纳米技术在生物医药中的应用
纳米技术在生物及医药学领域的应用

纳米技术在生物及医药学领域的应用随着科技的发展,纳米技术逐渐成为研究热点,其在生物及医药学领域的应用也备受关注。
纳米技术的引入为生物及医药学领域带来了许多新的机会和挑战。
本文将从纳米技术的概念、生物及医药学领域的需求、纳米技术在生物及医药学领域的应用及未来展望等方面进行分析和探讨。
一、纳米技术的概念纳米技术是一种研究和控制物质在纳米尺度(1~100纳米)范围内的制备、处理和应用的技术。
在这个尺度范围内,物质的性质和行为与宏观物质相比有很大的不同。
纳米技术的应用涵盖了许多领域,如能源、材料、电子、生物医学等。
二、生物及医药学领域的需求在生物及医药学领域,纳米技术的应用主要是为了解决如下问题: 1.药物的传递问题。
传统的药物治疗有很多局限性,如药物不能精准地传递到病变部位、药物在体内分解代谢过快、药物不能穿过血脑屏障等。
纳米技术可以通过设计纳米粒子,将药物精准地传递到病变部位,提高药物的生物利用度。
2.疾病诊断问题。
目前,许多疾病的早期诊断非常困难,需要进行大量的检测和分析。
利用纳米技术,可以制备出高灵敏度、高选择性的生物传感器,用于检测生物标志物,提高疾病的早期诊断率。
3.细胞治疗问题。
细胞治疗是一种新兴的治疗方法,但是其应用受到很多限制,如细胞的存活率低、细胞不能精准地定位到病变部位等。
利用纳米技术,可以制备出纳米载体,用于将细胞精准地输送到病变部位,提高细胞治疗的效果。
三、纳米技术在生物及医药学领域的应用1.纳米药物纳米药物是利用纳米技术制备的药物,其粒径一般在10~1000纳米之间。
纳米药物具有许多优点,如精准的靶向性、高生物利用度、长时间的药物释放时间等。
目前,纳米药物已经广泛应用于肿瘤治疗、心血管疾病治疗、神经系统疾病治疗等领域。
2.纳米生物传感器纳米生物传感器是利用纳米技术制备的生物传感器,其灵敏度和选择性都比传统的生物传感器要高。
纳米生物传感器可以用于检测生物标志物、病原体等,提高疾病的早期诊断率。
纳米技术在医学及生物领域中的应用

纳米技术在医学及生物领域中的应用随着纳米技术的不断发展,其应用领域也不断拓宽,其中医学及生物领域的应用备受关注。
纳米技术在这个领域中的应用主要有两个方面:一是纳米材料在医学中的应用,包括纳米药物、纳米生物活性材料等;二是纳米技术在生物学研究中的应用,包括纳米探针、纳米生物传感器等。
一、纳米材料在医学中的应用1. 纳米药物纳米药物是将药物包裹在纳米颗粒中,目的是增加药物的稳定性、增强溶解性、延长药物的半衰期等。
纳米药物的应用范围非常广泛,包括癌症治疗、心血管疾病治疗、传染病治疗等。
其中,纳米颗粒可以通过靶向药物释放来实现治疗效果的最大化。
例如,纳米颗粒可以通过靶向癌细胞来释放药物,从而减少对正常细胞的影响。
2. 纳米生物活性材料纳米生物活性材料是指用纳米技术制造的具有生物活性的材料。
这类材料在医学中的应用也非常广泛,包括生物传感器、诊断试剂、组织工程材料等。
其中,纳米生物活性材料可以通过一定的修饰来实现特定的检测和治疗效果。
例如,利用纳米生物活性材料制造的生物传感器可以实现精准的生物检测,从而提高疾病的诊断准确率。
二、纳米技术在生物学研究中的应用1. 纳米探针纳米探针是指采用纳米技术制造的用于生物分子检测的小型探针。
这些探针通常可以在生物细胞中或生物分子中实现高灵敏度和高准确度的检测效果。
例如,利用纳米探针可以实现对肿瘤标记物的快速检测、对细胞表面蛋白的快速检测等。
2. 纳米生物传感器纳米生物传感器是指以纳米技术制造的用于检测生物分子的传感器。
这些传感器可以实现高灵敏度和高准确度的检测效果,具有在体内实时监测生物分子的能力。
例如,利用纳米生物传感器可以实现心肌梗塞的早期诊断、细菌感染的快速检测等。
3. 纳米医学影像技术纳米医学影像技术是指将纳米材料引入人体并利用纳米材料在影像学中的特殊性质来实现人体影像的技术。
这种技术可以实现对生物分子、组织器官的高分辨率影像,并且具有成像速度快、没有放射性危险等优点。
纳米技术在生物医药学发展中的应用

纳米技术在生物医药学发展中的应用
纳米技术在生物医药学领域的应用包括药物传递、诊断和治疗等
方面。
1. 药物传递:纳米技术可以用于设计和制备纳米颗粒,将药物
封装在纳米颗粒内,从而提高其稳定性和溶解度。
纳米颗粒可以通过
被动或主动靶向策略将药物传递到特定的细胞或组织,减少对健康组
织的毒性。
此外,纳米颗粒还可以被用作药物缓释系统,释放药物以
实现持续疗效。
2. 诊断:纳米技术可以用于开发生物标志物的纳米传感器,用
于早期疾病的诊断。
这些纳米传感器可以被设计来检测生物分子的变化,如蛋白质、核酸和小分子,从而实现精确诊断。
此外,纳米技术
还可以用于构建影像引导的治疗系统,通过纳米颗粒或纳米材料对疾
病进行定位和跟踪。
3. 治疗:纳米技术可以利用其特殊的物理和化学性质,开发新
型的治疗方法。
例如,通过利用纳米粒子的特殊光学特性,可以实现
光热疗法,即利用纳米材料吸收光能并将其转化为热能,从而杀死癌
细胞。
另外,纳米技术还可以用于基因治疗,即通过将基因载体封装
在纳米颗粒中,将目标基因传递到细胞内,治疗遗传性疾病或癌症等
疾病。
总之,纳米技术在生物医药学中的应用有望提高药物的传递效率、提供更准确的诊断和治疗手段,为疾病的治疗和预防带来新的可能性。
然而,仍需更多的研究和发展来解决纳米颗粒的毒性和生物相容性问题,以确保其安全性和有效性。
纳米技术在生物医药中的应用前景研究

纳米技术在生物医药中的应用前景研究在当今科技飞速发展的时代,纳米技术作为一项具有革命性的前沿科学,正逐渐在生物医药领域展现出其巨大的应用潜力。
纳米技术是指在纳米尺度(1 至 100 纳米)上对物质进行研究和操作的技术。
这一尺度下,物质的物理、化学和生物学性质会发生显著变化,为生物医药领域带来了前所未有的机遇。
纳米技术在药物输送方面的应用具有重要意义。
传统的药物治疗往往存在药物在体内分布不均、药物浓度难以控制以及副作用较大等问题。
而纳米药物载体的出现则为解决这些问题提供了可能。
纳米粒子可以被设计成具有特定的尺寸、形状和表面性质,从而能够精准地将药物输送到病变部位。
例如,脂质体纳米粒可以包裹水溶性和脂溶性药物,通过增强渗透和滞留效应(EPR 效应)在肿瘤组织中聚集,提高药物的治疗效果,同时减少对正常组织的损伤。
此外,纳米技术还能够提高药物的溶解性和稳定性。
许多药物由于水溶性差,生物利用度低,限制了其临床应用。
通过将药物制备成纳米晶、纳米混悬液等形式,可以显著增加药物的溶解度,提高药物的吸收和疗效。
同时,纳米载体还可以保护药物免受体内环境的影响,延长药物的半衰期,减少给药次数。
在疾病诊断方面,纳米技术也发挥着重要作用。
纳米材料具有独特的光学、电学和磁学性质,使其成为理想的诊断工具。
量子点是一种典型的纳米材料,具有荧光强度高、稳定性好、发射光谱可调等优点,可以用于生物标记和细胞成像。
磁性纳米粒子则可以用于磁共振成像(MRI)的造影剂,提高成像的灵敏度和分辨率。
此外,纳米生物传感器能够快速、灵敏地检测生物体内的各种标志物,如蛋白质、核酸、病原体等,为疾病的早期诊断提供了有力的手段。
纳米技术在基因治疗领域也有着广阔的应用前景。
基因治疗是一种通过导入正常基因来纠正或补偿缺陷基因功能的治疗方法。
然而,基因的有效传递和表达一直是基因治疗面临的关键问题。
纳米载体可以有效地将基因递送到靶细胞内,并保护基因免受核酸酶的降解。
纳米材料的生物医学应用

纳米材料的生物医学应用随着科学技术的不断进步,纳米技术在生物医学领域的应用越来越受到重视。
纳米材料具有独特的物理、化学和生物学特性,使其在生物医学领域具有广阔的应用前景。
本文将从诊断、治疗和药物传递等方面阐述纳米材料在生物医学中的重要应用。
一、纳米材料在疾病诊断中的应用纳米材料的特殊性质使其成为一种理想的生物标记物。
通过在纳米颗粒上修饰抗体、蛋白质或核酸等生物分子,可以实现对特定疾病标志物的高度选择性和灵敏检测。
例如,在癌症的早期诊断中,通过将纳米颗粒与抗体结合,可以实现对肿瘤特异性标志物的检测,提高诊断的准确性和灵敏性。
二、纳米材料在疾病治疗中的应用1. 肿瘤治疗纳米材料在肿瘤治疗中具有重要的应用潜力。
一方面,纳米颗粒可以通过改变其大小、形状或表面性质,实现药物的靶向输送,提高药物在肿瘤组织中的积累,减少对正常组织的损伤。
另一方面,纳米材料还可以作为肿瘤热疗的载体,通过外加磁场或光照射使纳米材料产生热效应,破坏肿瘤细胞的结构,实现肿瘤的热疗。
2. 动脉粥样硬化治疗动脉粥样硬化是一种常见的血管疾病,纳米材料在治疗该疾病中显示出巨大的潜力。
通过将纳米颗粒修饰上抗炎药物或血管重建因子等生物活性物质,可以实现对病变血管的定向治疗,促进血管再生,改善血管通透性。
三、纳米材料在药物传递中的应用纳米材料在药物传递中的应用已经取得了重要的突破。
通过将药物包裹在纳米粒子内部,可以提高药物的溶解度、稳定性和生物利用度。
另外,纳米材料还可以通过改变其表面性质,实现对药物的控制释放,提高药物在靶组织中的作用时间。
此外,纳米材料还可以通过改变其形状、结构或尺寸,实现对药物的靶向输送,减少药物在体内的分布和代谢,提高药物的效果。
总之,纳米材料在生物医学中的应用潜力巨大。
通过纳米技术的引入,可以实现对疾病的早期诊断、靶向治疗和药物传递的精准控制。
然而,纳米材料的安全性和生物相容性仍然是需要面对的挑战。
进一步的研究需要加强对纳米材料的毒性评估和生物安全性研究,以确保其在生物医学应用中的可持续发展和广泛应用。
纳米技术在生物医药中的应用研究

纳米技术在生物医药中的应用研究一、引言生物医药一直是科技前沿的领域,纳米技术在生物医药中的应用,能够通过精确控制物质的结构、性能和相互作用等方面,创造更理想的医药产品。
本文将介绍纳米技术在生物医药领域中的应用及其未来发展趋势。
二、纳米技术概述纳米技术是一种精细的制造技术,指的是在纳米尺度范围内制造、处理和控制物质的技术。
在纳米尺度下,物质的特性将发生很大的变化,例如表面积、物质状态和反应性等。
纳米技术在生物医药领域中具有独特的应用优势。
三、纳米技术在生物医药中的应用1.纳米药物纳米技术能够帮助制造出更安全、更有效的药物。
利用纳米技术可以制造出纳米粒子和纳米载体,这些粒子和载体可以有效地将药物输送到人体中的特定部位。
例如利用纳米粒子包裹药物分子,可以增加药物分子的生物利用度和针对性,减少对正常细胞的毒性。
近年来,多项研究表明,纳米药物改善了药物吸收和分布、增加了药物半衰期、降低了剂量和毒性。
例如,在肿瘤治疗领域,纳米药物为肿瘤细胞进行定向输送药物,减小非肿瘤细胞的受损程度,这对于减轻化疗药物的毒性和副作用是非常重要的。
2.纳米同位素治疗纳米同位素治疗是利用通过放射性同位素标记的纳米粒子来进行治疗。
纳米粒子可以在体内切换位置,从而精确地瞄准治疗区域,并将放射性同位素释放到目标区域,发挥治疗作用。
此技术已经在肿瘤治疗领域有了一些应用。
在肿瘤治疗领域,纳米同位素治疗通过精确瞄准肿瘤细胞,来进行治疗,能够帮助患者更多地受益于放射治疗,而不会损害正常细胞。
3.纳米仿生材料仿生材料通过模仿自然界样品的结构和功能,来达到特定的功能或工艺的目的。
纳米仿生材料的开发涉及到细胞色素、蛋白质、核酸、酶和其他生物大分子的组合和调控。
利用纳米仿生材料可以制造出毒素传递、基因检测、药物输送和组织工程等生物领域中的理想材料,可以模拟生物大分子与细胞之间的相互作用。
例如,纳米仿生材料已经在组织工程、仿生传感器和分子诊断领域中有了一定的应用。
纳米技术在生物医学中的新应用

纳米技术在生物医学中的新应用在当今科技飞速发展的时代,纳米技术正以前所未有的速度和深度融入生物医学领域,为疾病的诊断、治疗和预防带来了革命性的变化。
纳米技术,顾名思义,是指在纳米尺度(1 纳米到 100 纳米之间)上对物质进行研究和操作的技术。
这一微小的尺度赋予了纳米材料独特的物理、化学和生物学特性,使其在生物医学领域展现出巨大的应用潜力。
纳米技术在生物医学中的一个重要应用是药物输送。
传统的药物治疗往往存在药物在体内分布不均、副作用大、药物利用率低等问题。
而纳米药物载体的出现为解决这些问题提供了可能。
纳米载体可以将药物包裹在内部,通过表面修饰实现对特定组织或细胞的靶向输送,从而提高药物的治疗效果,减少对正常组织的损伤。
例如,脂质体纳米粒是一种常见的纳米药物载体,它由磷脂双分子层组成,具有良好的生物相容性和可降解性。
将抗癌药物装载到脂质体纳米粒中,可以增加药物在肿瘤组织中的积累,提高抗癌效果的同时降低药物的全身性副作用。
除了脂质体纳米粒,聚合物纳米粒也是一种重要的药物载体。
聚合物纳米粒可以根据需要设计成不同的结构和尺寸,从而实现对药物的控释和缓释。
例如,聚乳酸羟基乙酸共聚物(PLGA)纳米粒可以在体内逐渐降解,缓慢释放药物,延长药物的作用时间。
此外,还有磁性纳米粒、金纳米粒等多种类型的纳米药物载体,它们各具特点,为药物输送提供了更多的选择。
纳米技术在生物诊断方面也发挥着重要作用。
纳米生物传感器是其中的一个典型应用。
纳米生物传感器可以实现对生物分子的高灵敏度、高特异性检测。
例如,基于碳纳米管的生物传感器可以检测到极低浓度的蛋白质、核酸等生物分子,为疾病的早期诊断提供了有力的工具。
量子点是另一种具有应用前景的纳米诊断材料。
量子点具有独特的光学特性,如荧光强度高、发光稳定性好、发射波长可调等。
利用量子点标记生物分子,可以实现对细胞、组织内生物分子的实时动态监测,为疾病的诊断和研究提供了新的方法。
纳米技术在医学成像方面也有着出色的表现。
生物医学工程中的纳米技术

生物医学工程中的纳米技术纳米技术是21世纪以来发展最为迅猛的技术领域,凭借其超强的可控性和精准度,已经在各个领域中发挥了重要的作用,而其中的生物医学工程便是一个最具发展前景和潜力的领域之一。
生物医学工程是一个交叉学科,专注于将工程学原理和技术应用于医学领域。
在这个领域中,纳米技术可以通过制造纳米级的材料和器件,实现对生物分子、细胞和体内组织等的高度控制和精准操作,从而实现对人体疾病的精准治疗和监测。
下面将详细探讨在生物医学工程中,纳米技术的应用和前景。
一、纳米生物传感器纳米技术的应用之一,便是制造高灵敏度的纳米传感器。
这些纳米传感器可以用于检测人体内的生物分子和化学物质,如蛋白质、糖类、DNA等,从而实现早期疾病诊断和监测。
例如,糖尿病患者需要经常检测血糖水平,而传统的血糖检测方法需要采集血液样本,不仅痛苦不便,精度也不够高。
由于糖类是具有选择性的键合修饰可以探测,利用纳米技术可以制造出针对血糖的纳米传感器,可以高度精准地检测血糖浓度,大大提高了诊断和管理糖尿病的效率。
二、纳米药物递送系统传统药物治疗往往存在副作用和局限性,主要是因为药物难以精准传输到病变部位,以及难以针对性的作用于疾病细胞。
而纳米技术通过制造可控制释、高效导向和靶向化的药物递送系统,保证药物的精准传输和作用,从而提高了治疗效果和安全性。
例如,在肿瘤治疗中,针对输出外泌体(exosomes)的纳米颗粒可以通过局部注射或血流导向的方法,将药物直接输送到肿瘤细胞所在的位置,避免了药物对正常细胞的伤害,同时提高了治疗效果。
此外,在心血管疾病的治疗中,也可以利用纳米技术制造靶向性的药物输送系统,用于针对血栓形成和斑块破裂等病因分子的精准处理,以提高治疗效果。
三、纳米医疗影像技术医学影像技术对于疾病的早期诊断和监测至关重要,而纳米技术可以制造出具有高效稳定性和高分辨率的纳米探针,可用于疾病诊断和监测的生物标志物的精准表征。
例如,在肿瘤诊断中,通过纳米探针的精准识别和靶向提示,可以对肿瘤细胞进行高分辨率、高灵敏度的成像,揭示肿瘤的细微结构和生长特征,从而提高了疾病的诊断准确性和治疗效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科技创业PIONEERINGWITHSCIENCE&TECHNOLOGYMONTHLY月刊科技创业月刊2007年第8期1990年在美国召开了第一届纳米技术国际学术会议,成为纳米科技发展进步的一个重要标志。
1999年,美国的RobertAFreitasJr出版了《纳米医学》,表明了纳米科技的发展已促使人们开始多方面考虑并且探索纳米科技在医学临床诊治、药物学等方面的应用。
纳米技术作为一项新兴技术,在生物医药领域具有十分广阔的应用前景。
1纳米技术纳米是英文nanometre的译名,像米、厘米、毫米等一样,是一个长度单位。
1纳米(nm)为10-9米,也即百万分之一毫米,相当于一根头发丝直径的五万分之一。
更形象地讲,如果把1nm的物体放在乒乓球上,就像一个乒乓球放在地球上。
在纳米尺度上,由于物质的量子效应,物质的局域性和巨大的表面、界面效应,形成的材料性能发生了由量变到质变的飞跃,从而突变或产生奇异的新现象。
纳米技术是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。
这一基本概念普遍认为由美国著名物理学家、诺贝尔物理奖获得者RichardFeynman在一次题为《在物质底层有很大的空间》的演讲中提出,“为什么我们不可以从另外一个方向出发,从单个的分子甚至原子开始组装,以达到我们的要求……如果有一天能按照人们的意志安排一个个原子和分子,将会产生什么样的奇迹”。
纳米技术涵盖领域广泛,包括纳米材料学、纳米生物学和纳米显微学等方面,它建立了一种崭新的思维方式,使人类能够利用越来越小、越来越精确的物质和越来越精细的技术成品来满足更高层次的要求。
目前,由于纳米技术具有的独特优势以及人们对健康和重大疾病防治等问题的日益关注,纳米技术开始广泛应用于生物医药领域。
2纳米技术在生物医药中的应用方兴未艾的纳米技术把人类对微观世界的认识带入了一个全新的境界,同时也为人类战胜疾病、提高健康水平提供了更为有力的武器。
就目前而言,纳米技术在生命领域的应用前景已逐渐展现,并且许多设想已经逐渐实现,可以预见纳米技术将渗透至生物医药研究和应用的方方面面。
2.1万能的机器人1986年,美国预见研究所的工程师埃里克・德雷克斯勒说:“我们为什么不制造出成群的、肉眼看不见的微型机器人,让它们在地毯或书架上爬行,把灰尘分解成原子,再将这些原子组装成各种物品。
这些微型机器人不仅是搬运原子的建筑工人,同时还具有绝妙的自我复制和自我修复能力。
”同时,还有些科学家设想将蛋白质芯片或基因芯片组装成尺寸比人体红细胞还小的纳米机器人,使其具有某些酶的功能,它是纳米机械装置与生物系统的有机结合,在生物医学工程中可充当微型医生,解决传统医生难以解决的问题。
将这些纳米机器人注入血管内,可按照预定程序,直接打通脑血栓,清洁心脏动脉脂肪沉积物等,达到预防和治疗心脑血管疾病的目的。
除此以外,不同的组合方案还可组装出其他功能的纳米机器人,例如,有的可以吞噬病菌、杀死癌细胞;有的可以作为人体器官的修复工具,修复损伤的器官和组织等,以完成整容手术或其他器官修复手术;有的可以进行基因装配工作,除去基因中错误或有害的DNA片段,并将正常的DNA片段装配进染色体,使机体正常运作。
2.2灵敏的检测器癌症是人类死亡率极高的疾病之一,但以目前的医疗诊断水平,癌症一旦被确诊通常已发展到晚期,即已无药可救或已过最佳治疗时期。
科学家设想,可制造出纳米传感器植入体内,监控早期癌变信号分子的产生,通过与外界特定的声信号或其他信号的相互作用,将内部信号转化为外部信号。
另外,近年来科学家正尝试应用纳米技术的新型检测仪器和诊断试剂,只需检测少量血液中蛋白质和DNA就可诊断出某人患各种疾病的可能性。
国内外研究者正致力于脑肿瘤、肝癌、肺癌、白血病等癌症的早期纳米诊断手段的研究,并取得了一定的成绩。
2.3多彩的标记物科学家根据CD唱机中激光二极管的发光原理,研制出半导体纳米晶体。
这种微型的无机晶体被称作量子点,可通过对其大小的控制,使其经同一光源激发后,发出红、黄、蓝等多种颜色的光。
又因量子点比传统有机染色小分子更稳定,目前得到了广泛应用。
例如,研究者可用量子点附着在不同基因序列组成的DNA分子上,通过比较标记的基因序列与已知序列找出哪些基因在特定细胞或组织中表达较为活跃;当用量子点标记蛋白质或其他物质时,技术人员可动态跟踪标记物在体内的过程,从而使其应用于一些疾病的诊断。
纳米技术在生物医药中的应用夏涛(华中师范大学第一附属中学湖北武汉430223)摘要纳米技术是在纳米尺度上研究物质的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。
介绍了纳米技术在生物医药中的应用现状和前景,并分析了纳米技术在生物医药领域应用中的纳米材料安全性和成本问题。
关键词纳米技术纳米材料生物医药中图分类号TD383:R319文献标识码A收稿日期:2007-04-1786PIONEERINGWITHSCIENCE&TECHNOLOGYMONTHLYNO.82007家将会支付巨大的学费和代价。
然而又不能把控制权交给外方,那样的话就会丧失金融改革的主动权,使我国的金融业面临被外资控制的风险,故应选出一个真正懂银行经营的人来管理银行。
(2)明确市场定位,确立利润最大化的经营目标。
长久以来,我国国有商业银行为履行帮助国有企业发展等政策性义务,常常低利率、无抵押就将贷款贷与国有企业,而形成的呆账和坏账由政府为其埋单,这样就严重阻碍了银行资产质量和经营效率的提高。
国有银行改革后,应按照规范的现代企业制度,实现自主经营,自负盈亏,与外资银行站在同一起跑线上公平竞争。
当然,这一过程需要国家的积极支持,尽快帮助国有商业银行实现先进的公司治理结构,为其发展创造良好的市场环境。
(3)建立健全外资银行监管法律体系,保证我国的金融安全。
金融对于一个国家的重要性是不言而喻的,金融是现代经济命脉的核心,金融安全关乎国家的经济发展和社会稳定,因此,金融业的改革要比其他行业的改革更加谨慎。
为保证我国金融体系安全运行,应加强外资银行监管,要严格筛选外资银行的国别和数量,防止经营状况不良或经营风险过大的外资银行进入我国。
6结语目前中国经济已经成功地走上了市场经济和开放经济的正轨,在进一步市场化和进一步开放的改革进程中,将会不断出现新的问题和新的矛盾,不同的经济主体对同一问题会得出不同的结论。
因此对于国有商业银行的境外引资,应该按照我国的国情,考虑我国自身的经济基础,借鉴学习适合我国国情状况的模式与体制,逐渐完善银行改革的步骤。
同时政府的调节既不能无为而治,也不能捉襟见肘,而要在尊重市场机制的前提下,超越微观经济行为,做出必要的、适当的调控和引导。
归根结底,就是在引入境外战略投资者的同时,既要借鉴别人先进的经营管理理念,又要保证金融安全,防止国有资产的流失。
参考文献1王鹏飞,曹廷求.外资银行对我国的影响及对策[J].经济与管理研究,2005(9)2欧永生.洋股东参股中国银行业的冷思考[J].宏观经济研究,2006(1)3雷邦.全面开放,准备好了吗[J].金融经济,2006(1)4王小妹.外资赶赴中国银行改革盛宴[J].中国外资,2006(1)5秦璐.海外上市,征途未必开满鲜花[J].金融经济,2005(8)6叶欣,冯宗宪.外资银行进入对本国银行体系稳定性的影响[J].世界经济,2004(1)7丛亚平.警惕外资对中国金融资产的廉价购买———中国金融版图告急[J].董事会,2005(11)8孙亦军,贾玉革.对外开放进程中银行业发展的比较研究与借鉴[J].东北财经大学学报,2004(3)(责任编辑戴钧)(上接第22页)2.4无限的备用器官有科学家预言,纳米材料制成的性质优良的人造器官和组织(包括人工血液等)将与人体“融为一体”,“残疾”将远离人类,需要器官移植的患者也可以告别漫长的等待。
可以大胆设想将纳米材料制成的微型器件安全地植入人体内,如人工耳膜、人工视网膜等,可使听力或视觉受损的患者恢复功能,也可使正常人听力增强、看得更远,甚至在黑暗中也能有视觉。
2.5精准的生物导弹中国有一句俗话“是药就有三分毒”,到目前为止科学家还未发现有一种药完全没有毒副作用,这主要因为药物在体内作用过程中,除在病灶部位浓度较高外,在其他部位也大量蓄积或者被分解后的产物具有较强毒性。
这一难题通过纳米技术可以得到解决。
将药物直接纳米化,即用机械或物理等手段将药物颗粒的大小控制在纳米级别,或者用制备的纳米尺度药物载体装载药物,可以使药物有效地到达病灶区,就像生物导弹直接攻击靶位点不殃及其他部位一样,从而达到降低药物毒副作用的目的。
目前,纳米药物载体的种类有微乳、高分子纳米粒、聚合物胶束、树状大分子、纳米磁球等,国内外药物研究领域对此已有大量的研究,结果表明,药物的毒副作用在降低的同时,其生物利用度也得到有效的提高,对载体进行设计和修饰后,还可起到缓慢释放而延长药效的作用。
众所周知,中药是我国传统医药的宝贵遗产,是悠久历史的象征以及我国人民智慧的结晶。
中药医学本应在科技高度发展的今天得到发扬光大,但目前却遇到了发展瓶颈,毒性问题就是其中的一个阻碍。
将纳米技术引入中药研究的思路可能可以解决存在的问题,“纳米中药”这一概念也应运而生。
纳米中药是直接提取中药的有效成分然后用纳米药物载体包裹,或将有效部位直接纳米化,而起到降低中药毒性的作用。
3纳米技术应用存在的问题以上只是纳米技术在生物医药领域几个方面的应用展望,相信将来还会有更广泛的应用。
但任何事物都有两面性,纳米技术也不例外。
纳米技术在给人类带来种种好处的同时,也存在纳米材料的安全性问题。
这也成为当今世界各国研究学者关注的热点,许多国家包括中国、美国和欧盟等,都投入了大量的人力、物力和财力,试图在纳米技术得到普遍应用以前,解决其潜在的问题,以使其在将来更好地服务于人类。
其问题主要表现在:(1)要达到精确的调节和控制粉末组成和化学剂量比以及粒子的粒度和形态等方面都还有相当大的困难。
(2)要制造成分准确、粒度均匀、表面功能团稳定的高质量微粒还有一定困难,其收集与存放也存在问题。
(3)纳米中药因其表面效应和量子效应显著增加,使得药物的有效成分获得了高能级的氧化和还原潜力,往往引起许多性质的变化。
这种变化究竟会对药物性质产生什么样的影响,目前还不清楚。
(4)因制备技术所限,制备纳米微粒的成本一般较传统医药的制备高出许多。
(5)纳米机器人一旦在人体内失控,能够快速复制的纳米机器人在体内扩散的速度可能比癌细胞还快,它是否会对人体正常的组织造成不利影响,目前还没有确切的研究结果。
4结语纳米技术在生物医药领域的应用,为提高生物医药技术,寻找和开发生物医药材料、合成理想的药物提供了充足的技术保证,但是根据需要组合原子或分子的思维模式将极大地冲击以至改变人类传统的生活和生产方式,因此,纳米技术还有待更进一步的研究,通过更深地剖析和了解,不断完善,使它更好的为人类服务。