新型高性能结构材料(一)
碳碳复合材料

二、碳/碳复合材料的应用
C/C复合材料作为刹车盘
二、碳/碳复合材料的应用
2. 先进飞行器 导弹、载人飞船、航天飞机等,在再入环境时飞行器头 部受到强激波,对头部产生很大的压力,其最苛刻部位 温度可达2760℃,所以必须选择能够承受再入环境苛刻 条件的材料。 设计合理的鼻锥外形和选材,能使实际流入飞行器的能 量仅为整个热量1%~10%左右。对导弹的端头帽也要 求防热材料,在再入环境中烧蚀量低,且烧蚀均匀对称, 同时希望它具有吸波能力、抗核爆辐射性能和全天候使 用的性能。 三维编织的C/ C复合材料,其石墨化后的热导性足以满 足弹头再入时由160℃气动加热至1700℃时的热冲击要 求,可以预防弹头鼻锥的热应力过大引起的整体破坏; 其低密度可提高导弹弹头射程,已在很多战略导弹弹头 上得到应用。除了导弹的再入鼻锥,C/C 复合材料还可 作热防护材料用于航天飞机。
碳/碳复合材料CVD工艺
在CVD过程中特殊问题--防止预成型体封口。 在工艺参量控制时应使反应气体和反应生成气 体的扩散速度大于沉积速度。
预成型体和基体碳
碳/碳复合材料制备的基本思路 先将碳增强材料预先制成预成型体,然后再以基体碳填充, 逐渐形成致密的C/C复合材料。 预成型体是一个多孔体系,含有大量孔隙,即使是在用成束 碳纤维编织的预成型体中,纤维束中的纤维之间仍含有大量 的孔隙。
二、碳/碳复合材料的应用
C/C在航天领域中的应用
二、碳/碳复合材料的应用
二、碳/碳复合材料的应用
3. 固体火箭发动机喷管上的应用 C/C 复合材料自上世纪70 年代首次作为固体火箭发动机 (SRM) 喉衬飞行成功以来,极大地推动了固体火箭发动 机喷管材料的发展。 采用 C/C 复合材料的喉衬、扩张段、延伸出口锥,具有 极低的烧蚀率和良好的烧蚀轮廓, 可提高喷管效率1 %~ 3%,即可大大提高固体火箭发动机的比冲。 喉衬部一般采用多维编织的高密度沥青基C/C复合材料, 增强体多为整体针刺碳毡、多向编织结构等,并在表面 涂覆SiC以提高抗氧化性和抗冲蚀能力。 美国在此方面的应用有:①“民兵2Ⅲ”导弹发动机第三 级的喷管喉衬材料; ②“北极星”A27 发动机喷管的收 敛段;③MX 导弹第三级发动机的可延伸出口锥(三维编织 薄壁 C/C 复合材料制品)。 俄罗斯用在潜地导弹发动机的喷管延伸锥(三维编织薄壁 C/C复合材料制品) 。
FRP在土木工程结构加固应用进展探究

FRP在土木工程结构加固应用进展探究近年来,纤维增强复合材料也就是FRP是一种新型高性能结构材料,在土木工程结构加固中得到广泛的应用, 我国在土木工程结构中对这一新型高性能材料做了研究工作,例如FRP材料技术、FRP加固设计技术、FRP加固施工技术等,研究表明,FRP在土木工程结构加固中的应用,显现的自身特点有高强、轻质、抗腐蚀温度作用下稳定性好等,工程优势有节省维修费用、施工便利、交通干扰较小、结构耐用持久等,利用这些特性和优势,在某些特定的条件下,FRP 材料可以代替具有传统的结构材料进行使用,这种材料受到土木工程界的重视与关注,在未来的结构加固领域,FRP材料的地位越来越重要。
本文介绍了土木工程结构中FRP材料的特点,分析了在土木工程结构中的应用与发展,以供工作参考。
标签:纤维复合材料(FRP);土木工程;加固应用土木工程学科的发展要依赖于性能优异的新材料新技术的应用和发展。
FRP复合材料在土木工程结构加固工程中应用潜力很大。
FRP材料具有轻质高强、抗腐蚀性强、耐腐蚀耐久性能好、自重轻、施工方便、热膨胀系数与混凝土相近、抗疲劳、节省材料、施工方便、维护成本低等优点。
FRP材料的结构修复和形成新结构在土木工程中的研究与应用较多,结构修复包括维修、加固、更新等几个方面;形成新结构包括采用FRP材料形成新结构和FR材料与混凝土形成混合结构。
在21世纪的结构加固领域,采用FRP材料加固的应用范围越来越广,主要应用于加固混凝土、梁、板、柱、砌体结构、钢结构等。
土木工程中,各国政府对材料的安全性、耐久性、经济性是很重视的。
1 FRP在结构加固中的研究现状我国FRP材料的研究和应用与发达国家相比,技术水平还比较落后。
但是目前,我国应用FRP材料已完成多项工程,其发展前景还是很广,近些年来,我国有更多的研究单位加人到FRP材料的研发中来,因此,我国的FRP研发的技术领域得到快速发展。
它的发展也会带动市场材料的使用量,在土木工程领域中,FRP复合材料的应用在我国起步较晚,FRP材料队也土木工程建筑物来说,造价不能过高,FRP材料工程应用经验较少,造成FRP材料的应用比其他行业会滞后些,而工程师面对的FRP实践性问题也是关于这种材料加强结构的预期或先见效果,实践设计经验少,对FRP材料加固结构设计的标准和研究也很缺乏[1]。
碳碳复合材料

气相沉积法
-预成型体。 主要工艺参数:温度、压力、时间。 成本问题:重要的是如何尽可能缩短工艺各工序,降
低成本。
预成型体和基体碳
制备的基本思路 先将碳增强材料预先制成预成型体,然后再以基体碳填充,
逐渐形成致密的C/C复合材料。 预成型体是一个多孔体系,含有大量孔隙,即使是在用成束
碳纤维编织的预成型体中,纤维束中的纤维之间仍含有大量 的孔隙。
一、碳/碳复合材料概述
我国碳/碳复合材料的研究和开发主要集中在航天、 航空等高技术领域,较少涉足民用高性能、低成本碳 /碳复合材料的研究。
目前整体研究水平还停留在对材料宏观性能的追求上, 对材料组织结构和性能的可控性、可调性等基础研究 还相当薄弱,难以满足国民经济发展对高性能碳/碳 复合材料的需求。
预成型体和基体碳
树脂碳:为无定形(非 晶态)碳,在偏光显微 镜下为各向同性。
图7-l4为碳纤维/酚醛 树脂碳基复合材料的 偏光显微组织。
可以看出树脂碳在碳 化时收缩所形成的显 微开裂。
碳/碳复合材料CVD工艺
CVD反应过程 1)反应气体通过层流流动向沉积衬底的边界层扩散; 2)沉积衬底表面吸附反应气体; 3)反应气体产生反应并形成固态产物和气体产物; 4)气体产物分解吸附,并沿一边界层区域扩散; 5)产生的气体产物排出。
化学气相沉积法
在沉积法中也可用等离子弧法。这种方法已经用来制 取微细碳化物,如碳化钛、碳化钽、碳化铌等。等离 子弧法的基本过程是使氢通过等离子体发生器将氢加 热到平均30000C的高温, 再将金属氯化物蒸气和碳 氢化合物气体喷入炽热的 氢气流(火焰)中,则金 属氯化物随即被还原、碳 化,在反射墙上骤冷而得 到极细的碳化物。
高性能金属结构材料 —工具钢

材料学院
主要内容
1 碳素及低合金工具钢 2 高速工具钢 3 冷作模具钢 4 热作模具钢
重点及基本要求
掌握各类钢的典型牌号、成分特点、合金元素的作 用、热处理及应用。
重点是高速钢钢、高碳高铬模具钢、锤锻模用钢。 难点是高速钢的合金元素作用、热处理工艺制定的
依据和显微组织与性能特点。
淬火:高速钢的淬火是为了获得高合金的奥氏体,淬火后获得高合金 的马氏体,具有高的回火稳定性,在高温回火时析出弥散合金碳化物 产生次生硬化,使钢具有高的硬度和热硬性。
高速钢中的M6C、M23C6和MC比较稳定,必须在高温下才能将其溶解。 三者中M23C6稳定性最差,在900℃以上大量溶解,到1090 ℃溶解完 毕; M6C在1037℃以上开始溶解,对W18Cr4V钢,1250 ℃以上溶解 量逐渐减小;MC在1100℃以上逐渐溶解,溶解速度比M6C慢。
MS(220℃)以下为马氏体转变区间。淬 火 后 约 含 有 70 % 的 隐 晶 马 氏 体 , 还 用 20~25%残留奥氏体。在冷却过程中中 温停留或缓冷,将发生奥氏体热稳定化, 使MS点下降,残留奥氏体增多。
W18Cr4V钢加热1300℃时过 冷奥氏体恒温转变曲线
淬火方式一般用油淬空冷,对细长 件和薄片刃具采用分级淬火,一般用 580~620℃一次分级或再在350~400 ℃做二次分级。
二、高速工具钢
工具钢-高速工具钢
➢ 高速工具钢适用于高速切削刃具,由于合金度高,可保证刃部 在650℃时硬度仍高于HRC50,从而具有优良的切削性和耐磨 性。高速钢可分为三类:钨系高速钢,钼系高速钢和钨钼系高 速钢。其中钨系的W18Cr4V和钨钼系的W6Mo5Cr4V2应用最普 遍,属于通用型高速钢,而高碳高钒、含钴高钒高钴和超硬高 速钢属于特殊高性能高速钢。
高性能结构材料发展趋势

高性能结构材料发展趋势随着现代材料科学的发展,高性能结构材料已经成为了现代工业的重要组成部分。
高性能结构材料的特点是具有良好的力学性能、物理性能和化学性能,能够在极端的工作环境下保持其稳定性能和可靠性。
未来,高性能结构材料将继续在航空航天、能源、交通运输、医疗、环境保护等领域发挥重要作用。
本文将介绍高性能结构材料的发展趋势,并讨论其在未来的发展方向。
1. 金属基高性能结构材料金属基高性能结构材料是目前最为成熟的高性能材料之一。
金属材料具有较好的延展性和塑性,是结构强度优秀的材料,由于大多数金属材料可进行可循环加工,因此在制造和维护上具有较高的经济性和实用性。
目前,随着新材料和新工艺的不断涌现与发展,金属基高性能结构材料的研究重点逐渐转移到了高性能特性的挖掘、工艺改进和材料性能提高等方向。
金属基高性能结构材料的主要发展方向是提高材料的强度、韧性、高温腐蚀性能和低温脆性等性能,同时降低材料成本和生产成本。
2. 复合材料复合材料是一种由两种或两种以上的材料组成的材料。
复合材料具有优异的特性,如高强度、高刚度、高耐热性、高化学惰性、方便机械加工等。
复合材料在许多领域广泛应用,如航空航天、汽车工业、建筑行业等等。
未来,随着材料科学的进一步发展,复合材料的研究将更加深入,主要发展方向是增强材料的强度、耐磨性、防腐性、耐高温性能以及实现材料轻量化,降低成本等。
3. 高分子材料高分子材料具有多样化、功能性、良好的可加工性和成型性,用途广泛、价格合理、重量轻等优点。
高分子材料技术发展快速,特别是有机高分子(如聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯等)和特种高分子(如聚酰胺、聚硫醚、聚酰亚胺等),得到广泛的应用。
研究和应用高分子材料对保护环境和开发高科技领域的功能材料具有积极意义。
未来,高分子材料在膜材料、生物医学材料、电介质材料等方面的应用前景广阔。
4. 纳米材料纳米颗粒、纳米管、纳米棒等纳米结构材料的制备技术和研究成果已经取得了重大突破。
纤维增强复合材料

纤维增强复合材料在工程结构中的应用一、FRP材料简介:纤维增强复合材料(fiber reinforced polymer/plastic,简称FRP) 是由纤维材料与基体材料按一定定工艺复合形成的高性能新型材。
初期主要应用于航空、航天、国防等高科技领域,广泛应用于航天飞机、军舰、潜艇等军事装备上。
20世纪下半叶,随着FRP材料制造成本的降低,又因其轻质、高强、耐腐蚀等优点,成为土木工程的一种新型结构材料。
目前,在土木工程中应用的FRP材料主要有碳纤维增强复合材料(cFRP)、玻璃纤维增强复合材料(GFRP)和芳纶纤维增强复合材料(AFRP)三种。
近年来,PBO纤维和玄武岩纤维也开始应用于土建工程中,并取得了良好的效果。
目前,FRP材料在我国土木工程中应用最多的是用于结构加固补强。
FRP加固修复技术的研究和应用已在我国逐渐展开,且正在以高速度发展。
在新建工程结构中,FRP结构和FRP组合结构的应用也日益受到工程界的重视。
FRP材料在土木工程中的应用和研究已成为了一个新的热点。
二、FRP材料的优点:1、有很高的比强度,即通常所说的轻质高强,因此采用FRP材料可减轻结构自重。
在桥梁工程中,使用FRP结构或FRP组合结构作为上部结构可使桥梁的极限跨度大大增加。
理论上,用传统结构材料桥梁的极限跨度在5000 m以内,而上部结构使用FRP结构可达8000 m以上,有学者已经对主跨长达5000 m的FRP悬索桥进行了方案设计和结构分析E8]。
在建筑工程中,采用FRP材料的大跨空间结构体系的理论极限跨度要比传统材料结构大2~3倍,因此,FRP结构和FRP组合结构是获得超大跨度的重要途径。
在抗震结构中,FRP 材料的应用可以减轻结构自重,减小地震作用。
另外,FRP材料的应用也能使结构的耐疲劳性能显著提高。
2、有良好耐腐蚀性,FRP可以在酸、碱、氯盐和潮湿的环境中长期使用,这是传统结构材料难以比拟的。
在美国每年因钢材腐蚀造成的工程结构损失高达700亿美元,近1/6的桥梁因钢筋锈蚀而严重损坏;加拿大用于修复因老化损坏的工程结构的费用达490亿加元;我国目前因钢材锈蚀而造成的损失也在逐年增加。
FRP复合材料的研究与应用

FRP复合材料的研究与应用摘要:FRP复合材料(Fiber Reinforced Plastic,FRP)近年来在混凝土结构加固中得到广泛的应用,并作为一种新型高性能结构材料受到结构工程界的广泛关注,国内外有关研究和工程单位开展了大量的研究和实践应用。
本文主要涉及FRP材料的物理性能,分析其优点与不足,并介绍了FRP在结构中的应用与发展。
关键词:FRP,;木工程;组合结构Abstract: FRP composite ( Fiber Reinforced Plastic, FRP ) in recent years was widely used in the reinforcement of concrete structure, and as a new type of high performance structural material subjected to structural engineering circles, the domestic and foreign research and engineering units carried out extensive research and practice application. This paper mainly deals with the FRP of the physical properties of the material, analyzes its advantages and disadvantages, and introduces the structure of FRP in the application and development of.Key words: FRP, wood engineering; composite structure;引言人类从古时候就开始使用不同形式的复合材料,如粘土和稻草组成的土坯砖。
FRP在结构工程中的应用及发展

FRP在结构工程中的应用及发展FRP(纤维增强复合材料)近年来在混凝土结构加固中得到广泛的应用,并作为一种新型高性能结构材料受到结构工程界的广泛关注,国内外有关研究和工程单位开展了大量的研究和实践应用。
本文介绍了结构工程中常用的FRP材料性能和形式,分析了其优点与不足并介绍了FRP加固结构、FPR配筋和预应力筋混凝土结构、FRP结构与FRP组合结构以及FRP在桥梁结构、大跨空间结构和智能结构中的应用与发展以期促进我国土建结构工程中对这一新型高性能材料应用和研究工作的开展。
标签:纤维增强复合材料;混凝土;结构加固;组合结构;桥梁;大跨结构;智能结构1 概述纤维增强复合材料(fiber reinforced polymer/plastic 简称FRP)是由纤维材料与基体材料按一定比例混合并经过一定工艺复合形成的高性能新型材料。
这种材料从20世纪40年代问世以来在航空、航天、船舶、汽车、化工、医学和机械等领域得到广泛的应用。
近年来以其高强、轻质、耐腐蚀等优点,开始在土木与建筑工程结构中得到应用并受到工程界的广泛关注。
复合材料由增强材料和基体构成根据复合材料中增强材料的形状可分为颗粒复合材料、层合复合材料和纤维增强复合材料等。
FPR只是复合材料中的一种。
常用的FRP的基体为树脂、金属、碳素、陶瓷等纤维种类有玻璃纤维、硼纤维、碳纤维、芳纶纤维、陶瓷纤维、玄武岩纤维、聚烯烃纤维、PBO纤维以及金属纤维等。
目前工程结构中常用的FRP主要为碳纤维、玻璃纤维和芳纶纤维增强的树脂基体分别简称为GFRP、CFRP和AFRP。
FRP作为结构材料出现于1942年,美国军方用手糊的制作雷达天线罩。
,20世纪50-60年代才开始用于民用建筑中。
1961年英国的一座教堂的尖顶采用了GFRP,1968年,英国的工程师用GFRP板和铝质骨架在利比亚港口城市班加西设计并建造了一个穹顶,防止空气中氯盐对结构的侵蚀;同年,英国又建成了一座全GFRP折板结构的仓库;1970年,英国建成了一座GFRP连续梁的人行天桥跨径10m,宽5m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter6 Metallic Materials
J
19
3. 减振能力的应用
合金在超塑性温度下具有使振动迅速衰减的性 质,因此可将超塑性合金直接制成零件以满足 不同温度下的减振需要。
一、人造金刚石和立方氮化硼的问世
瑞典ASEA公司的Liander和Lundblad在1953年成功地合 成了金刚石; 1957年物理化学家温托夫(R.H.Wentorf) 研制成功立方氮化硼。
请同学们猜一猜
合成钻石
超硬材料的发展历程如表12-1所示。
二、超硬材料的性能及应用
1. 天然单晶金刚石 天然金刚石是一种各向异性的单晶体。硬度达
图12-2 常规变形和超塑性变形的内部晶粒变化示意图 (a) 常规塑性变形 (b)超塑性变形
超塑性合金的应用
1. 高变形能力的应用
真空成型或气压成型
可以在密封模具内挤压或锻造,可以得到相当 高的加工精度,并能大幅度降低加工压力、减 少加工工序
尤其适于极薄板和极薄管的制造,也非常适用 于加工具有极微小凹凸表面的制品。
4. 其他
利用动态超塑性可将铸铁等难加工的材料进行 弯曲变形;
对于铸铁等焊接后易开裂的材料,在焊后于超 塑性温度保温,可消除内应力,防止开裂;
高温苛刻条件下使用的机械、结构件的设计、 生产及材料的研制。
J
Chapter6 Metallic Materials
20
第 三 节: 高 温 合 金
6.立方氮化硼烧结体
立方氮化硼烧结体具有较高的硬度 (3000~5000HV)和耐磨性,并具有很高的热稳定性,在 800℃时的硬度还高于陶瓷和硬质合金的常温硬度 。
第二节:超 塑 性 合 金
一、超塑性的定义
变形所需应力却很小,变形均匀,拉伸时不 产生颈缩;无加工硬化,无弹性回复,变形后内部无 残余应力,无各向异性,这种现象即为超塑性。
图12-1 为Ni-Fe-Cr合金延伸率达1000%以上 而无颈缩的拉伸试样图。
超塑性合金 Superplastic alloy
1 超塑性合金现象
金属在某一小的应力状态下,可以延伸十倍甚 至是上百倍,既不出现缩颈,也不发生断裂, 呈现一种异常的延伸现象。
10
图12-1 Ni-Fe-Cr合金延伸率达1000%以上而无颈缩的拉伸试样图
9000-10000 HV,是自然界中最硬的物质,最重要的用
途在于高速超精加工有色金属及其合金。
2. 人造单晶金刚石
人造单晶金刚石硬度略逊于天然金刚石, 其解理方向和尺寸变得可控和统一。
时间 1955 1957 1977
1995
超硬材料 人造单晶金刚石
立方氮化硼 人造聚晶金刚石,立方氮化硼烧
结体
公司 美国GE 美国GE
美国GE
方法 高温高压 高温高压
高温高压
人造单晶金刚石
用途 磨料 磨料 刀具
刀具
近年
人造单晶立方氮化硼
刀具
近年 近年 近年
类金刚石膜 金刚石薄膜 金刚石厚膜Βιβλιοθήκη 刀具CVD刀具
CVD
刀具
表12-1 超硬材料发展史
3.人造聚晶金刚石
人造聚晶金刚石是在高温高压下将金刚石 微粉加溶剂聚合而成的多晶体材料其硬度比天然金刚 石低(6000HV左右),但抗弯强度比天然金刚石高很 多主要用来制作刀具。
合金种类:
锌基合金:巨大的无颈缩延伸率;低蠕变强度, 冲压加工性能差
铝基合金:综合力学性能较差,室温脆性大 镍基合金 超塑性钢: 钛基合金
13
金属材料在一般条件下没有超塑性。 要使其能够发生超塑性形变,必须具备以下三个条件:
①材料必须为具有细小等轴晶粒的两相 组织,晶粒直径必须小于10μm(超细晶粒),且在超 塑性形变过程中晶粒不显著长大;
缺点是加工速度慢,效率低
Chapter6 Metallic Materials
J
17
超塑成型
18
2. 固相粘结能力的应用
晶粒的超细化,即晶界体积比的增加使得低压 下的固相结合易于进行。
超塑性合金与另一金属压合时,其微细晶粒可 以顺利地填充满微小凸起的空间,使两种材料 间的粘结能力大大提高。
4.化学气相沉积金刚石膜
金刚石膜是采用化学气相沉积(简称CVD)的方 法制备出来的一种多晶纯金刚石材料,他呈膜状附着 于基体表面,故又常称金刚石膜。
5.立方氮化硼
立方氮化硼微粉的显微硬度为8000~9000HV, 仅次于金刚石,但热硬度和热稳定性比金刚石高很多。 立方氮化硼在1300℃时仍能保持其硬度。
第十二章 : 新型高性能结构材料
前言 第一节 : 超 硬 材 料 第二节 : 超 塑 性 合 金
第三节 : 高 温 合 金 第四节 : 超 低 温 材 料
新型高性能结构材料
高性能结构材料是具有高比强度、高 比刚度、耐高温、耐腐蚀、耐磨损的材料,它包括新 型金属材料、高性能结构陶瓷材料和高分子材料等。
a 拉伸试验前;
b拉伸试验后
产生超塑性的条件
• 产生超细化晶粒;
• 适宜的温度和应变速率。
4.3.1 超塑性现象
晶粒的超细化、等轴化以及稳定化 可通过合金化,控制凝固过程、 热处理、形变热处理、粉末冶金、 机械加工等方法来实现。
12
6.4.2 超塑性合金类别
结构类别:
细晶超塑性 相变超塑性
②超塑性形变要求一定的温度范围,一 般为熔点的0.5~0.65倍;
③超塑性形变时的应变速率很小,一般 需在0.01~0.0001/s 的范围内。
二、超塑性行为的产生
研究发现,在两种特定的条件下,会出 现合金的超塑性行为:如图12-2所示。
①相变超塑性 ②微细晶粒超塑性
三、超塑性合金的应用
超塑性合金最大的应用就是航空航天材料。
发展新型高性能结构材料将支撑交通运输、 能源动力、资源环境、电子信息、农业和建筑、航天 航空、国防军工以及国家重大工程等领域的可持续发 展,对国家支柱产业的发展和国家安全的保障起着关 键性的作用。
第 一 节: 超 硬 材 料
超硬材料通常是指莫氏硬度达到或接近 10的材料,主要指金刚石和立方氮化硼,适于用来制造 加工其他材料的工具 。此外,超硬材料在光学、电学、 热学方面还具有一些特殊性能,是一种重要的功能材料。