A 型、B 型两款精美的“学生专用手机”投入市场,一部A 型手机生产成本为400元,售价为600元;一部B 型手机生产成本为600元,售价为930元,该厂计划生产B 型手机的数量不少于A 型手机数量的2倍,但不超过A 型手机数量的2.3倍,求生产这批手机并全部售卖后可获得的最大利润.27.如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AG BE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,,则BC= .28.如图(1),O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,5OA =,反比例函数(0)k y x x =>在第一象限内的图象经过点A ,与BC 交于点D .(1)求点A的坐标和反比例函数解析式;(2)若59CDAC,求点D的坐标;(3)在(2)中的条件下,如图(2),点P为直线OD上的一个动点,点Q为双曲线上的一个动点,是否在这样的点P、点Q,使以B、D、P、Q为顶点的四边形是平行四边形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.参考答案1.A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】从左边看第一层三个小正方形,第二层中间一个小正方形.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.2.C【分析】设方程的另一个解为x1,根据两根之和等于﹣ba,即可得出关于x1的一元一次方程,解之即可得出结论.【详解】设方程的另一个解为x1,根据题意得:﹣1+x1=2,解得:x1=3,故选C.【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣ba、两根之积等于ca是解题的关键.3.C【分析】通过菱形的判定正方形的判定可判断A,B,根据相似三角形的判定可判断C,D.【详解】A.对角线垂直且互相平分的四边形是菱形.则A错误;B.对角线垂直且相等的平行四边形四边形是正方形,则B错误;C.两角分别相等的两个三角形相似,则C正确;D.两边成比例且夹角相等的两个三角形相似.则D错误.故选C .【点睛】本题考查了相似三角形的判定,菱形的判定,正方形的判定,关键是熟练运用这些判定解决问题.4.C【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值)叫做黄金比. 【详解】点P 是线段AB 的黄金分割点,AP PB >,若6AB =,则6(19BP =⨯=- 故选C .【点睛】本题考查了黄金分割,解题关键在于掌握黄金分割的概念:较长线段是较短线段与原线段的比例中项.5.B【解析】【分析】分k =0和k ≠0两种情况考虑,当k =0时可以找出方程有一个实数根;当k ≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【详解】当k =0时,原方程为-4x +1=0,解得:x =14, ∴k =0符合题意;当k ≠0时,∵方程kx 2-4x -1=0有实数根,∴△=(-4)2+4k ≥0,且k ≠0解得:k ≥-4且k ≠0.综上可知:k 的取值范围是k ≥4.故选B .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 6.D【分析】利用待定系数法求出y 的值即可判断.【详解】点1(1,)A y 、2(2,)B y 、3(2,)C y -都在反比例函数6y x=的图象上, 16y ∴=,23y =,33y =-,321y y y ∴<<, 故选:D .【点评】本题考查反比例函数图象上的点的特征,待定系数法等知识,解题的关键是灵活运用所学知识解决问题.7.A【解析】【分析】可设I=k R,由于点(3,2)适合这个函数解析式,则可求得k 的值,然后代入R=4求得I 的值即可.【详解】解:设I=k R ,那么点(3,2)适合这个函数解析式,则k=3×2=6, ∴I=6R. 令R=4Ω,解得:I=1.5A .故选:A .【点睛】本题考查了反比例函数的解析式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.8.B【分析】设每千克降价x 元,根据等量关系“每天利润=每天的销售量×每千克的利润”列方程即可.【详解】设每千克降价x 元,根据题意得:(150+20x )(7﹣x )=960,故选B .【点睛】本题考查了一元二次方程的应用,设出未知数,利用等量关系“平均每天售出的数量×每千克盈利=每天销售的利润”列方程是解决问题的关键.9.D【分析】根据二次函数的性质,可以判断各个选项中的说法是否正确.【详解】二次函数221y x =+,20a =>, ∴该函数的图象开口向上,对称轴是y 轴,顶点坐标为(0,1),有最小值1,当0x >时,y 随x 的增大而增大,当0x <时,y 随x 的增大而减小;故选项A 、B 、C 错误,选项D 正确,故选D .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.10.C【分析】作GH BC ⊥于H 交DE 于M ,根据三角形中位线定理得到//DE BC ,12DE BC =,证明GDF GBC ∆∆∽,根据相似三角形的性质、三角形的面积公式计算.【详解】作GH BC ⊥于H 交DE 于M , DE 是ABC ∆的中位线,//DE BC ∴,12DE BC =, F 是DE 的中点,14DF BC ∴=, //DF BC ,GDF GBC ∴∆∆∽, ∴14GM DF GH BC ==, ∴13GM MH =, DF FE =,13DGF S CEF ∆∴=⨯∆的面积26cm =, 故选C .【点睛】本题考查的是相似三角形的判定和性质、三角形中位线定理,掌握相似三角形的判定定理和性质定理是解题的关键.11. 【分析】根据题中所给的条件,在直角三角形中解题,根据角的正弦值与三角形边的关系及勾股定理,可求出各边的长,代入三角函数进行求解.【详解】在ABC ∆中,因为90C ∠=︒,1sin 3B =, 设AC k =,3AB k =,BC ∴=,tan4AC A BC ∴===,【点睛】 本题考查锐角三角函数和勾股定理解直角三角形,解直角三角形,解题关键在于由直角三角形已知元素求未知元素的过程.12.5.【解析】根据题意,易得△MBA ∽△MCO , 根据相似三角形的性质可知AB AM OC OA AM =+,即1.6AM 820AM=+,解得AM=5. ∴小明的影长为5米.13.325 【分析】根据已知条件利用勾股定理可求得10AB =,根据ABC 面积的不同求法可以求得245CD =,再由勾股定理即可求得结论. 【详解】解:∵在Rt ABC 中,8AC =,6BC =∴10AB =∵CD 是AB 边上的高 ∴22ABC AC BC AB CD S ⋅⋅== ∴861022CD ⨯⋅= ∴245CD =∴在ACD 中,325AD === 故答案是:325 【点睛】本题考查了勾股定理、直角三角形面积的不同求法等知识点,熟练掌握各项知识点是顺利解题的关键.14.222y x =--.【分析】根据二次函数2y ax b =+的图象与22y x =的图象形状相同,开口方向相反,得到2a =-,然后把点(0,2)-代入22y x b =-+求出对应的b 的值,从而可得到抛物线解析式.【详解】二次函数2y ax b =+的图象与22y x =的图象形状相同,开口方向相反, 2a ∴=-,∴二次函数是22y x b =-+,二次函数2y ax b =+经过点(0,2)-, 2b ∴=-,∴该二次函数的解析式为222y x =--;故答案是:222y x =--.【点睛】本题考查了用待定系数法求二次函数的解析式,解题关键在于用待定系数法列方程来求解. 15.2018.【分析】根据根与系数的关系即可求出答案.【详解】由题意可知:122x x +=,122015x x =-,211220150x x --=,∴21122015x x =+,∴原式12122220152016x x x x =++--4201520152016=++-2018=,故答案为2018【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型. 16.22(1)2y x =+- 1670x【分析】由已知可得:2a b kc -=,2b c ka -=,2c a kb -=;三式相加,即可求得k 的值,然后平移的规律求得平移后的解析式,计算出当2x =和5x =对应的函数值,然后根据二次函数的性质解决问题.【详解】 由222b c c a a b k a b c+++===得: 2a b kc -=①2b c ka -=②2c a kb -=③①+②+③得:()222(222)()k a b c a b b c c a a b c a b c a b c ++=-+-+-=++-++=-++;0a b c ++≠,1k ∴=-.将抛物线22y x =向右平移k 个单位,再向上平移2k 个单位后,所得抛物线的表达式为22(1)2y x =+-;∴抛物线的顶点(1,2)--,对称轴为直线1x =-,当2x =时,22(21)216y =+-=,当5x =时,22(51)270y =+-=,∴当25x 时,函数值y 的取值范围为1670x ;故答案为22(1)2y x =+-,1670x【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,解题关键在于求出解析式. 17.【分析】根据正方形对角线平分一组对角可得1OB 与y 轴的夹角为45︒,然后表示出1OB 的解析式,再与抛物线解析式联立求出点1B 的坐标,然后求出1OB 的长,再根据正方形的性质求出1OC ,表示出12C B 的解析式,与抛物线联立求出2B 的坐标,然后求出12C B 的长,再求出12C C 的长,然后表示出23C B 的解析式,与抛物线联立求出3B 的坐标,然后求出23C B 的长,从而根据边长的变化规律解答即可.【详解】111OAC B 是正方形,1OB ∴与y 轴的夹角为45︒,1OB ∴的解析式为y x =,联立方程组得:22y x y x =⎧⎨=⎩, 解得1100x y =⎧⎨=⎩,221212x y ⎧=⎪⎪⎨⎪=⎪⎩. B ∴点的坐标是:1(2,1)2,11OB ∴==同理可得:正方形1222C A C B 的边长122C B = ⋯依此类推,正方形2017201820182018C A C B 的边长是为2018=故答案为【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.18.32+-. 【分析】根据点(1,0)D -可得OD 的长;由矩形ABCD ,2AB BC=,E 为CD 的中点,可得出AD DE EC BC ===,进而证明三角形全等,得出1AM OD ==,MD OE =,由E 为CD 的中点,//OE CN ,可得1ON OD ==,2CN OE =,设DM 的长为a ,进而表示点A 和点B 的坐标,根据都在反比例函数的图象上,列出方程求出a 的值,进而求出k 的值.【详解】矩形ABCDAB BC CD DA ∴===,90ABC BCD CDA DAB ∠=∠=∠=∠=︒, E 为CD 的中点,2AB BC=, DE EC AD BC ∴===,点(1,0)D -,1OD ∴=,易证AMD DOE ∆≅∆()AAS1AM OQ ∴==,MD OE =,设MD a =,则OE a =, E 为CD 的中点,//OE CN ,2CN a ∴=,1OD ON ==,由ABP DCN ∆≅∆得2BP CN a ==,(1,1)A a ∴--,(1,21)B a a -++点A 、B 在反比例函数k y x=的图象上, 1(1)(21)a a a k ∴--=-+=,解得:12a =,152a (舍去)11k a ∴=--=-=,故答案为32+-【点睛】此题考查反比例函数图象上点的坐标特征,矩形的性质,三角形全等的判定和性质,以及一元二次方程等知识,方程思想和函数思想得到充分的应用,表示出点A 点B 的坐标是正确解答的关键.19.12)cm 18)cm .【分析】如图1中,作HM BC ⊥于M ,设HM CM a ==.在Rt BHM ∆中,22BH HM a ==,BM =,根据BM MF BC +=12a +=,推出6a =,推出212BH a ==.如图2中,当DG AB ⊥时,易证1GH DF ⊥,此时1BH 的值最小,易知113BH BK KH =+=,当旋转角为60︒时,F 与2H 重合,易知2BH =图象可知,在CGF ∠从0︒到60︒的变化过程中,点H 相应移动的路径长122HH HH =+,由此即可解决问题.【详解】如图1中,作HM BC ⊥于M ,设HM a =,则CM HM a ==.在Rt ABC ∆中,30ABC ∠=︒,12BC =,在Rt BHM ∆中,22BH HM a ==,BM =,BM FM BC +=, ∴12a +=,6a ∴=,212BH a ∴==.如图2中,当DG AB ⊥时,易证1GH DF ⊥,此时1BH 的值最小,易知113BH BK KH =+=,1115HH BH BH ∴=-=,当旋转角为60︒时,F 与2H 重合,易知2BH =观察图象可知,在CGF ∠从0︒到60︒的变化过程中,点H 相应移动的路径长1223012)]18HH HH =+=+=.故答案为12)cm ,18)cm .【点睛】本题考查旋转变换、解直角三角形、锐角三角函数,解题的关键是正确寻找点H 的运动轨迹.20.(1)1 1.5x =-,22x =;(2)【分析】(1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先根据二次根式的性质,特殊角的三角函数值,零指数幂和有理数的乘方进行计算,再求出即可.【详解】(1)整理得:2260x x --=,(23)(2)0x x +-=,230x +=,20x -=, 1 1.5x =-,22x =;(2)原式121=+11=+=.【点睛】本题考查了二次根式的性质,特殊角的三角函数值,零指数幂,有理数的乘方,解一元二次方程等知识点,能正确运用知识点进行计算是解此题的关键.21.2139x x +;13. 【分析】先算括号里面的,再算除法,再求出x 2+3x=1代入进行计算即可.【详解】原式=()239322x x x x x --÷--,=()()()32•3233x x x x x x ---+-, =()133x x +, =()2133x x +, ∵x 满足一元二次方程x 2+3x-1=0,∴x 2+3x=1,∴原式=13. 【点睛】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.22.(1)详见解析;(2)详见解析;(3)10.【分析】(1)直接利用旋转变换的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)以x 轴为分割线,将△22OA B 分成两部分,即可求得△22OA B 的面积.【详解】(1)如图所示:△11OA B 即为所求;(2)如图所示:△22OA B 即为所求;(3)△22OA B 的面积15(22)102=⨯⨯+=.【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.23.A 、B 两点间的距离为20)米.【分析】根据等腰直角三角形的性质求出BD ,根据正切的定义求出AD ,结合图形计算即可.【详解】由题意得,30CAD ∠=︒,45CBD ∠=︒,在Rt CBD ∆中,45CBD ∠=︒,20BD CD ∴==,在Rt CAD ∆中,tan CD CAD AD∠=,则tan30CD AD ==︒,则20AB AD BD =-=,答:A 、B 两点间的距离为20)米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.(1)4y x =;(2)02x <<或4x >;(3)点P 的坐标是(0,4)或(0,4)-. 【分析】(1)由2OA BC ==,将2y =代入1132y x =-+求出2x =,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案;(2)根据图象即可求得;(3)将4x =代入1132y x =-+求出1y =,得出N 的坐标,求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标.【详解】(1)2OA =,4OC =,四边形OABC 是矩形,(4,2)B ∴, 将2y =代入1132y x =-+得:2x =,(2,2)M ∴,把M 的坐标代入2k y x=得:4k =, ∴反比例函数的解析式是4y x=; (2)当12y y <时,x 的取值范围是02x <<或4x >;(3)把4x =代入4y x=得:1y =, 即1CN =, AOM CON OABC BMON S S S S ∆∆=--矩形四边形11422241422=⨯-⨯⨯-⨯⨯=, 由题意得:142OP AM ⨯=, 2AM =,4OP ∴=,∴点P 的坐标是(0,4)或(0,4)-.【点睛】本题考查了反比例函数综合题,利用待定系数法求反比例函数的解析式,一次函数与反比例函数的交点问题,三角形的面积,矩形的性质等知识点的应用,解题关键在于应用性质进行计算.25.(1)10;(2)45°;(3)32AE CF =. 【分析】(1)设BF x =,则24FC x =-,根据EBF ∆的周长等于BC 的长得出18EF x =-,Rt BEF ∆中利用勾股定理求出x 的值即可得;(2)在FC 上截取FM FE =,连接OM .首先证明90EOM ∠=︒,再证明()OFE OFM SSS ∆≅∆即可解决问题;(3)证明FOC AEO ∠=∠,结合45EAO OCF ∠=∠=︒可证AOE CFO ∆∆∽,根据相似三角形的性质得到得OE AE AO OF CO CF ===,于是得到结论. 【详解】(1)设BF x =,则24FC BC BF x =-=-,6BE =,且BE BF EF BC ++=, 18EF x ∴=-,在Rt BEF ∆中,由222BE BF EF +=可得2226(18)x x +=-,解得:8x =,则1810EF x =-=;(2)如图,在FC 上截取FM FE =,连接OM ,EBF C BE EF BF BC ∆=++=的周长,则BE EF BF BF FM MC ++=++,BE MC ∴=, O 为正方形中心,OB OC ∴=,45OBE OCM ∠=∠=︒,在OBE ∆和OCM ∆中,OB OC OBE OCM BE CM =⎧⎪∠=∠⎨⎪=⎩,()OBE OCM SAS ∴∆≅∆,EOB MOC ∴∠=∠,OE OM =,EOB BOM MOC BOM ∴∠+∠=∠+∠,即90EOM BOC ∠=∠=︒,在OFE ∆与OFM ∆中,OE OM OF OF EF MF =⎧⎪=⎨⎪=⎩,()OFE OFM SSS ∴∆≅∆,1452EOF MOF EOM ∴∠=∠=∠=︒. (3)证明:由(2)可知:45EOF ∠=︒,135AOE FOC ∴∠+∠=︒,45EAO ∠=︒,135AOE AEO ∴∠+∠=︒,FOC AEO ∴∠=∠,45EAO OCF ∠=∠=︒,AOE CFO ∴∆∆∽.∴OE AE AO OF CO CF ===,AE ∴=,AO =, AO CO =,32AE CF ∴=, ∴32AE CF =. 【点睛】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题.26.(1)到12月份该校使用非智能手机的同学有250人;(2)生产这批手机A 型75台,B 型150台,全部售卖后可获得的最大利润为55500元.【分析】(1)根据题意可以列出相应的方程,从而可以求得使用非智能手机的同学平均增长率相同;再由增长率求出到12月份该校使用非智能手机的同学数.(2)设生产A 型手机x 只,则B 型手机y 只,列方程求出y 与x 的关系,再根据生产B 型手机的数量不少于A 型手机数量的2倍,但不超过A 型手机数量的2.3倍,列不等式,求出x 的取值范围,用含x 的式子表示出总利润w ,再根据一次函数的增减性,计算即可.【详解】(1)设从9月到11月使用非智能手机的同学平均增长率为x ,依题意得:2128(1)200x +=,解得,10.2525%x ==,2 2.25x =-(舍去),∴按此增长率增长,到12月份该校使用非智能手机的同学200(125%)250=+=(人) 答:到12月份该校使用非智能手机的同学有250人.(2)设生产A 型手机x 只,则B 型手机y 只,依题意得:40060012000x y +=,22003y x ∴=-, 因为x ,y 均为整数,x 为3的倍数,又因为B 型手机的数量不少于A 型手机数量的2倍,但不超过A 型手机数量的2.3倍, 即:2 2.3x y x , ∴22200 2.33x x x -,解得:17756989x , 设总利润为W .(600400)(930600)200270W x y x y =-+-=+2200270(200)20540003W x x x ∴=+-=+. W 随x 增大而增大,∴当75x =时,最大利润55500W =.答:生产这批手机A 型75台,B 型150台,全部售卖后可获得的最大利润为55500元.【点睛】本题主要考查一次函数的应用、一元二次方程的应用、一元一次不等式的应用,能根据题目中的等量关系式列出方程或不等式是解题的关键.27.(1)①四边形CEGF 是正方形;;(2)线段AG 与BE 之间的数量关系为BE ;(3)【解析】【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CG CE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽△BCE 即可得;(3)证AHG ∽CHA 得AG GH AH AC AH CH==,设BC CD AD a ===,知AC =,由AG GH AC AH =得2AH a 3=、1DH a 3=、CH a 3=,由AG AH AC CH=可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形,∴∠BCD=90°,∠BCA=45°, ∵GE ⊥BC 、GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°, ∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形;②由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CG CE=,GE ∥AB ,∴AG CG BE CE ==;(2)连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG CB CA ,∴CG CE =CA CB= ∴△ACG ∽△BCE ,∴AG CA BE CB ==∴线段AG 与BE 之间的数量关系为BE ;(3)∵∠CEF=45°,点B 、E 、F 三点共线,∴∠BEC=135°, ∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°, ∴∠AGH=∠CAH=45°, ∵∠CHA=∠AHG ,∴△AHG ∽△CHA , ∴AG GH AH AC AH CH==,设BC=CD=AD=a ,则a ,则由AG GHAC AH ==, ∴AH=23a ,则DH=AD ﹣AH=13a ,,∴由AG AH AC CH =2a =, 解得:故答案为.【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.28.(1)(3,4)A , 12(0)y x x =>;(2)点(6,2)D ;(3)存在,点154P5)4+或33(4114或5(4P ,26)11. 【分析】(1)根据4sin 5AOB ∠=,5OA =,可知点A 的坐标,代入解析式求解; (2)过点D 作DE OB ⊥于E ,设9AC a =,5CD a =,由平行四边形的性质可得5OA BC ==,9AC OB a ==,//OA BC ,由锐角三角函数可求用a 表示的点D 坐标,代入解析式可求a 的值,即可求点D 坐标;(3)分两种情况讨论,由平行四边形的性质可求解.【详解】(1)如图1,过点A 作AH OB ⊥于点H ,4sin 5AOB ∠=,5OA =, 4AH ∴=,3OH =,(3,4)A ∴,根据题意得:43k =,可得12k =, ∴∴反比例函数的解析式为12(0)y x x =>, (2)如图2,过点D 作DE OB ⊥于E ,59CD AC = ∴设9AC a =,5CD a =,四边形OACB 是平行四边形5OA BC ∴==,9AC OB a ==,//OA BC ,55BD a ∴=-,AOB DBE ∠=∠,4sin 5DBE ∴∠=, 44DE a ∴=-,33BE a =-,36OE OB BE a ∴=+=+,∴点(36,44)D a a +- 反比例函数12(0)y k x=>在第一象限内的图象经过点D , (36)(44)12a a ∴+-=0a ∴=(不合题意舍去),12a = ∴点9(2B ,0),点(6,2)D ,(3)点(6,2)D ,点(0,0)O∴直线OD 解析式为:13y x =若以PD 为边,则//BQ PD ,BQ PD =,∴设BQ 解析式为:13y x b =+, 19032b ∴=⨯+ 32b ∴=- ∴直线BQ 解析式为:1332y x =-, ∴133212y x y x ⎧=-⎪⎪⎨⎪=⎪⎩解得:9434x y ⎧=⎪⎪⎨⎪=⎪⎩94Q ∴+3)4- 设点1(,)3P a a , PD BQ =,22221993(6)(2)))3424a a ∴-+-=+-+,334a ∴=154a =+ ∴点154P +5)4+或33(4114若以PD 为对角线,以B 、D 、P 、Q 为顶点的四边形是平行四边形,PD ∴,BQ 互相平分设点(Q a ,12)(0)a a> BQ ∴的中点为9(42a +,6)a∴619()342a a =+ 114a ∴=,BQ ∴的中点为29(8,24)11 5(4P ∴,26)11 【点睛】本题是反比例函数综合题,考查了待定系数法求解析式,平行四边形的性质,锐角函数的应用,利用分类讨论思想解决问题是本题的关键.。
2020-2021学年四川省成都市九年级上册期中数学试卷

2020-2021学年四川省成都市九年级上册期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.已知关于x的方程是一元二次方程,则a的值是A. B. 2 C. 或3 D. 32.如图,在菱形ABCD中,已知,,则菱形ABCD的面积为A. 12B. 48C. 25D. 243.如图,四边形ABCD和是以点O为位似中心的位似图形.若,则四边形ABCD与四边形的面积比为A. B. C. D.4.如图,,,,,则的值为A.B.C.D.5.如图,与是位似图形,位似比为2:3,已知,则AC的长为A. B. C. D.6.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为,是指A. 连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B. 连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C. 抛掷2n次硬币,恰好有n次“正面朝上”D. 抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于7.已知,a是关于m的方程的一个根,则的值为A. 4B. 5C. 6D. 78.如图,已知,那么添加下列一个条件后,仍无法判定∽的是.A.B.C.D.9.解一元二次方程,用配方法可变形为A. B. C. D.10.在四边形ABCD中,两对角线交于点O,若,则这个四边形A. 可能不是平行四边形B. 一定是菱形C. 一定是正方形D. 一定是矩形二、填空题(本大题共9小题,共36.0分)11.若,则______.12.如图,在中,,,D是AB的中点,则CD的长为________.13.如果表示正方形ABCD各边长的代数式如图所示,那么,阴影部分的面积是______.14.我们知道:四边形具有不稳定性如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5,现固定边AB,把矩形沿箭头方向“推”,当点D落在y轴的正半轴上时落点记为,相应地,点C的对应点的坐标为___________.15.已知周长为20的矩形的长和宽是一元二次方程的两个实数根,则m的值为______ .16.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是______ .17.如图,已知线段AB两个端点的坐标分别为,,以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点D的坐标为______.18.若关于x的方程有实数根,则a的取值范围是______.19.如图,正方形DEFG的边EF在的边BC上,顶点D、G分别在边AB、AC上,已知,的面积为9,则正方形DEFG的面积为______.三、解答题(本大题共9小题,共84.0分)20.用指定的方法解下列方程因式分解法公式法21.若一元二次方程有实数根,求k的取值范围.22.如图是小明设计利用光线来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离米,镜子P与小明的距离米,小明刚好从镜子中看到古城墙顶端点C,小明眼睛距地面的高度米,那么该古城墙的高度是?23.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形如图,小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.用树状图或列表法表示两次摸牌所有可能出现的结果纸牌可用A、B、C、D表示;求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.24.已知:平行四边形ABCD的两条边AB,AD的长是关于x的方程的两个实数根.当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;若,求平行四边形ABCD的周长.25.已知,,,BF为的平分线.求证:.26.某商品的进价为每件40元,售价每件不低于60元且每件不高于80元当售价为每件60元时,每个月可卖出100件,经调查发现,每件商品每上涨1元,每个月少卖2件设每件商品的售价为x元为正整数.求每个月的销售利润用含有x的代数式表示若每个月的利润为2250元,定价应为多少元27.解方程:28.如图,点P是正方形ABCD边AB上一点不与点A,B重合,连接PD并将线段PD绕点P顺时针方向旋转得到线段PE,PE交边BC于点连接BE、DF.求证:;求的度数;当的值等于多少时.∽?并说明理由.答案和解析1.【答案】A【解析】【分析】此题主要考查了一元二次方程定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.根据一元二次方程定义可得,,再解即可.【解答】解:由题意得:,,解得:,故选A.2.【答案】D【解析】【分析】此题考查了菱形的性质.解此题的关键是掌握菱形的面积等于其对角线乘积的一半.根据菱形的性质可知菱形的对角线互相垂直平分,利用菱形的面积公式可求解即可.【解答】解:四边形ABCD是菱形,,,,,,,菱形ABCD的面积是,故选D.3.【答案】A【解析】【分析】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:四边形ABCD和是以点O为位似中心的位似图形,,,四边形ABCD与四边形的面积比为.4.【答案】A【解析】【分析】本题考查的是平行线分线段成比例定理,比例的性质,灵活运用平行线分线段成比例定理,找准对应关系是解题的关键.根据平行线分线段成比例定理得到,根据比例的性质计算,得到答案.【解答】解:,,即,,故选A.5.【答案】C【解析】解:与是位似图形,位似比为2:3,::3,::3,则.故选:C.位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.本题主要考查位似的定义.解题的关键是掌握位似图形是相似图形的特殊形式,位似比等于相似比的特点.6.【答案】D【解析】【试题解析】解:连续抛掷2n次不一定正好正面向上和反面向上的次数各一半,故A、B、C错误,抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于,故D正确,故选D.利用“大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,这个常数可以估计事件发生的概率”进行判断即可.本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,这个常数可以估计事件发生的概率.7.【答案】A【解析】【分析】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.利用一元二次方程的解的定义得到,再把变形为,然后利用整体代入的方法计算.【解答】解:是关于m的方程的一个根,,,.故选:A.8.【答案】D【解析】【分析】本题考查的是相似三角形的判定,先根据得出,再由相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:,.A.,∽,故本选项错误;B.,∽,故本选项错误;C.,∽,故本选项错误;D.,与的大小无法判定,无法判定∽,故本选项正确.故选D.9.【答案】A【解析】【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键移项后两边都加上一次项系数一半的平方可得.【解答】解:,,即.故选A.10.【答案】D【解析】解:这个四边形是矩形,理由如下:对角线AC、BD交于点O,,四边形ABCD是平行四边形,又,,四边形ABCD是矩形.故选:D.根据,判断四边形ABCD是平行四边形.然后根据,判定四边形ABCD是矩形.本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.11.【答案】【解析】【分析】此题主要考查了比例的性质,正确将原式变形是解题关键.直接利用已知变形进而得出a,b之间的关系.【解答】解:,,故,,则.故答案为.12.【答案】3【解析】【分析】本题主要考查了直角三角形的性质,熟记性质是解题的关键根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:,D为AB的中点,.故答案为:3.13.【答案】8【解析】解:根据正方形的性质可得,解得.所以正方形的边长为.把阴影部分进行重新组合正好是的面积,即.故答案为8.先根据正方形的边长都相等,构造方程组求出x和y的值,进而得到正方形的边长,观察图形得到阴影部分面积与面积相等.本题只要考查了正方形的性质以及三角形面积问题,解题的关键是对阴影部分进行转化,使其成为规则图形.14.【答案】.【解析】【分析】本题考查了矩形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.根据题意可得,,,根据勾股定理得到,进而即可求得结果.【解答】解:,,,,,,,.故答案为.15.【答案】10【解析】解:周长为20的矩形的长和宽的和为10,矩形的长和宽是一元二次方程的两个实数根,;故答案为:10.先求出矩形的长和宽的和为10,再由一元二次方程的根与系数的关系即可得出m的值.本题考查了一元二次方程的根与系数的关系、矩形的性质;熟练掌握一元二次方程的根与系数的关系是解决问题的关键.16.【答案】【解析】解:画树状图得:共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,小灯泡发光的概率为:.故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.17.【答案】【解析】解:线段AB两个端点的坐标分别为,,以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B与点D是对应点,则点D的坐标为,即,故答案为:.根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或解答.本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或.18.【答案】【解析】解:关于x的方程有实数根,,,故答案为:.根据方程有实数根得到根的判别式,列出a的不等式,求出a 的取值范围.本题考查了根的判别式的知识,解答此题要掌握一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.19.【答案】4【解析】解:作于H,交DG于P,如图所示:的面积,,,设正方形DEFG的边长为x.由正方形DEFG得,,即,,.由得∽.,,,即,由,,,得,解得.故正方形DEFG的面积;故答案为:4.由得∽,利用相似三角形对应边上高的比等于相似比,列方程求解.本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.20.【答案】解:,,则,或,解得,;,,,,则,即,.【解析】利用因式分解法求解可得;利用公式法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【答案】解:一元二次方程有实数根,,.【解析】根据的意义得到,然后解不等式即可.本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.22.【答案】解:,,∽,即:,解得:米.答:该古城墙的高度是.【解析】由光学知识反射角等于入射角不难分析得出,再由得到∽,得到代入数值求的CD的值即可.本题考查了相似三角形的应用,同时渗透光学中反射原理,结合相似三角形的性质分析是解决本题关键.23.【答案】解画树状图得:则共有16种等可能的结果;既是中心对称又是轴对称图形的只有B、C,既是轴对称图形又是中心对称图形的有2种情况,既是轴对称图形又是中心对称图形的概率为:.【解析】此题考查了列表法或树状图法求概率以及轴对称图形与中心对称图形的性质.用到的知识点为:概率所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果;由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.24.【答案】解:四边形ABCD是菱形,.又、AD的长是关于x的方程的两个实数根,,,当m为1时,四边形ABCD是菱形.当时,原方程为,即,解得:,菱形ABCD的边长是.把代入原方程,得:,解得:.将代入原方程,得:,方程的另一根,▱ABCD的周长是.【解析】本题考查了根与系数的关系、根的判别式、平行四边形的性质以及菱形的判定与性质,解题的关键是:根据菱形的性质结合根的判别式,找出关于m的一元二次方程;根据根与系数的关系结合方程的一根求出方程的另一根.根据菱形的性质可得出,结合根的判别式,即可得出关于m的一元二次方程,解之即可得出m的值,将其代入原方程,解之即可得出菱形的边长;将代入原方程可求出m的值,将m的值代入原方程结合根与系数的关系可求出方程的另一根AD的长,再根据平行四边形的周长公式即可求出▱ABCD的周长.25.【答案】证明:连接EF.,BF为的平分线,,等角对等边;又已知,;,,::平行线分线段成比例;而AB::角平分线的性质,::等量代换,,即.【解析】连接根据角平分线的性质知AF::EC,由平行线分线段成比例知AF::EC,由这两个比例式和已知条件“”知,即.此题考查了平行线分线段成比例定理.此题难度适中,解题的关键是准确作出辅助线,掌握数形结合思想的应用,注意对应线段的对应关系.26.【答案】解:.,解得,.,不符合题意,舍去,.因此当每件商品的售价为65元时,每个月的利润为2250元.【解析】本题考查了一元二次方程的应用以及列代数式,解题的关键是:根据数量关系,列出代数式;找准等量关系,正确列出一元二次方程.设每件商品的售价为x元为正整数,则每个月可卖出件,根据销售利润每件的利润销售数量,即可得出结论;由的结论结合每个月的利润为2250元,即可得出关于x的一元二次方程,解之取大于等于60小于等于80的值即可得出结论.27.【答案】,;,.【解析】分析通过观察方程形式,利用一元二次方程的因式分解法解方程比较简单;找出方程中二次项系数a,一次项系数b及常数项c,计算出根的判别式,由根的判别式大于0,得到方程有解,将a,b及c的值代入求根公式即可求出原方程的解.详解解:因式分解得:,,,,;,,,方程有两个不相等的实数根,,.故答案为:,;,.点睛本题考查解一元二次方程因式分解法,解一元二次方程公式法.28.【答案】证明:四边形ABCD是正方形.,,,,,;解:过点E作交AB的延长线于点Q,则,又,,≌,,,,;解:.理由:∽,,,,∽,,,当时,∽.【解析】本题主要考查了正方形的性质,以及三角形相似的判定与性质,正确探究三角形相似的性质是解题的关键.根据与都是的余角,根据同角的余角相等,即可求证;首先证得≌,可以证得是等腰直角三角形,可以证得,即可证得;这两个三角形是直角三角形,若相似,则对应边的比相等,即可求得的值.。
2020_2021学年四川成都高新区成都七中高新校区初三上学期开学考试数学试卷(详解版)

【答案】( 1 ) 个和 个. ( 2 ) 小时.
【解析】( 1 )设甲、乙两家公司每小时改建床位的数量为: 和 个,
由题意可得:
,
解得,
,经检验,符合题意,
∴
,
,
/
故甲、乙两家公司每小时改建床位的数量为 个和 个.
( 2 )设乙公司工作 小时,
由题意可得:
,
解得:
,
故乙公司至少工作 小时.
27. 如图,在菱形 , 重合),连接
2020~2021学年四川成都高新区成都七中高新校区初三 上学期开学考试数学试卷(详解)
一、选择题
(本大题共10小题,每小题3分,共30分)
1. 下列图形中,既是轴对称图形,又是中心对称图形的是( ).
A.
B.
等边三角形
平行四边形
C.
矩形
D. 正五边形
【答案】 C
【解析】 A 选项:是轴对称图形,不是中心对称图形.故错误; B 选项:不是轴对称图形,是中心对称图形.故错误; C 选项:是轴对称图形,也是中心对称图形.故正确; D 选项:是轴对称图形,不是中心对称图形.故错误. 故选 C .
7. 矩形具有而菱形不一定具有的性质是( ).
A. 对角相等
B. 对边相等
C. 对角线相等
D. 对角线互相垂直
【答案】 C
【解析】 、 .∵矩形和菱形都是平行四边形, 、 是平行四边形性质,故 、 错误; .对角线相等是矩形的性质不是菱形的性质,故 正确; .对角线互相垂直是菱形具有而矩形不具有的性质,故 错误.
的三个顶点都在格点上.现要在这张网格纸的四个格点
, , , 中找一点作为旋转中心,将
绕着这个中心进行旋转,旋转前后的两个三角
2020-2021成都七中九年级数学上期中第一次模拟试卷(附答案)
2020-2021成都七中九年级数学上期中第一次模拟试卷(附答案)一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70° 2.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°3.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22° 4.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +< 5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120°6.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 7.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h 8.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( )A .2017B .2018C .2019D .2020 9.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .1∶2B .1∶2C .3∶2D .1∶310.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B 的右侧).则下列命题中正确命题的是( )①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .A .①②③B .②③⑤C .②④⑤D .②③④⑤ 11.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( )A.120B.19100C.14D.以上都不对12.如果反比例函数2ayx-=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>2二、填空题13.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x步,那么根据题意列出的方程为_____.14.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为__.15.请你写出一个二次函数,其图象满足条件:①开口向下;②与y轴的交点坐标为(0,3).此二次函数的解析式可以是______________16.如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为_____.17.现有甲、乙两个盒子,甲盒子中有编号为4,5,6的3个球,乙盒子中有编号为7,8,9的3个球.小宇分别从这两个盒子中随机地拿出1个球,则拿出的2个球的编号之和大于12的概率为_____.18.用半径为12cm,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_______cm.19.已知圆锥的母线长为5cm,高为4cm,则该圆锥的侧面积为_____ cm²(结果保留π).20.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交»AB 于点E ,以点O 为圆心,OC 的长为半径作»CD交OB 于点D ,若OA=2,则阴影部分的面积为 .三、解答题21.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.22.如图,已知抛物线y=2x -+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0),(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.23.为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.24.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.25.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.2.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理3.D解析:D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.4.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意; B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B .【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数. 6.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD 的弧长为6,然后利用扇形的面积公式:S 扇形DAB =1lr 2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD 的弧长=6,∴S 扇形DAB =11lr =22×6×3=9. 故选D .【点睛】 本题考查扇形面积的计算.7.D解析:D【解析】【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案.【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D.【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.8.B解析:B【解析】【分析】根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到1a b +=-,即可得到答案.【详解】解:∵设a b ,是方程220190x x +-=的两个实数根,∴把x a =代入方程,得:22019a a +=,由根与系数的关系,得:1a b +=-,∴222()201912018a a b a a a b ++=+++=-=;故选:B .【点睛】本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值.9.B解析:B【解析】【分析】【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′,则△PBP ′是等腰直角三角形,∴∠BP ′P =45°,PP ′=2PB , ∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x , ∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2.故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.10.B解析:B【解析】试题解析:∵抛物线开口向上,∴a >0.∵抛物线对称轴是x=1,∴b <0且b=-2a .∵抛物线与y 轴交于正半轴,∴c >0.∴①abc>0错误;∵b=-2a,∴3a+b=3a-2a=a>0,∴②3a+b>0正确;∵b=-2a,∴4a+2b+c=4a-4a+c=c>0,∴④4a+2b+c<0错误;∵直线y=kx+c经过一、二、四象限,∴k<0.∵OA=OD,∴点A的坐标为(c,0).直线y=kx+c当x=c时,y>0,∴kc+c>0可得k>-1.∴③-1<k<0正确;∵直线y=kx+c与抛物线y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=kx+c,得x1=0,x2=k b a -由图象知x2>1,∴k ba->1∴k>a+b,∴⑤a+b<k正确,即正确命题的是②③⑤.故选B.11.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004=,故选C.点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.12.D解析:D【解析】【分析】反比例函数kyx=图象在一、三象限,可得>0k.【详解】解:Q反比例函数2ayx-=(a是常数)的图象在第一、三象限,20 a∴->,2a∴>.故选:D.【点睛】本题运用了反比例函数kyx=图象的性质,解题关键要知道k的决定性作用.二、填空题13.x(x﹣12)=864【解析】【分析】如果设矩形田地的长为x步那么宽就应该是(x﹣12)步根据面积为864即可得出方程【详解】解:设矩形田地的长为x步那么宽就应该是(x﹣12)步根据矩形面积=长×宽解析:x(x﹣12)=864【解析】【分析】如果设矩形田地的长为x步,那么宽就应该是(x﹣12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的长为x步,那么宽就应该是(x﹣12)步.根据矩形面积=长×宽,得:x(x﹣12)=864.故答案为:x(x﹣12)=864.【点睛】本题考查一元二次方程的实际应用,读懂题意根据面积公式列出方程是解题的关键.14.135°【解析】分析:如图连接EC首先证明∠AEC=135°再证明△EAC≌△EAB即可解决问题详解:如图连接EC∵E是△ADC的内心∴∠AEC=90°+∠ADC=135°在△AEC和△AEB中∴△解析:135°.【解析】分析:如图,连接EC.首先证明∠AEC=135°,再证明△EAC≌△EAB即可解决问题.详解:如图,连接EC.∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中, AE AE EAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△EAB ,∴∠AEB=∠AEC=135°,故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.15.【解析】【分析】根据二次函数图像和性质得a0c=3即可设出解析式【详解】解:根据题意可知a0c=3故二次函数解析式可以是【点睛】本题考查了二次函数的性质属于简单题熟悉概念是解题关键解析:223,y x =-+【解析】【分析】根据二次函数图像和性质得a <0,c=3,即可设出解析式.【详解】解:根据题意可知a <0,c=3,故二次函数解析式可以是2y 2x 3,=-+【点睛】本题考查了二次函数的性质,属于简单题,熟悉概念是解题关键. 16.【解析】【分析】由圆内接四边形的性质先求得∠D 的度数然后依据圆周角定理求解即可【详解】∵四边形ABCD 是⊙O 的内接四边形∴∠B +∠D =180°∴∠D =180°-135°=45°∴∠AOC =90°故答解析:90o【解析】【分析】由圆内接四边形的性质先求得∠D的度数,然后依据圆周角定理求解即可.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠B+∠D=180°,∴∠D=180°-135°=45°,∴∠AOC=90°,故答案为90°.【点睛】本题主要考查了圆内接四边形的基本性质以及圆周角定理.17.【解析】【分析】列举出所有情况找出取2个球的编号之和大于12的情况即可求出所求的概率【详解】列树状图得::共有9种等可能的情况其中编号之和大于12的有6种所以概率=故答案为:【点睛】此题主要考查了利解析:2 3【解析】【分析】列举出所有情况,找出取2个球的编号之和大于12的情况,即可求出所求的概率.【详解】列树状图得::共有9种等可能的情况,其中编号之和大于12的有6种,所以概率= 62 93 ,故答案为:23.【点睛】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题的关键.18.【解析】【分析】根据扇形的弧长等于圆锥的底面周长利用扇形的弧长公式即可求得圆锥的底面周长然后根据圆的周长公式即可求解【详解】解:圆锥的底面周长是:=6π设圆锥底面圆的半径是r则2πr=6π则r=3故解析:【解析】【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.【详解】解:圆锥的底面周长是:9012180π⨯=6π,设圆锥底面圆的半径是r,则2πr=6π,则r=3.故答案为:3.【点睛】本题考查圆锥的计算.19.15π【解析】【分析】【详解】解:由图可知圆锥的高是4cm母线长5cm 根据勾股定理得圆锥的底面半径为3cm所以圆锥的侧面积=π×3×5=15πcm²故答案为:15π【点睛】本题考查圆锥的计算解析:15π.【解析】【分析】【详解】解:由图可知,圆锥的高是4cm,母线长5cm,根据勾股定理得圆锥的底面半径为3cm,所以圆锥的侧面积=π×3×5=15πcm².故答案为:15π.【点睛】本题考查圆锥的计算.20.【解析】试题解析:连接OEAE∵点C为OA的中点∴∠CEO=30°∠EOC=60°∴△AEO为等边三角形∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===解析:312π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=32432ππ-+=122π+ 三、解答题21.(1)详见解析;(2)存在,;(3)当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC 是等边三角形可得∠DCB=60°,CD=CE ,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE 是等边三角形,由此可得DE=CD ,因此当CD ⊥AB 时,CD 最短,则DE 最短,结合△ABC 是等边三角形,AC=4即可求得此时DE=CD= (3)由题意需分0≤t <6,6<t <10和t >10三种情况讨论,①当0≤t <6时,由旋转可知,∠ABE=60°,∠BDE <60°,由此可知:此时若△DBE 是直角三角形,则∠BED=90°;②当6<t <10s 时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE 不可能是直角三角形;③当t >10s 时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t 的值了. 试题解析:(1)∵将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,∴∠DCE=60°,DC=EC ,∴△CDE 是等边三角形;(2)存在,当6<t <10时,由(1)知,△CDE 是等边三角形,∴DE=CD ,由垂线段最短可知,当CD ⊥AB 时,CD 最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴==∴cm );(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.22.(1)m=2,顶点为(1,4);(2)(1,2).【解析】【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=2x +mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【详解】解:(1)把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3得:0=23-+3m+3, 解得:m=2,∴y=2x -+2x+3=()214x --+,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0),∴033k b b =+⎧⎨=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).考点:二次函数的性质.23.(1)1440人;(2)20%【解析】【分析】(1)5月份借阅了名著类书籍的人数是1000(1+10%),则6月份借阅了名著类书籍的人数为:5月份借阅了名著类书籍的人数+340人;(2)根据增长后的量=增长前的量×(1+增长率).设平均每年的增长率是x ,列出方程求解即可.【详解】解:(1)由题意,得5月份借阅了名著类书籍的人数是:1000×(1+10%)=1100(人),则6月份借阅了名著类书籍的人数为:1100+340=1440(人);(2)设平均增长率为x .1000(1+x )2=1440,解得:x=0.2.答:从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%.【点睛】本题是一道数学应用题中的增长率问题的实际问题,考查了列一元二次方程解实际问题的运用及一元二次方程的解法的运用,解答中对结果验根是否符合题意是解答的关键.24.(1)20;(2)作图见试题解析;(3)12.【解析】【分析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D一位女生的概率为:31 62 .25.(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】【分析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b,根据题意得806010050k bk b=+⎧⎨=+⎩解得:k2b200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2 +2000)(3)W =-2(x-65)2 +2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.。
2020-2021学年四川省成都九年级(上)期中数学试卷
2020-2021学年四川省成都九年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.如图是由7个小正方体组合而成的几何体,它的俯视图是()A.B.C.D.2.下列关于x的方程中,一定是一元二次方程的是()A. (m−3)x2−√3x−2B. k2x+5k+6=0C. √2x2−√24x−12=0 D. 3x2+1x−2=03.如果a2=b3(a≠0、b≠0),那么下列比例式变形错误的是()A. ab =23B. ba=32C. ab=32D. 3a=2b4.如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF的面积比是()A. 1:6B. 1:5C. 1:4D. 1:25. 1.已知x=−1是方程2x2+ax−5=0的一个根,则a的值为()A. −3B. −4C. 3D. 76.如图,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A. 四边形ACDF是平行四边形B. 当点E为BC中点时,四边形ACDF是矩形C. 当点B与点E重合时,四边形ACDF是菱形D. 四边形ACDF不可能是正方形7.在四边形ABCD中,AC⊥BD,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH是()A. 矩形B. 菱形C. 正方形D. 无法确定8.图中四个阴影的三角形中与△ABC相似的是()A.B.C.D.9.如图,直线l1//l2//l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A. 2B. 3C. 4D. 10310.如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列方程为()A. 22×17−17x−22x=300B. 22×17−17x−22x−x2=300C. (22−x)(17−x)=300D. (22+x)(17+x)=300二、填空题(本大题共9小题,共36.0分)11.若α、β是一元二次方程x2+2x−6=0的两根,则α2+β2=______ .12.在一个不透明的袋子中装有除颜色外完全相同的6只小球,其中4只白球,2只红球,从中任意摸一只球,恰好摸到红球的概率是______ .13.已知菱形的两条对角线的长分别为10,20,则菱形的面积为______.14.如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE是2米.如果小明的身高为1.6米,那么路灯高地面的高度AB是______米.)x2−(4a2−1)x+1=0的一次项系数为0,那么a 15.若关于x的一元二次方程(a+12的值为_________.16.已知点P是线段AB的黄金分割点,PA>PB,AB=4cm,则PA=____cm.17.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为p,再随机摸出一张卡片,其数字记为q,则关于x的方程x2+px+q=0有实数根的概率是________.18.如图,正方形ABCD的边长为10cm,E是AB上一点,BE=4cm,P是对角线AC上一动点,则PB+PE的最小值是______cm.19.如图,已知在正方形ABCD外取一点E,连接CE、BE、DE.过点C作CE的垂线交BE于点F,CE=CF=1,DF=√6.下列结论:①△BCF≌△DCE;②EB⊥ED;③点D到直线CE的距离为2;④S四边形DECF =√2+12.其中正确结论的序号是______.三、解答题(本大题共9小题,共72.0分)20.解方程(1)3x2−8x+4=0;(2)(2x−1)2=(x−3)221.已知关于x的一元二次方程x2−(m−3)x−m=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实数根为x1,x2,且x12+x22−x1x2=7,求m的值.22.△ABC在平面直角坐标系中的位置如图所示.(1)在网格内画出和△ABC以点O为位似中心的位似图形△A1B1C1,且△A1B1C1和△ABC的位似比为2:1;(2)分别写出A1、B1、C1三个点的坐标:A1______ 、B1______ 、C1______ ;(3)求△A1B1C1的面积为______ .23.如图①,在正方形ABCD中,点F在CD上,连接AF交BC的延长线于点E.(1)求证:AD2=BE⋅DF;(2)如图②,点O为正方形对角线的交点,连接OF,求证:∠DOF=∠BED;(3)若AB=6,DF=2CF,延长OF交DE于点M,求OM的长.24.随着信息技术的快速发展,人们购物的付款方式更加多样、便捷.某校数学兴趣小组为了解人们最喜欢的付款方式设计了一份调查问卷,要求被调查者选且只选其中一种你最喜欢的付款方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次活动共调查了______人;在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数为______;(2)补全条形统计图;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种付款方式中选一种方式进行付款,请用树状图或列表法求出两人恰好选择同一种付款方式的概率.25.如图,AB//CD,AD、BC相交于点E,过E作EF//CD交BD于点F,如果AB:CD=2:3,EF=6,求CD的长.26.某商店准备进一批季节性小家电,经调查一种进价每个为2元的小家电的销售情况,若每个小家电售价为5元,每天能卖出500个,而且这种小家电的售价每上涨0.1元,其销售量减少10个.(1)如果每天要实现1575元的销售利润,那该如何定价?(2)如果每天要实现销售利润最大,那该如何定价?27.已知在Rt△ABC中,∠C=90°,AC=kBC,直线l经过点A,过点C、B分别向直线l作垂线,垂足分别为E、F,CE交AB于点M.(1)如图1,若k=1,求证:AE+BF=CE;(2)如图2,若k=2,则AE、BF、CE之间的数量关系,并证明你的结论;(3)在(2)的条件下,如图3,连接CF,过点A作AG//CF,交CE延长线于点G,若CF=3√5,BF=5,求MG的长.28.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E从点C出发,以每秒1个单位长度的速度沿CA方向向点A运动,△CDE关于DE的轴对称图形为△FDE.(1)当t为何值时,点F在线段AC上.(2)当0<t<4时,求∠AEF与∠BDF的数量关系;(3)当点B、E、F三点共线时,求证:点F为线段BE的中点.答案和解析1.【答案】D【解析】【分析】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看,得到的图形是:,故选:D.2.【答案】C【解析】解:A、m=3时是一元一次方程,,故A错误;B、k=0时是一元一次方程,故B错误;C、是一元二次方程,故C正确;C、是分式方程,故D错误;故选:C.根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.【答案】C【解析】解:由a2=b3得,3a=2b,A、由ab =23得3a=2b,所以变形正确,故本选项错误;B、由ba =32得3a=2b,所以变形正确,故本选项错误;C、由ab =32可得2a=3b,所以变形错误,故本选项正确;D、3a=2b变形正确,故本选项错误.故选:C.根据两内项之积等于两外项之积对各选项分析判断即可得解.本题考查了比例的性质,主要利用了两内项之积等于两外项之积.4.【答案】C【解析】解:∵△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,∴AC//DF,∴△OAC∽△ODF,∴AC:DF=OA:OD=1:2,∴△ABC与△DEF的面积比是1:4.故选:C.由△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,根据位似图形的性质,即可得AC//DF,即可求得AC:DF=OA:OD=1:2,然后根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.5.【答案】A【解析】【分析】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.把x=−1代入方程计算即可求出a的值.【解答】解:把x=−1代入方程得:2−a−5=0,解得:a=−3.故选:A.6.【答案】B【解析】【分析】本题考查平行四边形的判定、矩形的判定、菱形的判定.正方形的判定等知识,解题的关键是熟练掌握特殊四边形的判定方法,属于中考常考题型.根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.【解答】解:A.∵∠ACB=∠EFD=30°,∴AC//DF,∵AC=DF,∴四边形AFDC是平行四边形,故A正确;B.当E是BC中点时,无法证明∠ACD=90°,故B错误;C.B、E重合时,易证FA=FD,∵四边形AFDC是平行四边形,∴四边形AFDC是菱形,故C正确;当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC不可能是正方形,故D正确.故选B.7.【答案】A【解析】【分析】本题考查了三角形中位线的性质、平行四边形的判定以及矩形的判定.根据三角形的中位线定理得到四边形EFGH是平行四边形,再推出一个角是直角,由矩形的判定定理可求解.【解答】解:如图,依题意四边形ABCD,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA 的中点,依据三角形的中位线定理得:EF//AC,EF=12AC,GH//AC,GH=12AC,∴EF//GH,EF=GH,∴四边形EFGH是平行四边形,∵EF//AC,EH//BD,BD⊥AC,∴EH⊥EF,∴∠HEF=90°,∴平行四边形EFGH是矩形.故选A.8.【答案】B【解析】【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.【解答】解:由勾股定理得:AC=√2,BC=2,AB=√10,∴AC:BC:AB=1:√2:√5,A、三边之比为1:√5:2√2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比:1:√2:√5,图中的三角形(阴影部分)与△ABC相似;C、三边之比为√2:√5:3,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2:√5:√13,图中的三角形(阴影部分)与△ABC不相似.故选:B.9.【答案】D【解析】解:∵直线l1//l2//l3,∴ABBC =DEEF,∵AB=5,BC=6,EF=4,∴56=DE4,∴DE=10,3故选:D.根据平行线分线段成比例定理得出比例式,代入求出即可.本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.10.【答案】C【解析】解:设道路的宽应为x米,由题意有(22−x)(17−x)=300,故选:C.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.11.【答案】16【解析】【试题解析】【分析】本题主要考查一元二次方程根与系数的关系,把α2+β2化成(α+β)2−2αβ是解题的关键.利用根与系数的关系可得出α+β和αβ,且α2+β2=(α+β)2−2αβ,代入计算即可.【解答】解:∵α、β是一元二次方程x2+2x−6=0的两根,∴α+β=−2,αβ=−6,∴α2+β2=(α+β)2−2αβ=(−2)2−2×(−6)=4+12=16.故答案为16.12.【答案】13【解析】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A 的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用红球的个数除以6,求出恰好摸到红球的概率是多少即可.【解答】解:∵2÷6=13,∴恰好摸到红球的概率是13.故答案为:13.13.【答案】100【解析】解:∵菱形的两条对角线的长分别为10,20,∴菱形的面积=12×10×20=100.故答案为100.根据菱形的面积等于两对角线乘积的一半,列式计算即可得解.本题考查了菱形的性质,掌握菱形的面积等于两对角线乘积的一半是解题的关键.14.【答案】5.6【解析】解:∵AB//CD,∴△ECD∽△EBA,∴CDAB =DEAE,而CD=1.6,AD=5,DE=2,∴AE=7,∴1.6AB =27,∴AB=5.6米.故答案为5.6.要求出AB的高,可利用相似三角形的性质,对应边成比例就可以求出.本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例解题.15.【答案】12【分析】此题考查了一元二次方程的定义和一元二次方程的一般形式.解题关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).解题时,根据一次项系数为0且二次项系数不为0即可求解.【解答】解:∵一元二次方程(a+12)x2−(4a2−1)x+1=0的一次项系数为0,∴−(4a2−1)=0,解得:a=12或a=−12,但二次项系数a+12≠0,∴a只取12.故答案为12.16.【答案】(2√5−2)【解析】【试题解析】解:∵点P是线段AB的黄金分割点,PA>PB,∴PA=√5−12AB=√5−12×4=(2√5−2)cm.故答案为(2√5−2).本题考查了黄金分割,根据黄金分割的定义得到PA=√5−12AB,然后把AB=4cm代入计算即可.17.【答案】12【解析】【分析】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画树状图列出所有等可能结果,从中依据根的判别式找到使方程x2+px+q=0有实数根的结果数,利用概率公式计算可得.【解答】解:画树状图如下:由树状图知共有6种等可能结果,其中使关于x的方程x2+px+q=0有实数根的结果有p=2,q=1,p=4,q=1,p=4,q=2,共3种结果,∴关于x的方程x2+px+q=0有实数根的概率为36=12,故答案为12.18.【答案】2√34【解析】【分析】此题主要考查了利用轴对称求最短路线以及正方形的性质,正确得出P点位置是解题关键.直接利用正方形的性质,得出B,D点关于直线AC对称,连接BD,ED,BP,进而利用勾股定理得出答案.【解答】解:如图所示:连接BD,DE,BP,由题意可得:B,D点关于直线AC对称,则P点是ED与AC的交点,∵正方形ABCD的边长为10cm,BE=4cm,∴AE=6cm,AD=10cm,则EP+BP=ED=√102+62=2√34(cm).故答案为:2√34.19.【答案】①②④【解析】【分析】本题考查四边形的综合问题,涉及全等三角形的性质与判定,勾股定理,三角形面积公式等知识内容.根据正方形的性质、全等三角形的判定和性质、勾股定理等知识一一判断即可.【解答】解:在正方形ABCD 中,BC =CD ,∠BCD =90°,∵CE ⊥CF ,即∠ECF =90°,∴∠BCF =∠DCE ,在△BCF 与△DCE 中,{BC =CD ∠BCF =∠DCE CF =CE, ∴△BCF≌△DCE(SAS),故①正确;∵△BCF≌△DCE ,∴∠CBF =∠CDE ,∴∠DEB =∠BCD =90°,∴BE ⊥ED ,故②正确,过点D 作DM ⊥CE ,交CE 的延长线于点M ,∵∠ECF =90°,FC =EC =1,∴∠CEF =45°,∵∠DEM +∠CEB =90°,∴∠DEM =∠EDM =45°,∴EM =DM ,∴由勾股定理可求得:EF=√2,∵DF=√6,∴由勾股定理可求得:DE=2,∴DM=EM=√2,故③错误,S四边形DECF =S三角形ECF+S三角形EFD=12+√2,故④正确,故答案为①②④20.【答案】解:(1)3x2−8x+4=0,(3x−2)(x−2)=0,∴3x−2=0或x−2=0,∴x1=23,x2=2;(2)(2x−1)2=(x−3)2,(2x−1)2−(x−3)2=0,(2x−1+x−3)(2x−1−x+3)=0,∴3x−4=0或x+2=0,∴x1=43,x2=−2.【解析】(1)利用因式分解法解方程;(2)先移项,然后利用因式分解法解方程.本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).21.【答案】(1)证明:Δ=[−(m−3)]2−4×1⋅(−m)=m2−2m+9=(m−1)2+8> 0,∴方程有两个不相等的实数根.(2)解:根据一元二次方程根与系数的关系,得x1+x2=m−3,x1x2=−m.∵x12+x22−x1x2=7,∴(x1+x2)2−3x1x2=7,∴(m−3)2−3⋅(−m)=7,解得m1=1,m2=2,∴m的值为1或2.【解析】本题考查根与系数的关系、根的判别式,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想解答.(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(2)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.22.【答案】(1)如图所示:△A1B1C1,即为所求;(2)(4,7);(2,2);(8,2);(3)15.【解析】解:(1)见答案;(2)由图易得:A1(4,7),B1(2,2),C1(8,2);(3)△A1B1C1的面积为:5×6−12×2×5−12×5×4=15.(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形得出各点坐标;(3)利用△A1B1C1所在矩形面积,减去周围三角形面积进而得出答案.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题关键.23.【答案】(1)证明:∵四边形ABCD是正方形,∴AD//BE,∠D=∠B=90°,AB=AD,∴∠DAF=∠AEB,∴△DAF∽△BEA,∴DABE =DFBA,∴AD2=BE·DF;(2)证明:连接AO,∵四边形ABCD是正方形,∴∠AOD=∠DAB=90°,∵∠ADO=∠ADB,∴△AOD∽△DAB,∴DO:AB=AD:BD,∴BD·OD=AD2=AB2,由(1)得AD2=BE·DF,∴BD·OD=BE·DF,∴BD:BE=DF:OD,∵∠ODF=∠DBE=45°,∴△DOF∽△BED,∴∠DOF=∠BED;(3)解:∵AB=6,DF=2CF,∴FC=2,∵四边形ABCD是正方形,∴AB//CF,∴△EFC∽△EAB,∴EC:BE=FC:AB,∴EC=3,∴DE=√DC2+CE2=3√5,易证△DOM∽△DEB,∴DO:DE=OM:BE,∴OM=9√105.【解析】本题考查了正方形的性质,相似三角形的判定与性质,勾股定理.会构造三角形证明三角形相似,并利用相似三角形的性质及勾股定理求线段的长是解题的关键.(1)根据正方形的性质可证△DAF∽△BEA,进而可得比例式DABE =DFBA即可证明结论;(2)连接AO,由正方形的性质可证△AOD∽△DAB,可得比例式DO:AB=AD:BD,再结合由(1)的结论证明△DOF∽△BED即可;(3)先求出DF,CF的长,再根据相似三角形的性质求出EC的长,进而求出DE,易证△DOM∽△DEB,即可由DO:DE=OM:BE求OM的长.24.【答案】(1)200;90°;(2)如图,使用微信支付的人数:200×30%=60(人)使用银行卡支付的人数:200×15%=30(人),(3)画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一种付款方式的结果数为3,所以两人恰好选择同一种付款方式的概率=39=13.【解析】解:(1)(50+45+15)÷(1−15%−30%)=200,所以这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数=360°×40200=90°;故答案为200;90°;(2)见答案;(3)见答案.(1)用选用“微信”、“支付宝”、“银行卡”的人数总和除以它们所占的百分比得到调查的总人数;用选用支付宝的人数的百分比乘以360度得到在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数;(2)分别计算出选用微信、银行卡的人数,然后补全条形统计图;(3)画树状图展示所有9种等可能的结果数,找出两人恰好选择同一种付款方式的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.25.【答案】解:∵AB//CD,∴△ABE∽△DCE,∴BEEC =ABCD=23,∴BEBC =25,∵EF//CD,∴△BEF∽△BCD,∴EFCD=BEBC=25∵EF=6,∴CD=15.【解析】本题考查相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.由AB//CD,得到△ABE∽△DCE,推出BEEC =ABCD=23,可得BEBC=25,再证明△BEF∽△BCD,可得EFCD =BEBC=25,由此即可解决问题.26.【答案】解:(1)设定价为x元,则由题意列方程得:×10)(x−2)=1575,(500−x−50.1解得:x1=6.5,x2=5.5,答:如果每天要实现1575元的销售利润,定价应为6.5元或5.5元;(2)设每天销售利润为W,×10)(x−2)则W=(500−x−50.1=−100x2+1200x−2000=−100(x−6)2+1600,∴当x=6,W的最大值为1600元.答:如果每天要实现销售利润最大,应定价为6元,此时最大利润为1600元.【解析】本题考查了二次函数的应用,一元二次方程的应用,属于中档题.(1)设定价为x元,根据条件列方程,即可得解;(2)利用二次函数的性质就可以求出结论.27.【答案】解答:(1)证明:过点C作CH⊥BF,交FB的延长线于点H,如图1.∵CH⊥BF,BF⊥EF,CE⊥EF,∴∠CHF=∠HFE=∠FEC=90°.∴四边形CEFH是矩形.∴CE=HF,∠HCE=90°.∵∠HCE=∠ACB=90°,∴∠HCB=∠ECA.在△BHC和△AEC中,∠BHC=∠AEC,∠HCB=∠ECA,BC=AC.∴△BHC≌△AEC(AAS).∴BH=AE,∴AE+BF=BH+BF=HF=CE.(2)证明:过点C作CP⊥BF,交FB的延长线于点P,如图2.∵CP⊥BF,BF⊥EF,CE⊥EF,∴∠CPF=∠PFE=∠FEC=90°.∴四边形CEFP是矩形.∴CP=EF,CE=PF,∠PCE=90°.∵∠ACB=∠PCE=90°,∴∠ECA=∠PCB.∵∠AEC=∠BPC=90°,∴△AEC∽△BPC.∴AEBP =ECPC=ACBC=2.∴AE=2BP,EC=2PC.∴CE=PE=PB+BF=12AE+BF故答案为:CE=12AE+BF.(3)过点C作CP⊥BF,交FB的延长线于点P,如图3.由(2)得:CP=EF,CE=PF,AE=2BP,EC=2PC.∴PF=CE=2PC.在Rt△CPF中,∵∠CPF=90°,∴PC2+PF2=CF2.∴PC2+(2PE)2=(3√5)2.解得:PC=3.∴EF=PC=3,PF=CE=2PC=6,BP=PF−BF=6−5=1,AE=2BP=2.∵CF//AG,∴△AEG∽△FEC.∴EGEC =AEFE.∴EG6=23∴EG=4.∵∠AEC=90°=∠AFB,∴EM//BF.∴△AEM∽△AFB.∴MEBF=AEAF.∴ME5=22+3.∴ME=2.∴MG=GE+ME=6.∴MG的长为6.【解析】本题考查了全等三角形,相似三角形的判定.有一定难度.(1)过点C作CH⊥BF,交FB的延长线于点H,如图1,易证四边形CEFH是矩形,从而有CE=HF,∠HCE=90°,进而证到△BHC≌△AEC,则有BH=AE,就可证到AE+ BF=CE.(2)过点C作CP⊥BF,交FB的延长线于点P,如图2,易证四边形CEFP是矩形,则有CP=EF,CE=PF,∠PCE=90°,进而可证到△AEC∽△BPC,根据相似三角形的性质可得AE=2BP,EC=2PC,进而可证到CE=12AE+BF.(3)过点C作CP⊥BF,交FB的延长线于点P,如图3.利用(2)中的结论可证到PF=CE= 2PC,在Rt△CPF中运用勾股定理可求出PC长,进而可求出EF、CE、PF、BP、AE 的长.然后可通过证明△AEG∽△FEC求出EG的长,再通过证明△AEM∽△AFB求出ME的长,就可求出MG的长.28.【答案】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°∵△CDE关于DE的轴对称图形为△FDE,∴DF=DC,EF=EC,且点F在AC上,∠C=60°,∴△DCF是等边三角形,∴CD=CF=AB−BD=2,∴CE=1,∴t=1=1s;1(2)如图1,当0<t≤1时,∵△CDE关于DE的轴对称图形为△FDE,∴∠F=∠C=60°,∠FDE=∠CDE,∠CED=∠FED,∵∠C+∠CDE+∠CED=180°,∴∠C+∠F+∠CDE+∠EDF+∠CED+∠FED=360°,∴∠CDF+180°+∠AEF=360°−120°∴180°−∠BDF+180°+∠AEF=240°,∴∠BDF−∠AEF=120°;如图2,当1<t<4时,∵△CDE关于DE的轴对称图形为△FDE,∴∠F=∠C=60°,∠FDE=∠CDE,∠CED=∠FED,∵∠FDC+∠C+∠F+∠CEF=360°,∴180°−∠BDF+120°+180°−∠AEF=360°,∴∠BDF+∠AEF=120°;(3)如图3,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°,EF=EC,∵GD⊥EF,∠EFD=60°∴FG=1,DG=√3FG=√3,∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=√13−1∴BG=√13,∵EH⊥BC,∠C=60°∴CH=EC2,EH=√3HC=√32EC,∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE,∴DGBG =EHBH,∴√3√13=√32EC6−EC2∴EC=√13−1,∴EC=EF=BF=√13−1,∴点F是线段BE的中点.【解析】(1)由折叠的性质可得DF=DC,EF=EC,可证△DCF是等边三角形,可求CE的长,即可求解;(2)分两种情况讨论,由折叠的性质和四边形内角和定理可求解;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可得结论.本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.。
四川省成都七中实学校2021届九年级上学期期中考试数学试卷
四边形 DBCE= 。
、 B、 C、 D、
第 13 题
已知〔-2,y1〕、B〔-1,y2〕、C〔3,y3〕都在反比例函数的图象上,
第 13 题
则 y1 、y2、y3
第 15 题
大小关系正确的选项是〔 〕
第 15 题
、y2 >y1>y3
B、y1 >y2>y3
C、y3 >y1>y2
D、y3
三、解答题〔共 50 分〕
线 DF 分别交 l1,l2,l3 于点 D,E,F,C 与 DF 相交于点 G,且 G=2,GB=1,
如图,在菱形 BCD 中,∠B=120o,B=4cm,则这个菱形的周长是 cm,
BC=5,则的值为〔 〕
面积是 cm2。
、 B、2 C、 D、
在△BC 中,D、E、F 分别是 B、BC、C 的中点,若△BC 的周长为 32cm,
第1页共1页
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
内将△BC 放大,放大后得到△′B′C′。
20.〔此题 8 分〕如图,矩形 BCD 的对角线 C 的垂直平分线 EF 与 D、
〔1〕画出放大后的△′B′C′,并写出点′、B′、C′的坐标。〔点、 C、BC 分别交于点 E、O、F。
第3天
② 当 x >3 时,>。
第4天
③ 当 x=1 时,BC =8。
第5天
④ 当 x 渐渐增时,随着 x 的增大而增大,随着 x 的增大而减小。 第 6 天
24.如图,直线与双曲线交于两点,且点的横坐标为,双曲线上一点 的销售价格,进行了 8 天试销,
的纵坐标为 8,则点 B 的坐标为 ,的面积为 。
试销状况如下:
25.函数 y1= x ( x ≥0 ) , 〔 x > 0 〕的图象如下图,则以下
四川省成都市第七中学初中学校2020~2021学年九年级上学期10月月考数学试题(wd无答案)
四川省成都市第七中学初中学校2020~2021学年九年级上学期10月月考数学试题一、单选题(★★) 1. 下列方程中,是一元二次方程的是()A.B.C.D.(★★) 2. 下列图形中一定是相似形的是( )A.两个菱形B.两个等边三角形C.两个矩形D.两个直角三角形(★) 3. 若,则的值为()A.1B.C.D.(★) 4. 如图,已知△ ABC与△ BDE都是等边三角形,点 D在边 AC上(不与点 A、 C重合),DE与 AB相交于点 F,那么与△ BFD相似的三角形是()A.△BFE;B.△BDC;C.△BDA;D.△AFD.(★★★) 5. 如图,已知 D、 E分别为 AB、 AC上的两点,且DE∥ BC, AE=3 CE, AB=8,则 AD的长为()A.3B.4C.5D.6(★★) 6. 若 x=3是关于 x的一元二次方程的一个解,则 m的值为()A.2B.1C.0D.-2(★★★) 7. 用配方法解方程时,原方程变形为()A.B.C.D.(★★) 8. 某县开展关于精准扶贫的决策部署以来,贫困户2017年人均纯收入为3620元,经过帮扶到2019年人均纯收入为4850元,设该贫困户每年纯收入的平均增长率为x,则下面列出的方程中正确的是()A.3620(1﹣x)2=4850B.3620(1+x)=4850C.3620(1+2x)=4850D.3620(1+x)2=4850(★) 9. 如图,是的边上一点,若∽ ,,,则的度数为()A.25°B.35°C.45°D.110°(★★★) 10. 如图,在矩形中,是边的中点,连接交对角线于点.若,则的长是()A.B.C.D.二、填空题(★★★) 11. 若,则的值为______________.(★★★) 12. 大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,为的黄金分割点,如果的长度为,那么的长度是_____________.(★★★) 13. 如图,在中,于点,则_________.(★★★) 14. 如图,身高1.8米的小石从一盏路灯下 B处向前走了8米到达点 C处时,发现自己在地面上的影子 CE长是2米,则路灯的高 AB为_____米.三、解答题(★★) 15. 解方程.(★★★) 16. 求证:无论 k取何值,关于 x的方程都有两个实数根.(★★) 17. 如图在中,,若.求证:是等腰三角形.(★★) 18. 如图,今有塔位于树的西面.塔高为未知数,塔与树相距,树高,人站在离树的处,观察到树梢恰好与塔顶处在同一斜线上,人眼离地,问塔的高约为多少米(★★★) 19. 某扶贫单位为了提高贫困户的经济收入,购买了的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长)围建一个中间带有铁栅栏的矩形养鸡场(如图所示),若要建的矩形养鸡场面积为,求鸡场的长()和宽(★★★★)20. 如图,四边形ABCD和四边形AEFG都是正方形,C,F,G三点在一直线上,连接 AF并延长交边 CD于点 M.(1)求证:△ MFC∽△ MCA;(2)求的值,(3)若 DM=1, CM=2,求正方形 AEFG的边长.四、填空题(★★★) 21. 若一元二次方程的两根分别为,则_____.(★★★) 22. 已知是非零实数,且______.(★★★) 23. 如图所示,在△ ABC中, AB=8 cm, BC=16 cm.点 P从点 A出发沿 AB向点 B以2 cm/s的速度运动,点 Q从点 B出发沿 BC向点 C以4 cm/s的速度运动.如果点 P, Q分别从点 A, B同时出发,则_____________秒钟后△ PBQ与△ ABC相似?(★★★★) 24. 如图,等边的边长为,点是边上一动点,将等边沿过点的直线折叠,该直线与直线交于点,使点落在直线上的点处,且折痕为则的长为______.(★★★) 25. 如图,中,,,,以边为斜边在形外作,使得,连接,则的最大值为________.五、解答题(★★) 26. 甲商品的进价为每件20元,商场确定其售价为每件40元.(1)若现在需进行降价促销活动,预备从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.若该商品两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整?(★★★★) 27. 如图1,在△ ABC中, AC=n• AB,∠ CAB=α,点 E, F分别在 AB, AC上且EF∥ BC,把△ AEF绕点 A顺时针旋转到如图2的位置.连接 CF, BE.(1)求证:∠ ACF=∠ ABE;(2)若点 M, N分别是 EF, BC的中点,当α=90°时,求证: BE 2+ CF 2=4 MN 2;(3)如图3,点 M, N分别在 EF, BC上且==,若 n=,α=135°, BE=,直接写出 MN的长.(★★★★) 28. 如图,在平面直角坐标系中,直线 y 1= kx+ b与 x轴交于点 A(4,0),与 y 轴交于点 B(0,3),点 C是直线 y 2= x+5上的一个动点,连接 BC,过点 C作CD⊥ AB 于点 D.(1)求直线 y 1= kx+ b的函数表达式;(2)当BC∥ x轴时,求 BD的长;(3)点 E在线段 OA上, OE= OA,当点 D在第一象限,且△ BCD中有一个角等于∠ OEB时,请直接写出点 C的横坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
座位号:_______________ 姓名:_______________学校:_______________
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
D.
1
x
x
m 2
−=
的图象在第一、三象限内,则-52)
52(-5)5-A.
5
12
25 (3)2AC =AP ·AB ;(4)AB ·CP=AP ·CB ;能满足△APC ~△ACB ,相似的条件是() A.(1)(2)(4) B.(1)(3)(4) C.(2)(3)(4) D.(1)(2)(3)
10.如图,正方形ABCD 的边长为2,AE=EB ,MN=1,线段MN 的两端在CB 、CD 上滑动,当△AED 与N 、M 、C 为顶点的三角形相似时,CM 的长为 ( ) A
55
B.54
C.5
5255或
D.51 二、填空题.(每小题4分,共16分)
11.已知::1:2:3x y z =,且234x y z −+=,则x y z −+ = 。
12.若标有A ,B ,C 的三只灯笼按图所示悬挂,每次摘取一只(摘B 前需先摘C),直到摘完,则最后一只摘到B 的概率是 .
第12题
第13题
第14题
13.如图,菱形ABCD 中,AC 交BD 于0,DE ⊥BC 于E ,连接OE ,若∠ABC=140°,则∠OED= . 14.如图,某工件的三视图(单位: cm),若俯视图为直角三角形,则此工件的体积为 .
三、解答题(共54分)
15, (本小题12分,每小题6分)
(1) 解方程:02142
=−+x x (2)化简求值:⎪⎭
⎫ ⎝⎛
+−÷−11112
x x x ,其中12+=x ,
16.(本小题6分)已知方程0652
=−+kx x 的一个根是2,求它的另一个根及k 的值.
座位号:_______________ 姓名:_______________学校:_______________
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
: 、: 、: .
该班有 名学生;x
m
=的图象交于x
m
≤的解集,连
座位号:_______________ 姓名:_______________学校:_______________
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
正方形边上的小正方形的顶点,则每个小正方形的面积为 .
x
1
=
(x
1
=于点为正整数)的坐标是 。
点的连线上,其中正确的是 .
落在线段
是等
O 为CB ,
3
4
OC OH =. x
k
=为顶点四边形为
座位号:_______________ 姓名:_______________学校:_______________
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
附:2020-2021上学年成都七中(高新校区)
九年级上学期数学半期考试题卷——参考答案
A 卷
一、选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案
A
A
D
C
D
A
B
D
D
C
二、填空题(每小题4分,共16分) 11、
43 ;12、 3
2 ;13、 20° ;14、 30cm 3
; 三、解答题(本题6个小题,共54分)
15、(每小题6分,共12分)
(1)-7,3; (2)
2
2
; 16.(本小题满分6分) -
5
3
; -7
17、(本题满分8分)
座位号:_______________ 姓名:_______________学校:_______________
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
20、(本题满分10分)
136
25
;n 2);
座位号:_______________ 姓名:_______________学校:_______________
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////密 封 线 内 不 要 答 题
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
座位号:_______________ 姓名:_______________学校:_______________
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////密 封 线 内 不 要 答 题
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题
座位号:_______________ 姓名:_______________学校:_______________
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////密 封 线 内 不 要 答 题
/////○/////○/////○ 密 ○ 封 ○ 装 ○ 订 ○ 线 ○/////○/////○/////
密 封 线 内 不 要 答 题。