光纤通信系统与光器件(光器件)

合集下载

光纤通信基本理论概述

光纤通信基本理论概述

Passive Products
WDM/ Coupling TFF D/CWDM
Amplifier Components
Attenuator Products
Switching
Interconnects
Isolator
MV
SN
Cable Assy
FFC
GFF
VCB
MOMS
Adapters
Interleaver
为什么要用 WDM模块
Example: 4 signals, 100 km span length with regeneration
Tx - λ1 Tx - λ2 Tx - λ3 Tx - λ4
OA
Rx - λ1 Rx - λ2 Rx - λ3
OA
OA
OA
Rx - λ4
• Without DWDM • 4 x 100 km fibre • 4 EDFA
Modulator
OA
PD
CW1550
14xx 300mw
10Gb/s
EDFA 15dBm
APD 10Gb/s
Uncooled TOSA
980 180/300/360
2.5Gb/s
EDFA Circuit pack
PIN 10Gb/s
Cooled TOSA
9xx 4w/uncooled
APE
APD 2.5Gb/s
光线理论的主要优点
(1)简单直观; (2)在分析芯径较粗的多模光纤时可以得到较精确的结果。
光线理论的主要缺点
波动方程的特征解/ 横向光能量分布
(1)出于采用了几何光学近似,光线理论不能够解释诸如:模式分 布、包层模、模式耦合以及光场分布等现象; (2)当不满足λ远小于芯径的近似条件时(如对于单模光纤),光线理 论的分析结果存在很大的误差。

光纤通信系统与光器件光器件

光纤通信系统与光器件光器件

三、多层介质膜滤波器TFF
Multilayer Dielectric Thin-Film Filter 多层介质膜:通过某一波长,阻止其它波长
Thin-Film resonant Multicavity Filter (TFMF) 薄膜多共振腔滤波器
TFMF的传输特性: 腔越多滤波器顶越平
边缘越陡
Output 1 /2+L+ /2= L+ Output 2 /2+L- /2= L
L=2neff L /=k
k为奇数 k为偶数
Output 1 Output 2
五、体光栅滤波器
在Si衬底上沉积环氧树脂后制造成光栅。多波长信号经光纤 输入和普通透镜或棒透镜聚焦在反射光栅上,反射光栅将各 波长分开,然后经透镜将各个波长的光聚焦在各自的光纤。
光衰减器—Attenuator
根据工作原理分类:
横向位移型光衰减器
位移型光衰减器
纵向位移型光衰减器
光衰 减器
直接镀膜型光衰减器 (吸收模或反射模型)
衰减片型光衰减器
液晶型光衰减器
光衰 减器
固定光 衰减器
可变光 衰减器
尾纤式固定光衰减器
转\变换器式 固定光衰减器
SC—FC型、 FC— ST型、 SC—ST型、
对输入信号 进行分路的 3dB耦合器
长度相差L的两根波 导,用来在两臂间产 生与波长有关的相移
在输出端将 信号复合的 3dB耦合器
通过分裂输入光束以及在一条通路上引进一个相移,重组 的信号将在一个输出端产生相加性干涉,而在另一个输出 端产生相消性干涉,信号最后只会在一个输出端口出现。
Input 1
反射中 2neff 光栅
心波长

光纤通信新技术

光纤通信新技术
总结词
光网络智能化技术
THANKS
感谢观看
新型光网络技术
05
总结词
光传送网(OTN)是一种新型的光网络技术,它通过使用数字封装技术将客户信号封装在光层进行传输,具有高带宽利用率、低延迟、高可靠性等优点。
详细描述
OTN通过将客户信号封装在数字容器中,实现了对客户信号的透明传输,同时提供了强大的故障恢复和保护能力。此外,OTN还支持多播和广播功能,能够实现灵活的带宽管理和调度。
软件定义光网络(SDON)
未来展望
06
随着数据流量的快速增长,超高速光传输技术成为光纤通信领域的研究重点。
超高速光传输技术通过提高信号传输速率,实现更大容量的数据传输。目前已经实现了Tbps级别的传输速率,未来还有望进一步提高。
超高速光传输技术
详细描述
总结词
超长距离光传输技术
总结词
超长距离光传输技术是实现跨洲际、跨大洋光传输的关键技术。
详细描述
自动交换光网络(ASON)
总结词
软件定义光网络(SDON)是一种基于软件的光网络技术,它通过使用软件编程的方式实现光网络的配置和控制。
详细描述
SDON通过将光网络的配置和控制功能抽象化,使得网络管理员可以通过软件编程的方式实现光网络的配置和管理。这大大提高了网络的灵活性和可扩展性,同时也降低了运营成本。此外,SDON还支持多种协议和标准,能够与其他网络技术进行无缝集成。
详细描述
通过采用先进的信号处理技术和新型的光纤材料,超长距离光传输技术能够实现数千公里甚至上万公里的光信号传输,为全球通信网络的建设提供有力支持。
VS
光网络智能化技术是实现光网络高效运维和智能控制的重要发展方向。
详细描述

光器件简介介绍

光器件简介介绍

光器件的应用领域
Байду номын сангаас
通信
光器件在光纤通信网络中广泛应用于发射、接收、调制、放大等 环节,实现高速、大容量的信息传输。
传感
光器件还可以用于光学传感领域,如光纤传感器、光谱分析仪等, 用于测量物理量、化学量和生物量等。
照明
光器件在照明领域也有广泛应用,如LED灯具、舞台灯光等,具有 高效、节能、环保等特点。
02
常见光器件介绍
光器件的发展历程与趋势
发展历程
光器件的发展经历了从机械式到固态化、从分立式到集成化的过程,不断提高性能、降低成本,促进光通信和光 学传感技术的快速发展。
发展趋势
未来光器件的发展将更加注重小型化、集成化、智能化和低成本化,同时不断探索新的材料和工艺,提高器件性 能和降低能耗,以满足不断增长的信息传输和处理需求。
光器件简介介绍
汇报人: 2024-01-07
目录
• 光器件概述 • 常见光器件介绍 • 光器件的性能指标 • 光器件的制造工艺与材料
01
光器件概述
光器件的定义与分类
定义
光器件是用于处理光信号的设备或组 件,是光通信系统中的重要组成部分 。
分类
根据功能和应用场景,光器件可以分 为发射器、接收器、调制器、光放大 器等类型。

数字光纤通信系统

数字光纤通信系统

15
光发射机的功能:把输入电信号转换为光信号, 并用耦合技术把光信号最大限度地注入光纤线路。
光发射机组成:由光源、 驱动器和调制器组成。 光源是光发射机的核心。光发射机的性能基本上 取决于光源的特性。
光源种类:半导体发光二极管(LED)、半导体激 光二极管(或称激光器)(LD), 单纵模分布反馈(DFB) 激光器。
2019/8/18
20
2. 光纤为什么能够导光, 能传送大量信息呢? 这里
我们用简单的比喻, 从物理概念上来说明,以加深 对光纤传输信息的理解。
光纤是利用光的全反射特性来导光的。在物理中 学习过光从一种介质向另一种介质传播,由于它们在 不同介质中传输速率不一样,因此,当通过两个不同 的介质交界面就会发生折射。
所以灵敏度也是反映光纤通信系统质量的 重要指标。
2019/8/18
19
4.2 光纤和光器件
一、光纤
1、光纤 光纤就是导光的玻璃纤维的简称, 是石英玻璃丝,
它的直径只有0.1 mm,它和原来传送电话的明线、 电缆一样,是一种新型的信息传输介质,但它比以 上两种方式传送的信息量要高出成千上万倍, 可达 到上百千兆比特/秒,而且衰耗极低。
④ 综合业务光纤接入网,分为有源接入网和无源 接入网, 可实现电话、数据、视频(会议电视、可视 电话等)及多媒体业务综合接入核心网,提供各种各样 的社区服务。
2019/8/18
12
三、光纤通信系统的基本组成
1、发射和接收 下图示出单向传输的光纤通信系统,包括发射、 接收和作为广义信道的基本光纤传输系统。
2019/8/18
4
3、光纤通信的发展可以粗略地分为三个阶段:
第一阶段(1966-1976年),这是从基础研究到商

光纤通信

光纤通信


华裔科学家高锟(左)因1960’ 在英国读博士时 发明光纤、提出光纤通信理论而获得2009年诺 贝尔物理学奖。
1970年,光纤研制取得了重大突破


1970年,美国康宁(Corning)公司研制成功损耗 20dB/km 的石英光纤。把光纤通信的研究开发推向一 个新阶段。 1972年,康宁公司高纯石英多模光纤损耗降低到4 dB/km。 1973 年, 美国贝尔(Bell) 实验室的光纤损耗降低到 2.5dB/km。1974 年降低到1.1dB/km。 1976年,日本电报电话(NTT)公司将光纤损耗降低到 0.47 dB/km(波长1.2μm)。 1979年是0.20 dB/km,1984年是0.157 dB/km, 1986 年是0.154 dB/km, 接近了光纤最低损耗的理 论极限。
二、现代光纤通信



1966年,高锟和霍克哈姆发表的《用于光频的光纤表 面波导》奠定了现代光通信的基础。高锟被尊为光纤 之父。 工作地点:英国标准电信研究所 研究对象:光在石英玻璃纤维中的严重损耗问题损耗 原因:1) 玻璃纤维中含有过量的铬、铜、铁与锰等金 属离子和其他杂质;2) 拉制光纤工艺造成芯、包层分 界面不均匀及其所引起的折射率不均匀 新的发现:一些玻璃纤维在红外光区的损耗较小现代 光纤通信
光纤通信的四个发展阶段

第四阶段:以提高传输速率和增加传输距离为 研究目标和大力推广应用的大发展时期(1996 至今) 采用超大容量的波分复用技术和光放大 技术,正在研究超长距离的光孤子技术。
我国光纤通信的发展




1961年9月中国科学院长春光学精密机械研究所研制成功第一台红 宝石激光器。 1977年,武汉邮电研究院研制成功中国第一根阶跃折射率分布的, 波长为0.85μm多模光纤。 1976年建成了约为5.7km的光纤数字通信试验系统,此后又分别 在北京,上海,武汉,天津等地建立了现场试验系统。 20世纪80年代主要进行实用化攻关,完成了武汉市话中继实用化 工程、武汉-荆州多模光缆34Mbit/s省内干线工程,扬州-高邮、成 都-灌县单模光缆34Mbit/s省内干线工程和合肥-芜湖140Mbit/s单模 光缆一级干线工程,为大规模推广应用打下了基础; 1998年建成“八纵八横”国家干线,覆盖了除台湾外所有省会城 市和75%地市。 从1995年起,我国在全球光纤光缆市场一直居第三位。

光器件

光器件

光器件
光器件是光通信系统中的关键,功能包括发送接收,波分复用,增益放大,开关交换,系统管理等,分为有源器件和无源器件。

1.光有源器件
光有源器件是光通信系统中将电信号转换成光信号或将光信号转换成电信号的关键器件,需要外加能源驱动工作,是光传输系统的心脏。

包括:半导体光源(LD,LED,DFB,QW,S QW,VCSEL);半导体光探测器(PD,PIN,APD);光纤激光器(OFL:单波长、多波长);光放大器(SOA、EDFA);光调制器(EA)等。

光源器件:光纤通信设备的核心,其作用是将电信号转换成光信号送入光纤。

光纤通信中常用的光源器件主要有,半导体激光器(LD)和半导体发光二级管(LED)。

半导体光电检测器:是将光信号转换成电信号的器件,主要有光电二极管(PIN)和雪崩光电二极管(APD)。

光放大器:近年来,光纤放大器成为光有源器件的新秀,当前大量应用的是掺铒光纤放大器(EDFA),此外,还有很有应用前景的拉曼光放大器。

2.光无源器件
无源器件是光通信系统中需要消耗一定的能量、具有一定功能而没有光—电或电—光转换的器件,不需要外加能源驱动工作。

包括光纤连接器、光纤耦合器、波分复用器、光开关、光滤波器、光衰减器、光隔离器与环形器等,是光传输系统的关节。

欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

光纤通信用光器件介绍

光纤通信用光器件介绍

光纤通信用光器件介绍光纤通信是利用光纤传输光信号进行通信的技术,其核心是通过光器件来发射、接收和调制光信号。

光器件是光纤通信系统中非常重要的组成部分,能够直接影响到通信系统的性能和稳定性。

在这篇文章中,我将介绍几种常见的光器件,并介绍它们的工作原理和应用。

第一种光器件是光纤激光器。

光纤激光器是一种能够发射强聚焦、单一波长、狭谱宽的光信号的器件。

它的工作原理是通过激光材料受到光电势驱动而产生的受激辐射来产生光信号。

光纤激光器具有很高的光输出功率和较窄的光谱特性,使其在长距离传输和高速通信中具有很大的优势。

第二种光器件是光纤调制器。

光纤调制器是一种能够改变光信号的特征以传输信息的器件。

它的工作原理是通过改变光的相位、幅度或频率,来调制光信号传递的信息。

光纤调制器在光纤通信中广泛应用于多种信号调制技术,如振幅调制、频率调制和相移键控等。

第三种光器件是光纤增益器。

光纤增益器是一种能够增强光信号的器件。

它通过将光信号输入到光纤中,通过光放大的原理来增强信号的强度。

光纤增益器在光纤通信系统中被广泛应用于信号放大和信号传输的中继,使得信号能够在长距离的传输中保持高强度和低损耗。

第四种光器件是光纤光栅。

光纤光栅是一种能够选择性反射或散射特定波长的光信号的器件。

它的工作原理是通过将光纤中的折射率周期性改变,产生布拉格衍射,从而实现对特定波长的光信号选择性反射或散射。

光纤光栅在光纤通信中被广泛应用于波长选择多路复用和分光分集等技术中。

第五种光器件是光纤检测器。

光纤检测器是一种能够接收光信号并转换为电信号的器件。

它的工作原理是通过光电效应将光信号转化为电信号。

光纤检测器在光纤通信系统中被广泛应用于光信号的接收和调制等过程中。

除了上述介绍的几种光器件外,还有许多其他类型的光器件,在光纤通信系统中起到了各种不同的作用。

例如,光纤散射器用于分配光信号,光纤滤波器用于调制光信号波长,光纤耦合器用于将多个光纤连接在一起等等。

这些光器件为光纤通信提供了更多的灵活性和多样性,使得通信系统能够更好地适应不同的需求和环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

游标式级联腔:由两个腔长接近的F-P腔串联而成。 K FSR1=(K+1) FSR2 精细度为:FSRT= K FSR1=(K+1) FSR2 FSR1 FSR2 FSRT
f
f
腔1
腔2
f
级联腔
Problem:插损大、两级间耦合、两级统一调谐困难 Solution:光纤放大器补偿法、光隔离器法

回波损耗:反射损耗,光纤连接处,后向反射 光相对输入光的比率的分贝数。
LR P 10 lg R ( dB) P in

重复性和互换性
损耗 来源
•活动连接器

方法:利用精密陶瓷套筒准直纤芯
插入损耗目前水平0.2dB
减低反射技术:APC 类型:FC、 SC、 ST 其它:多芯光缆连接器、保偏光纤连接器、密封型光 纤连接器
复用器与滤波器Multiplexer and Filter
光隔离器与环行器 光调制器Modulators


光开光Switches
光波长转换器 光交叉互连器
光衰减器—Attenuator

根据工作原理分类:
位移型光衰减器
横向位移型光衰减器
纵向位移型光衰减器
光衰 减器
直接镀膜型光衰减器 (吸收模或反射模型)
耦合功率
P 1 P 0 cos Cz
2
P2 P0 sin Cz
2
C--耦合系数
•技术指标:
P0
P1
P3
P2
1、插入损耗:特定的端口到另一端 Pi 口路径的损耗。如从输入端口i到输 Li j 10 lg P 出端口j的路径中的插入损耗为: j 2、附加损耗:输入功率对总的 Le 10 lg 输出功率的比值。
光器件
目录

光器件概述
光连接器Connector
光衰减器Attenuator 光耦合器Coupler
复用器与滤波器Multiplexer and Filter
光隔离器与环行器 光调制器Modulators


光开光Switches
光波长转换器 光交叉互连器
光器件概述
•作用: 实现光信号的连接、能量分路/合路、波长复用/解 复用、光路转换、能量衰减、方向阻隔、光-电-光转换、 光信号放大、光信号调制等功能。是构成光纤通信系统的 必备元件。光器件是具有上述一种功能的元器件的总称。
FBG:
length
Period
•光纤光栅的形成: 光纤敏化(载氢或光敏光纤)--紫外光(~244nm) 以光栅条纹方式照射光纤--形成折射率光栅
反射中 心波长
2neff
纤芯的有效折射率
光栅 周期
•根据不同的折射率分布,FBG分类:
1. 均匀的Bragg光栅:
谐振峰两边有一些旁瓣。 由于光纤光栅两端折射率突变引起F-P效应导致的。 旁瓣分散了光能量,不利于其应用,需进行旁瓣抑制。

定义:对同一波长的光功率进行分路或合路
类型:

Y型、X型22耦合器、1N型、MN型 全光纤型、微光元件型、集成光波导型

功能:光信号的分配、合成、提取、监控等。
1
2 3 1 4 2 3
22光纤耦合器
输入功率 P0 P4 P3 P2 直通功率 P1
串扰
L
锥形区域
Z
耦合区域
L
锥形区域
复用器与滤波器Multiplexer and Filter
光隔离器与环行器 光调制器Modulators


光开光Switches
光波长转换器 光交叉互连器
光连接器—Connector

技术指标:

插入损耗:光信号通过连接器之后,其输出光 功率相对输入光功率的比率的分贝数。
P L 10 lg out ( dB) P in
P1 P2 P3
………….
•在DWDM中,信道间 距小于1nm,所以要求 F-P腔有较窄的带宽F。
………….
PN
精细度F要高 级联F-P腔
f1 f2 f3
………….
fN
F-P滤波器的传输特性 (a)传输函数 (b)N个信道经波分复用后加到 滤波器输入端的频谱图 (c)滤波器输出端
级联F-P腔光滤波器
衰减量调 节旋钮
目录

光器件概述
光连接器Connector
光衰减器Attenuator 光耦合器Coupler
复用器与滤波器Multiplexer and Filter
光隔离器与环行器 光调制器Modulators


光开光Switches
光波长转换器 光交叉互连器
光耦合器—Coupler
采用普通透 镜的WDM
采用渐变折 射率透镜, 简化了装置 的校准。
光栅工作原理
1+ 2 光栅周期 1 成像平面
2

反射光栅
当以角度d衍射的射线满足下面的光栅方程时,在成像平面 内就会产生波长上的相加干涉,即:(sini-sind)=m
式中m是光栅阶数,一般只考虑m=1的一阶衍射条件。
由于对于不同的波长,可以在成像面内的不同点满足光栅 方程,所以光栅可分离出单独的波长。
体光栅滤波器的特点

波长通道数大(~132CH) 通道间隔小(商用~0.4nm) 插损不随通道数增加(6~7dB) 温度敏感(~0.01nm/OC),需温度补偿(温控、材料补偿) 高斯型通带(采用特殊技术可实现平顶,但增大插损)
•多层介质膜复用解复用器特点:
•通带特性好(平顶、隔离度高~25dB)
•温度敏感性小(0.0005nm/OC 不需温控)
•插损5~7dB(16波) 波长数16CH
•波长间隔0.8nm
•PDL小(~0.2dB)
价格较高
•是16波长WDM系统中主要选用的器件
四、马赫-曾德干涉滤波器MZI

Mach-Zehnder Interferometer

光滤波器 与解复用器(光波长选择器件)
0

滤波器
解复用器
•用途:
波长选择、光放大器的噪声滤除、光复用/解复用
Wavelength
filter
Wavelength
multiplexer
Wavelength router
技术参数
•中心波长(固定、可调) •带宽( 1dB带宽、3dB带宽、20dB带宽) •偏振相关性(PDL) •调谐范围 •隔离度(串音) •插损 •温度敏感系数
Output 1 /2+L+ /2= L+
Output 2 /2+L- /2= L
L=2neff L /=k
k为奇数 k为偶数
Output 1 Output 2
五、体光栅滤波器

在Si衬底上沉积环氧树脂后制造成光栅。多波长信号经光纤 输入和普通透镜或棒透镜聚焦在反射光栅上,反射光栅将各 波长分开,然后经透镜将各个波长的光聚焦在各自的光纤。
单模光纤
光栅 InP材料 光波导
采用凹面光 栅,可省去 聚焦透镜。
六、阵列波导光栅AWG
array-waveguide-grating
AWG: 规则排 列的波导,相 邻波导的长度 相差固定值L, 因而产生的相 移随波长而变。
AWG特点:
•信道间隔(1.6 0.8 0.4nm) •端口(18 116 132 164) •需要温控(0.01nm/C0) •插损不随通道数增加(6~7dB) •高斯型通带(采用特殊技术可实现平顶,但增大插损) •隔离度~22dB •PDL<1dB 应用: •复用/解复用(16通道以上WDM系统中最具竞争力 的器件)
目录

光器件概述
光连接器Connector
光衰减器Attenuator 光耦合器Coupler
复用器与滤波器Multiplexer and Filter
光隔离器与环行器 光调制器Modulators


光开光Switches
光波长转换器 光交叉互连器
复用器与滤波器—Multiplexer and Filter
ST型:采用带键的 卡口式锁紧机构,确 保连接时准确对中。
SC型:外壳采用工程 塑料,矩形结构,便于 密集安装,不用螺纹连 接,可以直接插拔。 FC型:螺纹连接。 外部材料为金属
•固定连接器
包括:熔接法、V形槽法和套管法
目录

光器件概述
光连接器Connector
光衰减器Attenuator 光耦合器Coupler
区的锥度,控制拉锥速度。
•特点:插损低、结构简单、温度稳定性高、隔离
度低、复用波长数少(两波)
•应用:波长间隔较宽,常用于 1300nm/1550nm、980nm/1550nm、 1480nm/1550nm波长的分离
二、法布里-珀罗滤波器 Fabry-Perot Filter

基本原理:F-P干涉仪,平行平板的多光束干涉。
七、光纤光栅FBG

对于同向传输的两个波,如果传播常数满足Bragg 条件,两波之间将发生能量的耦合。 Bragg条件:
1 2
2

光栅周期

特别地,如果满足
2 1 1 2 1 能量将耦合至波长与入射波相同的反向传输的散射 中--反射式滤波器FBG
度越大。
传输函数
(f)
(a)
DWDM系统对F-P滤波 器参数的要求:
FSR
输入功率 Pin(f) (b) 输出功率 Pout(f) (c)
•F-P腔的自由谱区FSR 必须大于多信道复用信 号的频谱宽度,以免使 信号重叠,造成混乱。
相关文档
最新文档