数学七年级教材下册变式题
初中数学人教版七年级下册教材变式题组(三)

初中数学人教版七年级下册教材变式题组(三)满分(100分,时间:90分钟)一、 选择题1、P8.6、如图,用量角器画∠AOB 的平分线OC ,在OC上任取一点P ,过点P 画P E ⊥OB ,重足为E ,过P 画FG ∥OB 交OA 于F ,并指出与∠OPE 互余的角有( )个 (A )1个 (B )2个 (C )3个 (D )4个2、P32、学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的如图(1)~(4)(1) (2) (3) (4) ① 两直线平千周位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。
从图中可知,小敏折平行线的依据有( ) (A )①② (B )②③ (C )③④ (D )①④3、(P91,8)如图示,△ABC 中,∠A=40°,∠B=72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE 于F ,则∠FDE=( ) A.32° B.16° C.18° D.50°4、某市市区内出租车的收费标准是:起步价(在3千米以内的收费)是1人4元,2人以上5元,超过3千米以后每增加1千米加收1元,(不足1千米按1千米计算)小红在市区乘出租车从甲地到乙地共用去8元,设甲地到乙地的路程为x 千米,那么x 的取值范围( )(A )5≤x <6 (B )5<x ≤6 (C )6≤x <7 (D )6<x ≤75、绵阳市初2014级样板学校检测共计42000名学生,从中抽取1000名考生的成绩进行分析,下列说法正确的是( )(A )42000名考生是总体 (B )每个考生是个体 (C )1000名考生的成绩是部体的一个样本 (D )样本容量是1000名二、填空题6、P46.8已知A (-2,4)过点A 的直线AB ∥x ,且AB=3,则点B 的坐标为___________。
人教版七年级数学下册5.1.3 同位角、内错角、同旁内角 2

人教版七年级数学下5.1.3 同位角、内错角、同旁内角教学目标1.理解同位角、内错角、同旁内角的概念;结合图形识别同位角、内错角、同旁内角。
2.通过变式图形的识别,培养学生的识图能力。
3.从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想。
重点:同位角、内错角、同旁内角的概念。
难点:在较复杂的图形中辨认同位角、内错角、同旁内角。
课前准备师:多媒体课件(详见光盘)生:教学设计(一)……………………………………………………教材知识导学型教学过程一、复习回顾,引入新课问题:我们已经知道,两条直线相交组成四个角(如图①),任意两角间都有关系,我们分别称它们为什么角?如图②,当加入一条直线也与AB相交,又会形成多少个角,它们之间又有怎样的数量关系呢?图①图②二、目标导学,探索新知目标导学1:理解同位角的概念,掌握其特点在上面的“三线八角”图中,直线AB、CD是被截直线,EF是截线。
问题1:观察图中的∠1和∠5,它们与截线及两条被截直线在位置上有什么特点?你能给它们起个名字吗?问题2:图中还有其他的同位角吗?并说出他们相对于截线和被截线的位置。
变式图形:图中的∠1与∠2是同位角吗?如果是请指出他们分别是由哪两条直线被哪一条直线所截而形成?图中的∠1与∠2都是同位角。
引导学生观察这些图形的特征,看它们都象哪一个字母?归纳:同位角形如字母“F”型.【教师强调】同位角中的“同”字有两层含义:一同是指两角在截线的同旁,二同是指它们在被截两直线同方。
目标导学2:借助问题串,能自主探索出内错角、同旁内角的概念及特点问题1:观察图中的∠3和∠5,它们与截线及两条被截直线在位置上有什么特点?你能给它们起个名字吗?图中还有其他的同类角吗?并说出他们相对于截线和被截线的【教学备注】【教学说明】学生先独立观察后小组交流从而归纳得出结论。
位置。
问题2:观察图中的∠4和∠5,它们与截线及两条被截直线在位置上有什么特点?你能给它们起个名字吗?图中还有其他的同类角吗?并说出他们相对于截线和被截线的位置。
人教版数学七年级下册知识重点与单元测-第九章9-5《不等式与不等式组》章末复习(能力提升)

第九章不等式与不等式(组)9.5 《不等式与不等式组》章末复习(能力提升)【要点梳理】知识点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式例1.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a >b >0,则<. . 【答案与解析】解:(1)若由b ﹣3a <0,移项即可得到b <3a ,故正确; (2)如果﹣5x >20,两边同除以﹣5不等号方向改变,故错误; (3)若a >b ,当c=0时则 ac 2>bc 2错误,故错误; (4)由ac 2>bc 2得c 2>0,故正确;(5)若a >b ,根据c 2+1,则 a (c 2+1)>b (c 2+1)正确. (6)若a >b >0,如a=2,b=1,则<正确. 故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.例2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。
初中数学人教版七年级下册教材变式题组

初中数学人教版七年级下册教材变式题组(一)满分(100分,时间:90分钟)一、 选择题1、P45.4、若点P 在第二象限,到x 轴距离2个单位长度,到y 轴距离4个单位长度,则点P 的坐标为( )(A ) (2,-4) (B )(4,-2) (C )(-2,4) (D )(-4,2)2、P61.3、同一平面内的四条直线若a ⊥b,b ⊥c,c ⊥d ,则下列式子成立的是( )(A )a ∥d (B)b ⊥d (C)a ⊥d (D)b ∥c3、P15例、下列命题是真命题的是( )(A )下线a ⊥b,c ⊥b,则a ⊥c(B )直线外一点到这条直线的垂线段,叫做点到直线的距离。
(C )三角形的外角大于三角形的任意一内角(D )若直线a ∥b,b ∥c,则a ∥c4、P23.6、直线AB ∥CD ,∠A=70°,∠C=40°,则∠E=( )(A )30° (B )40° (C )60° (D )70°5、在三角形、四边形、正五边形、正六边形中,不能单独镶嵌平面的是( )A .三角形B .四边形C .正五边形D .正六边形6、(P98,1)把方程132=-y x 用含x 的代数式表示y 的形式为( ) A .233-=x y B .123-=x y C .323-=x y D .233x y -= 7、(P116)把二元一次方程的每组解可看成是平面直角坐标系内一点的坐标。
如方程53=+y x 的解:x=2,y=-1则其坐标为(2,-1),试判断下列各点的坐标是方程53=+y x 的解的是( )A.(1,-2)B.(-1,2)C.(0,5)D.(2,0)8、若关于x 的不等式m x m ->-1)1(的解集是1-<x ,则m 的取值范围是( )A.1>mB.1<mC.1≠mD.1-<m9、关于x 的不等式03>-a x 只有3个负整数解,则a 的取值范围是( )A. 912<≤-aB.912≤<-aC.34-≤<-aD. 34-<≤-a10、下列调查中,调查方式选择正确的是( )(A )为了解生产的50枚炮弹的杀伤半径,选择全面调查。
北师版七年级数学下册第五章综合素质评价含答案

第五章综合素质评价一、选择题(每题3分,共30分)1.【教材P117习题T3变式】【2022·天津】在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()2.下列各选项中左边的图形与右边的图形成轴对称的是()3.下列轴对称图形中,对称轴最多..的是()A.正方形B.等边三角形C.等腰三角形D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是()A.30°B.40°C.45°D.60°(第4题)(第5题)(第6题)5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是()A.2 B.3 C.4 D.56.如图,若△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列说法中不一定...正确的是()A.AC=A′C′ B.AB∥B′C′ C.AA′⊥MN D.BO=B′O 7.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.【2022·本溪】如图,OG平分∠MON,点A,B是射线OM,ON上的点,连接AB.按以下步骤作图:①以点B为圆心,任意长为半径作弧,交AB于点C,交BN于点D;②分别以点C和点D为圆心,大于12CD长为半径作弧,两弧相交于点E;③作射线BE,交OG于点P.若∠ABN=140°,∠MON=50°,则∠OPB的度数为()A.35°B.45°C.55°D.65°9.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论中错误..的是()A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD(第9题)(第10题)10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.下面4个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.△ABC和△A′B′C′关于直线l对称,若△ABC的周长为12 cm,△A′B′C′的面积为6 cm2,则△A′B′C′的周长为________,△ABC的面积为________.12.【教材P122习题T2变式】【2022·云南】已知△ABC是等腰三角形,若∠A=40°,则△ABC的顶角度数是________.13.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=12BD,点D到边AB的距离为6,则BC的长是________.(第13题)(第14题)(第15题)14.【2021·苏州】如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B=________°.15.【新考法题】如图,这是一组按照某种规律摆放成的图案,则第2 023个图案________轴对称图形(填“是”或“不是”).16.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF=________.(第16题) (第17题) (第18题)17.如图,在正方形网格中,阴影部分是涂灰7个小正方形所形成的图案,再将网格内空白的一个小正方形涂灰,使得到的新图案成为一个轴对称图形的涂法有________种.18.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB =AD,BC=DC,AC与BD相交于点O,下列判断正确的有__________(填序号).①AC⊥BD;②AC,BD互相平分;③CA平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为12AC·BD.三、解答题(19题12分,24题14分,其余每题10分,共66分)19.【教材P120习题T3变式】把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.20.如图,D为△ABC的边BC的延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB,且CF交AB于点F,试判断CE与CF的位置关系.21.【2022·洛阳第二外国语学校模拟】如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.22.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外一点,连接AD,BD.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.23.如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=3,求S△ABC.24.如图,在四边形ABCD中,点E是BC的中点,点F是CD的中点,且AE ⊥BC,AF⊥CD.(1)试说明:AB=AD;(2)请你探究∠EAF,∠BAE,∠DAF之间的数量关系,并说明理由.答案一、1.D 2.C 3.A 4.B 5.A 6.B7.C8.B9.B10.A二、11.12 cm;6 cm212.40°或100°13.18 14.5415.是16. 60°点思路:因为AB=BC=CD=DE=EF,所以∠BCA=∠A=15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.17.318.①③⑤三、19.解:如图所示.20.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.21.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,解得x=18°.所以∠B=36°.22.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.23.解:(1)因为∠B=50°,∠C=70°,所以∠BAC=180°-∠B-∠C=180°-50°-70°=60°.因为AD是△ABC的角平分线,所以∠BAD=12∠BAC=12×60°=30°.因为DE⊥AB,所以∠DEA=90°.所以∠EDA=180°-∠BAD-∠DEA=180°-30°-90°=60°.(2)如图,过点D作DF⊥AC于点F.因为AD是△ABC的角平分线,DE⊥AB,所以DF=DE=3.又因为AB=10,AC=8,所以S△ABC =12·AB·DE+12·AC·DF=12×10×3+12×8×3=27.24.解:(1)如图,连接AC.因为点E是BC的中点,AE⊥BC,所以AB=AC.因为点F是CD的中点,AF⊥CD,所以AD=AC.所以AB=AD.(2)∠EAF=∠BAE+∠DAF.理由:由(1)知AB=AC,所以△ABC为等腰三角形.因为AE⊥BC,所以∠BAE=∠EAC.同理,∠CAF=∠DAF.所以∠EAF=∠EAC+∠F AC=∠BAE+∠DAF.。
初中数学教材变式题

变式题1、原题: 计算:2)32(-.(9年级上册P5第2(4)题)变式1 填空: 94= ,412= .变式2 当x 时,式子231-x 在实数范围内有意义?变式3 若23-n 是整数,求正整数n 的值(至少写出3个). 变式4 是否存在正整数n ,使得231+n 是有理数?若存在,求出一个n 的值;若不存在,说明理由.2、原题: 四边形ABCD 是正方形,点E 是边BC 的中点,∠AEF = 90︒,且EF 交正方形外角的平分线CF 于点F .求证:AE = EF .(提示:取AB 的中点G ,连结EG )(8年级下册P122页第15题)变式1 连结AC ,则点A 、E 、C 、F 四点在一个圆上(利用圆周角的性质,结论AE = EF 立即自明).变式2 连结AH ,则AH = AB + CH ,∠BAE =∠EAH .变式3 如图,设E 是边BC 上的任意一点,① AE ⊥EF ,② CF 是正方形外角的平分线,③ AE = EF .则可得 ①② ⇒ ③,①③ ⇒ ②,②③ ⇒ ①,共三个命题,不难证明它们都是正确的.变式4 如图,E 是正方形ABCD 中BC 边上的任意一点,连结AE ,过E 作EF ⊥AE 交CD 于H ,设∠BAE = α,∠EAH = β.求tan α + tan β 的值.变式5 如图,正三角形ABC 中,E 是BC 边(不含端点B 、C )上任意一点,D 是BC 延长线上一点,F 是∠ACD 的平分线上一点.(1)若∠AEF = 60°,求证:AE = EF ;(2)若将题中的“正三角形ABC ”改为“正多边形A n B n C n D n …X n ”,其它条件不变,请你猜想:当∠A n E n F n= °时,结论A n E n = E n F n 仍然成立?(直接写出答案,不需要证明)︒⨯-1802nn 变式6 如图,矩形ABCD 中(AB <BC ),E 是边BC 上的动点(不包括端点),作∠AEF = 90︒,使EF 交矩形的外角平分线CF 于点F .(1)试问边BC 上是否存在点E ,使得EF = AE ?说明理由;(2)试探究点E 在边BC 的何处时,使得1=-ABBCAE EF 成立?E α β DA B C HH C E D A B F FD BE C A AB C E FD3、原题:如图,在平面直角坐标系中,矩形OABC 的边OC 在x 轴上,边OA 在y 轴上,点D 在边OC 上,将△DBC 沿BD 所在的直线翻折,使点C 落在对角线OB 上的点E 处,直线BD 交y 轴于点F ,线段OA 的长是04822=-+x x 的一个根,且53=∠ABO Sin . 请解答下列问题: (1)求点B 的坐标;(2)求直线BD 的解析式; (3)在x 轴上是否存在一点P ,使△APO 与△AOB 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由。
人教版七年级数学下册第八章综合素质评价含答案 (2)

人教版七年级数学下册第八章综合素质评价一、选择题(每题3分,共30分)1.【教材P 93练习T 1变式】已知2x -3y =1,用含x 的式子表示y 正确的是( )A .y =23x -1B .x =3y +12C .y =2x -13D .y =-13-23x2.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +13=1,y =x 2B.⎩⎨⎧3x -y =5,2y -z =6C.⎩⎪⎨⎪⎧x 5+y 2=1,xy =1D.⎩⎪⎨⎪⎧x 2=3,y -2x =43.用代入法解方程组⎩⎨⎧2y -3x =1,x =y -1,下面的变形正确的是( ) A .2y -3y +3=1 B .2y -3y -3=1 C .2y -3y +1=1 D .2y -3y -1=1 4.若⎩⎨⎧x =2,y =-1是关于x ,y 的二元一次方程ax +by -5=0的一组解,则2a -b -3的值为( )A .2B .-2C .8D .-85.方程组⎩⎨⎧2x +y =■,x +y =3的解为⎩⎨⎧x =2,y =■,则被遮盖的两个数分别为( ) A .1,2 B .5,1 C .2,3 D .2,46.【教材P 109活动1变式】以二元一次方程组⎩⎨⎧x +3y =7,y -x =1的解为坐标的点(x ,y )在平面直角坐标系的( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知(x -y -3)2+|x +y -1|=0,则yx 的值为( )A .-1B .1C .-2D .28.如图,利用两块相同的长方体木块(阴影部分)测量一件长方体物品的高度,首先按图①方式放置,再按图②方式放置,测量的数据如图,则长方体物品的高度是( )A .73 cmB .74 cmC .75 cmD .76 cm9.某工厂接到生产成都第31届世界大学生夏季运动会吉祥物“蓉宝”的订单,工厂安排甲、乙两个车间共同生产.若甲车间生产6天,乙车间生产5天,则两个车间的产量一样多.若甲车间先生产300个“蓉宝”,然后两个车间又各生产4天,则乙车间比甲车间多生产100个“蓉宝”,求两车间每天各生产多少个“蓉宝”.设甲车间每天生产x 个“蓉宝”,乙车间每天生产y 个“蓉宝”,则可列方程组为( )A.⎩⎨⎧5x =6y ,300+4x =4y -100B.⎩⎨⎧6x =5y ,300+4y =4x -100 C.⎩⎨⎧5x =6y ,300+4y =4x -100 D.⎩⎨⎧6x =5y ,300+4x =4y -10010.【社会热点】为迎接杭州亚运会,某校开展了以迎亚运为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有( )A .5种B .6种C .7种D .8种二、填空题(每题3分,共24分)11.【2021·嘉兴】已知二元一次方程x +3y =14,请写出该方程的一组整数解________.12.已知(n -1)x |n |-2y m -2 024=0是关于x ,y 的二元一次方程,则nm =________.13.【教材P 90习题T 2变式】方程组⎩⎨⎧x +y =12,y =2的解为________. 14.若⎩⎨⎧x +y =1,2x +y =0的解是方程ax -3y =2的一组解,则a 的值是________. 15.已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =7,nx -my =1的解,则m +3n 的立方根为________.16.【新定义题】定义运算“*”,规定x *y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=________.17.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm.设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =________,y =________.18.【教材P 102习题T 5变式】【2022·仙桃】有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货________吨.三、解答题(19题16分,其余每题10分,共66分)19.【教材P 111复习题T 3变式】解方程组:(1)⎩⎨⎧x -2y =3,3x +y =2; (2)⎩⎪⎨⎪⎧x 3-y 2=6,x -y 2=9;(3)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=6,x +y 2-x -y 6=1; (4)⎩⎨⎧x -y +z =0,4x +2y +z =0,25x +5y +z =60.20.【教材P 106习题T 5变式】已知y =x 2+px +q ,当x =1时,y =2;当x =-2时,y =2.求p 和q 的值.21.若关于x ,y 的二元一次方程组⎩⎨⎧x +y =3,mx +ny =8与⎩⎨⎧x -y =1,mx -ny =4有相同的解. (1)求这个相同的解;(2)求m -n 的值.22.某种商品的包装盒是长方体,它的展开图如图所示.如果长方体包装盒的长比宽多4 cm ,求这种商品包装盒的体积.23.某同学在解关于x ,y 的方程组⎩⎨⎧ax +by =2,cx -7y =8时,本应得出解为⎩⎨⎧x =3,y =-2,由于看错了系数c ,而得到⎩⎨⎧x =-2,y =2,求a +b -c 的值.24.【新考法】【2022·长沙】电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱着:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题,其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少;另外三个群,狗的数量多且数量相同,问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,并在相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.( )②刘三姐的姐妹们给出的答案是唯一正确的答案.( )③该歌词表达的数学题的正确答案有无数多种.( )(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.答案一、1.C 2.D 3.A 4.A 5.B 6.A7.B 点拨:因为(x -y -3)2与|x +y -1|均为非负数,两非负数相加的和为0,即每一个加数都为0,据此可构建方程组⎩⎨⎧x -y -3=0,x +y -1=0,解得⎩⎨⎧x =2,y =-1,所以yx =(-1)2=1.故选B. 8.C 9.D 10.A二、11.⎩⎨⎧x =11,y =1(答案不唯一) 12.-1 13.⎩⎨⎧x =10,y =2 14.-8 15.2 16.10 点拨:根据题中的新定义及已知等式得⎩⎨⎧a +2b =5,4a +b =6.解得⎩⎨⎧a =1,b =2.则2*3=4a +3b =4+6=10.17.4;5 点拨:根据题意得⎩⎨⎧2x +3y =23,3x +2y =22,解得⎩⎨⎧x =4,y =5.18.23.5三、19.解:(1)⎩⎨⎧x -2y =3,①3x +y =2,② 由①,得x =3+2y .③将③代入②,得9+6y +y =2,即y =-1.将y =-1代入③,得x =3-2=1.所以原方程组的解为⎩⎨⎧x =1,y =-1.(2)⎩⎪⎨⎪⎧x 3-y 2=6,①x -y 2=9,②②-①,得23x =3,解得x =92.将x =92代入①,得32-y 2=6,解得y =-9.所以原方程组的解为⎩⎪⎨⎪⎧x =92,y =-9.(3)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=6,①x +y 2-x -y 6=1,② ②×6,得3(x +y )-(x -y )=6,③①-③,得-3(x -y )=0,即x =y .将x =y 代入③,得3(x +x )-0=6,即x =1.所以y =1.所以原方程组的解为⎩⎨⎧x =1,y =1.(4)⎩⎨⎧x -y +z =0,①4x +2y +z =0,②25x +5y +z =60,③②-①,得3x +3y =0,④③-①,得24x +6y =60,⑤④和⑤组成方程组⎩⎨⎧3x +3y =0,24x +6y =60,解得⎩⎪⎨⎪⎧x =103,y =-103.将⎩⎪⎨⎪⎧x =103,y =-103代入①,得z =-203.所以原方程组的解为⎩⎪⎨⎪⎧x =103,y =-103,z =-203.20.解:根据题意,得⎩⎨⎧1+p +q =2,4-2p +q =2, 解得⎩⎨⎧p =1,q =0,所以p 的值是1,q 的值是0.21.解:(1)根据题意可得,x ,y 满足方程组⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.故这个相同的解为⎩⎨⎧x =2,y =1.(2)将⎩⎨⎧x =2,y =1代入方程组⎩⎨⎧mx +ny =8,mx -ny =4,可得⎩⎨⎧2m +n =8,2m -n =4,解得⎩⎨⎧m =3,n =2, 所以m -n =3-2=1.22.解:设这种商品包装盒的宽为x cm ,高为y cm ,则长为(x +4)cm .根据题意,得⎩⎨⎧2x +2y =14,x +4+2y =13,解得⎩⎨⎧x =5,y =2, 所以x +4=9,故这种商品包装盒的长为9 cm ,宽为5 cm ,高为2 cm ,所以其体积为9×5×2=90(cm 3).答:这种商品包装盒的体积为90 cm 3.23.解:把⎩⎨⎧x =3,y =-2,⎩⎨⎧x =-2,y =2分别代入ax +by =2,得⎩⎨⎧3a -2b =2,-2a +2b =2,解得⎩⎨⎧a =4,b =5.将⎩⎨⎧x =3,y =-2代入cx -7y =8, 得3c +14=8,解得c =-2.则a +b -c =4+5+2=11.24.解:(1)①√ ②× ③×(2)设数量多的三个群里,每个群有m 条狗,数量少的群里有n 条狗.根据题意,得⎩⎨⎧3m +n =300,m -n =40,解得⎩⎨⎧m =85,n =45. 答:数量多的三个群里,每个群有85条狗,数量少的群里有45条狗.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册 · 课本亮题拾贝5.1 相交线题目 如图,直线AB ,CD 相交于点O ,∠EOC = 70,OA 平分∠EOC ,求∠BOD 的度数.(人教课本P 97题)解 ∵ OA 平分∠EOC , ∴ ∠AOC =21∠EOC = 35.又 ∵∠BOD =∠AOC , ∴ ∠BOD = 35.点评 由角平分线定义如AD 是∠BAC 的角平分线,得∠BAD =∠CAD =21∠BAC .演变变式1 已知直线AB 与CD 相交于O ,OB 平分∠COE ,FO ⊥AB ,∠EOF =120,求∠AOD 的度数.(答案:30)变式2 已知直线AB 与CD 相交于O ,OE ⊥AB ,OF ⊥CD ,且∠BOF = 40,求∠EOD 的度数.(答案:140)变式3 已知AB ⊥CD 于O ,直线EF 过点O ,∠AOE = 25,求∠COF 的度数.(答案 65)变式4 已知∠AOB 是直角,且∠AOC = 40,OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数.解 ∵ ∠AOB = 90,∠AOC = 40, ∴ ∠BOC = 130.∵ OM 平分∠BOC ,ON 平分∠AOC ,∴ ∠MOC =21∠BOC = 65,∠AON =∠NOC =21∠AOC = 20,∴ ∠MON =∠MOC -∠AON = 45.变式5 在变式4 中,当∠AOB =,其它条件不变时,求∠MON 的度数.(答案:21)变式6 在变式4 中,当∠AOC =,其它条件不变时,求∠MON 的度数,AD OA B F C D E O A B E C D F CO M从中你得出了什么结论(答案:45)点评 通过变换∠AOB 和∠AOC 的度数可以发现,∠MON 的度数大小只与∠AOB 的度数大小有关,而与∠AOC 的度数无关.5.2 平行线及其判定题目 如图,AB ∥CD ∥EF ,那么∠BAC + ∠ACE +∠CEF =( ).(人教课本P 236(2)题)A .180B .270C .360D .540解 这是平行线性质的应用,利用“两直线平行,同旁内角互补”,可以得到∠BAC +∠ACE +∠CEF = 360,故选C .其中,CD 在解题中起了非常重要的一个“桥梁”的作用. 演变 变式1 (2008年广安)如图,AB ∥CD ,若∠ABE = 120,∠DCE = 35,则有∠BEC =________度.解 过点E 作EF ∥AB .由于 ∠ABE = 120,所以 ∠FEB = 60.(两直线平行,同旁内角互补) 又由于 ∠DCE = 35,所以 ∠FEC = 35,(两直线平行,内错角相等) 所以 ∠BEC =∠FEB +∠FEC = 60 + 35 = 95. 变式2 (2008年成都)如图,已知直线AB ∥CD ,∠ABE = 60,∠CDE = 20,则∠BED = 度. (提示:过点E 作EF ∥AB ,则可得∠BED = 80) 变式3 (2008年十堰)如图,已知AB ∥CD ,∠A = 50,∠C = 20,则∠P = .(提示:过点P 作AB 与CD 的平行线,即可得解,∠P = 35)变式4 已知直线AB 与CD 的平行线,下列结论正确的是( ). A .∠A +∠P +∠C = 180 B .∠A +∠P +∠C = 360 C .∠A +∠C = 2∠P D .∠A +∠C =∠P(答案:D )变式5 (2009年湘西自治州)如图,l 1∥l 2,∠1 = 120°,∠2 = 100°,则∠3 =( )BDPAB EC DF E A B D F C ACE(答案:A )A .20°B .40°C .50°D .60°变式6 如图,AB ∥CD ,分别写出下面四个图形中∠A 与∠P 、∠C 的关系,请你从所得到的关系中任选一图的结论加以证明........... ACDB PACDBP ACDB PACDB P(1) (2) (3) (4) (答案:(1)∠A +∠C =∠P (2)∠A +∠C +∠P = 360 (3)∠A =∠C +∠P (4)∠C =∠A +∠P )点评 随着折点的不同变化,结论也会不同,但解法却如出一辙,都是过折点作平行线求解.还有其它的几种变式,请同学们自己探究.(结论:左边的角=右边的角)平行线的性质题目 如图,a ∥b ,∠1 = 80,∠5 = 70,求∠2,∠3,∠4的度数.(人教课本P 233题) (答案:∠2 = 80,∠3 = 110,∠4 = 110)点评 两直线平行,同位角相等,内错角相等,同旁内角互补. 演变变式1 如图,若 ∠1 =(2x -50),∠2 =(230-2x ),则a 与b 平行吗(答案:平行)543 1 21a123ll变式2(2009江西)如图,直线m n ∥,︒∠1=55,︒∠2=45,则∠3的度数为( ) A .80︒ B .90︒ C .100︒ D .110︒(答案:D )变式3 若∠1 =(3x -30),∠2 =(210-3x ),则a 与b 平行吗(答案:平行)变式4 若∠1为其补角的3倍,∠2等于其余角,则a 与b 平行吗(答案:平行)变式5 若∠1 =(50-2x ),∠2 =(180-3x ),要使a 与b 平行,则x 为多少度(答案:x = 10)6.1 平面直角坐标系题目 在平面直角坐标系中点的横、纵坐标满足:① 点P (x ,y )的坐标xy >0;② 点P (x ,y )的坐标xy <0,求点P 在第几象限.(人教课本P 4610题)解 ① 点P 在第一、三象限; ② 点P 在第二、四象限)点评 点的横、纵坐标满足:第一象限正正;第二象限负正;第三象限负负;第四象限正负.演变变式1 若点P (1,2x )在第四象限内,求x 的取值范围.(答案:x <0)变式 2 若点P (x ,1-2x )的横、纵坐标互为相反数,则点P 一定在 .(答案:第四象限)变式3 已知点P (x ,y ),且x ,y 满足(x + 1)2 +|y -2|= 0,求点P 在第几象限.(答案:第二象限)变式4 已知点P (x ,y )在第二象限,且|x |-2 = 0,y 2-4 = 0,求点P 的坐标.(答案:P (-2,2))变式5 已知点P (x ,y )的坐标满足xy = 0,则点P 在 .(答案:坐标轴上)变式6 已知点P (x + 2, x + 1)在平面直角坐标系的y 轴上,则点P321的坐标为.(答案:P(0,-1))变式7 已知点P(x,y),则P到x轴得距离是;到y轴得距离是.(答案:|y|,|x|)6.2 坐标方法的简单应用题目已知三角形ABC的坐标为A(-2,3),B(-4,-1),C(2,0),三角形ABC中任意一点P(x,y)经平移后对应点P′(x + 5,y + 3),将三角形ABC作同样的平移得到三角形A′B′C′,求A′、B′、C′的坐标.(人教课本P557题)解A′(3,6)、B′(1,2)、C′(7,3).点评在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+ a,y)(或x-a,y);将点(x,y)向上(或下)平移b个长度,可以得到对应点(x,y + b)或(x,y-b).演变变式1 已知三角形ABC的坐标不变,求三角形ABC和三角形A′B′C′的面积大小.(答案:8和8)变式2 将三角形ABC的横坐标保持不变,纵坐标分别乘以-1,所得的新三角形与原三角形ABC相比有什么变化(答案:现状和大小不变,只是位置变了,他们关于x轴对称)变式3 将三角形ABC的横坐标分别变为原来的2倍,纵坐标保持不变,所得的新三角形与原三角形ABC相比有什么变化(答案:原三角形ABC被横向拉长为原来的2倍,面积为22)变式4 横、纵坐标分别变为原来的2倍,所得的新三角形与原三角形ABC 相比有什么变化(答案:大小为原来的4倍,面积为44)变式5 线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C (4,7),则点B(-4,-1)•的对应点的坐标为().A.(2,9) B.(5,3) C.(1,2) D.(-9,-4)(答案:C)变式6 将点M(x,y)先向左平移a个单位长度,再向上平移b个单位长度后得到点N,则点N的坐标为.(答案:N(x-a,y + b))变式7 观察下面A、B、C、D 四幅图案中,能通过图案(1)平移得到的是().(答案:C)变式8 通过平移,可将图(1)中的福娃“欢欢”移动到图().(图1)A(答案:C)7.1 与三角形有关的线段题目如图,在三角形ABC中,AE是中线,AF是高线,AD是角平分线,(人教课本P69 4题)(1)BE = =21;(2)∠BAD = =21;(3)∠AFB = = 90;(4)S△ABC= .解(1)BE = EC =21BC.(2)∠BAD =∠DAC =21∠BAC.(3)∠AFB =∠AFC = 90.(4)S△ABC=21BC×AF.演变变式1 在△ABC中,AE平分∠BAC(∠C>∠B),AD为边BC上的一高,且∠B = 20,∠C = 30,求∠EFD的度数.解∵AE平分∠BAC,∴∠BAE =21∠BAC =21(180-∠C-∠B).∵AD为边BC上的高,∴∠BAD = 90-∠B,∠EAD =∠BAD-∠BAE,(1)A B C D∴ ∠EAD =21∠C -21∠B = 5.变式 2 在△ABC 中,AE 平分∠BAC (∠C >∠B ), AD 为边BC 上的一高,且∠B = x ,∠C = y ,求∠EFD 的度数.(答案:∠EFD =21y -21x )变式3 在△ABC 中,AE 平分∠BAC (∠C >∠B ),F 为AE 上的一点,且FD ⊥BC 于D ,求∠EFD 与∠B ,∠C 的关系.(答案:∠EFD =21∠C -21∠B )变式4 当点F 在AE 的延长线上时,其余条件不变, 求∠EFD 与∠B ,∠C 的关系. (答案:∠EFD =21∠C -21∠B )变式5 当点F 在EA 的延长线上时,其余条件不变,求∠EFD 与∠B ,∠C 的关系.(答案:∠EFD =21∠C -21∠B )7.2 与三角形有关的角题目 如图,BO 、CO 分别平分∠ABC 和∠ACB .若∠A = 100, 求∠O 的度数.(人教课本P 91 9题) 解 ∵ C B BOC ∠-∠-︒=∠2121180= )180(21180)(21180A C B ∠-︒-︒=∠+∠-︒,∴ A BOC ∠+︒=∠2190.∴ 140=∠BOC .演变变式1 如上图,BO 、CO 分别平分∠ABC 和∠ACB .(1)若∠A = 60,求∠O ;(2)若∠O = 120,∠A 又是多少(3)请求出∠O 与∠A 之间的关系. (答案:(1)当∠A = 60 时,∠O = 120. (2)当∠O =120 时,∠A = 80. (3)∠A 与∠O 的关系式为∠O = 90 +12∠A )变式2 在△ABC 中,∠B 的平分线与∠C 的外角平分线相交于点O . (1)若∠A = 60,求∠O ; (2)若∠O = 60,∠A 又是多少OE C B ACA OB(3)请求出∠O与∠A之间的关系.(答案:(1)当∠A = 60时,∠O = 12× 60 = 30.(2)当∠O =60时,∠A = 120.(3)∠A与∠O的关系式为∠O =12∠A)变式3 如图,已知∠MON = 90,点A、B分别在射线OM、ON上移动,∠OAB的内角平分线与∠OBA的外角平分线所在直线交于点C,试猜想:随着A、B点的移动,∠ACB的大小是否变化说明理由(答案:随着A、B点的移动,∠ACB的大小不变化,∠ACB = 45)变式4 在△ABC中,∠B的外角平分线与∠C的外角平分线相交于点O,(1)若∠A = 60,求∠O;(2)若∠O = 100,∠A又是多少(3)请求出∠O与∠A之间的关系.(答案:(1)当∠A = 60时,∠O = 90-12× 60 = 60.(2)当∠O = 100时,∠A= 20.(3)∠A与∠O的关系式为∠O-12∠A= 90.)变式5 如图,△ABC中,∠A= 80,延长BC到D,∠ABC与∠ACD的平分线交于点A1,∠A1BC与∠A1CD的平分线相交于A2,依次类推,∠A4BC与∠A4CD 的平分线相交于A5,则∠A5的度数为多少再画下去……,∠A n的大小呢解∵∠ACD为△ABC的外角,∴∠ACD =∠ABC +∠A,即∠ACD-∠ABC =∠A.∵∠A1CD为△A1BC的外角,∴∠A1CD-∠A1BC =∠A1.∵BA1,A1C分别平分∠ABC,∠ACD,∴∠A1CD =12∠ACD,∠A1BC =12∠ABC,∴12(∠ACD-∠ABC)=∠A1,即∠A1 =12∠A.同理:∠A2 =12∠A1 =221∠A;∠A3 =12∠A2 =321∠A;∠A4 =12∠A3 =421∠A;∠A5 =12∠A4 =521∠A.NM12NBCOMA所以 ∠A 5 =521∠A =5280. ∠A n =n280. 变式6 已知△ABC 中,① 如图(1),若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P = 90 +21∠A ;② 如图(2),若P 点是∠ABC 和外角ACE 的角平分线的交点,则∠P = 90-∠A ;③ 如图(3),若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P = 90-21∠A .上述说法正确的个数是( ).A .0B .1C .2D .3多边形的内角和题目 一个多边形的内角和等于1260,它是几边形(人教课本P 855题) 解 九边形.点评 n 变形内角和 =(n -2)×180,外角和 = 360. 演变变式 1 一个多边形的内角和与外角和的差是1800,则它的边数为 .(答案:14)变式2 一个多边形的内角和不可能是( ).A .360B .720C .520D .1800(答案:C )变式3 (2009年广西南宁)一个五边形木架的内角和是( ) A .720 B .540 C .360 D .180(答案:B )变式4 (2009年广州市)只用下列正多边形地砖中的一种,能够铺满地面的是( )A .正十边形B .正八边形C .正六边形D .正五边形(答案:C )变式5 一个多边形的内角和是1440,那么过一个顶点可以引几条对角线此多边形共有多少条对角线解 设此多边形的变数为n ,则(n -2)×180 = 1440,解得 n = 10. ∵ 过n 边形的一个顶点可以引(n -3)条对角线,P E C B A N M∴ n -3 = 10-3 = 7.又 ∵ n 边形共有 21n (n -3)条对角线, ∴ 21n (n -3)= 35.变式6 一个正多边形的一个外角的度数是它对应内角度数的41,求此多边形的内角和.(答案:1440)变式7 求下列图形的中∠A +∠B +∠C +∠D +∠E 的度数.点评 多图一思路,将这五个角的和转化为三角形的内角和,均为180. 变式8 求下列图形的中∠A +∠B +∠C +∠D +∠E +∠F 的度数.(答案:360,360)变式9 (2009年北京市)若一个正多边形的一个外角是40,则这个正多边形的边数是( ) (答案:B )A .10B .9C .8D .68.2 二元一次方程组的解法题目 解方程组:⎩⎨⎧=+=+4332b a b a (人教课本P 1033(2)题)(答案:⎩⎨⎧==11b a ) 演变A BCD E FABCDEFCA B D E CA DB EE变式1 解方程组:⎩⎨⎧=+-=+-75212b a b a (答案:⎩⎨⎧==11b a ) 变式2 已知⎩⎨⎧-==24y x 和⎩⎨⎧-=-=52y x 都满足等式y = kx + b .① 求k 、b 的值;②求x = 8时,y 的值,③ x 为多少时,y = 3(答案: ① ⎩⎨⎧-==45.0b k ② y = 0 ③ x = 14)变式3 甲、乙两人同解 方程组⎩⎨⎧-=-=+232y cx by ax ,甲同学正确解为⎩⎨⎧-==11y x ,乙同学因为抄错c ,解得⎩⎨⎧-==62y x ,求a 、b 、c 的值.(答案:a = ,b = ,c =-5)变式4 已知关于x 、y 的方程组⎩⎨⎧-=+=-225413by ax y x 与⎩⎨⎧=--=-8432by ax y x 有相同的解,求a 、b 的值. (答案:x = 1,y =2 或 a = 2,b =-3)变式5 以方程组⎩⎨⎧=--=+752132y x y x 为模型编一道应用题. (答案:略)变式6 (2009,福州)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是( ) (答案:C )A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩ 变式7 (2009,宁波)以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是( )(答案:A )A .第一象限B .第二象限C .第三象限D .第四象限 变式8 (2009,白色)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b-的值为( )(答案:B )A .1B .-1C .2D .3 变式9 (2009,东营)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值( ) (答案:B )A .43- B .43 C .34 D .34-变式10 (2009,定西)方程组25211x y x y -=-⎧⎨+=⎩,的解是 . (答案:34x y =⎧⎨=⎩,) 8.2 二元一次方程组的解法题目 一个长方形的长减少5 cm ,宽增加2 cm 就成为一个正方形,并且这两个图形的面积相等,求这个长方形的长宽各是多少(人教课本P 1049题)解 设长方形的长为x cm ,宽为y cm .由题意,得 ⎩⎨⎧=+-+=-xyy x y x )2)(5(25 解得 x =325,y =34.答:略点评 根据题意,问什么就设什么,再把中文语言翻译成数学语言,或者找题目中的等式.演变变式1 一个长方形,长减少6宽增加3,或长增加4,宽减少1,面积都与原长方形面积相等,求原长方形的长和宽解 设原长方形的长为x ,宽为y .有题意,得 ⎩⎨⎧=-+=+-xyy x xyy x )1)(4()3)(6( 化简,得 ⎩⎨⎧=-=-xy x y y x 462 解得⎩⎨⎧==516y x 答:略.变式2 一个长方形长减少1厘米,宽增加3厘米,所得的正方形比原来的长方形的面积大21平方厘米,求原长方形的长和宽各是多少厘米解 设原长方形的长为x ,宽为y .有题意,得 ⎩⎨⎧+=+-+=-21)3)(1(31xy y x y x化简,得 ⎩⎨⎧=-=-2434x y y x 解得 ⎩⎨⎧==610y x答:略.变式3 某汽车运输队,要在规定的天数内运完一批货物,如果减少6辆汽车则要再运3填才能完成任务,如果增加4辆汽车,可提前1天完成任务,那么这个汽车运输队原有汽车多少辆原规定运完的天数是多少解 设汽车运输队原有汽车x 辆,原规定运完的天数是y 天.由题意得 ⎩⎨⎧=-+=+-xyy x xyy x )1)(4()3)(6( 解得 ⎩⎨⎧==516y x 答:略.8.3 实际问题与二元一次方程组题目 如图,8每块长方形地砖的长和宽分别是多少解 设每块长方形地砖的长和宽分别为x ,y .由题意,得 ⎩⎨⎧==+xy y x 360 解得 ⎩⎨⎧==1545y x 答:每块长方形地砖的长为45,宽为15.点评 此类题要根据数形结合思想解题,要设小长方形的长和宽分别为所求量.演变变式1 如图,8块相同的长方形地砖拼成一个长方形, 求大长方形地砖的长和宽分别是多少解 设每块长方形地砖的长和宽分别为x ,y .由题意,得 ⎩⎨⎧==+xy y x 3603 解得 ⎩⎨⎧==1030y x ∴ x + 3y = 60,x + y = 40.答:大长方形地砖的长为60,宽为40.变式2 某单位为了提高绿化品味,美化环境,准备将一块周长为76 m 的长方形草地设计分成长和宽分别相等的9块小长方形(分布位置如图所示),种上各色花卉,经市场预测,绿化每平方米来造价(其中已含全部费用)约为108元.求每一个小长方形的长和宽;请计算完成这块绿化 工程预计投入资金多少元 解 设每块长方形地砖的长和宽分别为x ,y . 由题意,得 ⎩⎨⎧==+x y y x 257694 解得 ⎩⎨⎧==410y x 20×18×108 = 38880元.答:每块长方形地砖的长为10 m ,宽为4 m . 完成这块绿化工程预计投入资金38880元.变式3 小颖在拼图时,发现8个一样大小的长方形如图1所示),恰好可以拼成一个大的长方形.小彬看见了,说:“我来试一试.”结果小彬七拼八凑,拼成如图2那样的正方形.咳,怎么中间还留下一个洞,恰好是边长2 mm的小正方形!①每块长方形地砖的长和宽分别是多少②正方形的面积是多少解设每块长方形地砖的长和宽分别为x,y.由题意,得⎩⎨⎧==+xyyx3522解得⎩⎨⎧==610yx所以 22×22 = 484.答:每块长方形地砖的长为10 mm,宽为6 mm.正方形的面积是484.变式4 (2009,漳州)为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元∕瓶,乙种9元∕瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶(2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶解(1)设甲种消毒液购买x瓶,则乙种消毒液购买(100-x)瓶.依题意,得 6x + 9(100-x)= 780,解得x = 40.所以 100-x = 60(瓶).答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.另法设甲种消毒液购买x瓶,乙种消毒液购买y瓶.依题意,得10069780x yx y+=⎧⎨+=⎩,.解得4060xy=⎧⎨=⎩,.答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.(2)设再次购买甲种消毒液y瓶,刚购买乙种消毒液2y瓶.依题意,得6921200y y+⨯≤.解得50y≤.答:甲种消毒液最多再购买50瓶.变式5 (2009,宁德)某刊物报道:“2008年12月15日,两岸海上直航、空中直航和直接通邮启动,‘大三通’基本实现.‘大三通’最直接好处是省时间和省成本,据测算,空运平均每航次可节省4小时,海运平均每航次可节省22小时,以两岸每年往来合计500万人次计算,则共可为民众节省2900万小时……”根据文中信息,求每年采用空运和海运往来两岸的人员各有多少万人次.解 设每年采用空运往来的有x 万人次,海运往来的有y 万人次,依题意得⎩⎨⎧=+=+.2900224,500y x y x 解得 ⎩⎨⎧==.50,450y x 答:每年采用空运往来的有450万人次,海运往来的有50万人次. 变式6 (2009,云南)在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A 型洗衣机,小王购买了一台B 型洗衣机,两人一共得到财政补贴351元,又知B 型洗衣机售价比A 型洗衣机售价多500元.求:(1)A 型洗衣机和B 型洗衣机的售价各是多少元(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元 解 (1)设A 型洗衣机的售价为x 元,B 型洗衣机的售价为y 元,则据题意,可列方程组5001313351.y x x y -=⎧⎨%+%=⎩, 解得 11001600.x y =⎧⎨=⎩,∴ A 型洗衣机的售价为1100元,B 型洗衣机的售价为1600元. (2)小李实际付款为:1100(1-13%)= 957(元); 小王实际付款为:1600(1-13%)= 1392(元).∴小李和小王购买洗衣机各实际付款957元和1392元.变式7 (2009,济南)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品解(1)设职工的月基本保障工资为x元,销售每件产品的奖励金额为y 元.由题意得20018001801700x yx y+=⎧⎨+=⎩解这个方程组得8005xy=⎧⎨=⎩答:职工月基本保障工资为800元,销售每件产品的奖励金额5元.(2)设该公司职工丙六月份生产z件产品.由题意得80052000z+≥,解这个不等式得240z≥.答:该公司职工丙六月至少生产240件产品.变式8 如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x ,y 的值;(2)在备用图中完成此方阵图.解 (1)由题意,得34232234.x x y y x y x x ++=++-⎧⎨-+-=++⎩, 解得 12.x y =-⎧⎨=⎩, (2)如图9.1 不等式题目 设a >b ,用“<”或“>”填空.(人教课本P 1287题) (1)2a -5 2b -5 (答案:>)(2)- + 1 -3.5a + 1 (答案:<)点评 先根据不等式的性质2和3,再根据不等式的性质1填.性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 ;性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 ; 性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 .演变变式1 如果a <b <0,下列正确的是( ).A .a1<b1 B .ab <1 C .ba <1 D .ba >1 (答案:D )变式2 (2009柳州)若b a <,则下列各式中一定成立的是( )A .11-<-b aB .33ba > C .b a -<- D . bc ac <(答案:A )–23 4(备用2y –x–23 4x ya bc–2 3 4–1 6 1 0 52变式3 (2009年牡丹江市)若01x <<,则21x x x,,的大小关系是( ) (答案:C )A .21x x x <<B .21x x x <<C .21x x x << D .21x x x<< 变式4 (09湖北宜昌)如果ab <0,那么下列判断正确的是( ) (答案:D )A .a <0,b <0B .a >0,b >0C .a ≥0,b ≤0D .a <0,b >0或a >0,b <0变式5 如果2c a <2cb,那么( ).A .a <bB .a >bC .a ≤bD .a = b (答案:A )变式6 (1)若a <b 且c >0,则ac + c bc + c ; (2)a >0,b <0,c <0,则(a -b )c 0.(答案:(1)< (2)<)变式7 若不等式3x -m <0的正整数解共有2个,求m 的取值范围.解 3x -m <0,x <3m . ∵ 2<3m≤3,∴ 6<m ≤9.变式8 若关于x 的方程3x + 3k = 2的解事正数,求k 的取值范围. 解 ∵ x =332k -,∴ 332k ->0,k <32. 变式9 已知关于x 的方程2x -3 =-a 的解是不等式5(x -2)-7<6(x-1)-8的一个解,求a 的取值范围. (答案:a <9)变式10 解关于x 的不等式:ax -b <0.解 ① 当a >0时,x <ab ; ② 当a = 0时,b ≤0时,无解; ③ 当a = 0时,且b <0时,实数; ④ 当a <0时,x 大于a b .变式11 解关于x 的不等式:(21-a )x >1-2a . 解 原不等式可化为(1-2a )x >2(1-2a ),(1)当a >21时,x <2;(2)当a =21时,无解;(3)当a <21时,x >2.变式12 若不等式mx -2<3x + 4的解集是x >36-m ,求m 的取值范围.解 由mx -2<3x + 4 得(m -3)x <6.∵ (m -3)x <6的解集是x >36-m ,∴ m -3<0, ∴ m <3.不等式组题目 当x 时取哪些整数时,2≤3x -7<8成立(人教课本P 1428题)解 原不等式可化为⎩⎨⎧<--≤,873,732x x 解得 ⎩⎨⎧<≥,5,3x x ∴ 3≤x <5.∵ x 为整数,∴ x = 3,4.点评 这是关于x 的双联不等式,它相当于解不等式组⎩⎨⎧-≥-873273<x x .演变变式1 求不等式组⎩⎨⎧--≥-x x x 782093<的最小整数解. (答案:3)变式2 已知方程组⎩⎨⎧+=++=+m y x my x 1313 的解满足x 与y 的和是非负数,求m 的取值范围.解 将两个方程相加,得 4(x + y )= 2(m + 1),即 x + y =21+m . ∵ x + y ≥0,∴ 21+m ≥0,∴ m ≥-1.另解 把m 看成常数,解x 、y 的二元方程组,解得x =41+m ,y =41+m ,再把x =41+m ,y =41+m 代如x + y ≥0中解m 的值.变式3 当k为何值时,方程组⎩⎨⎧-=+=-5253y x ky x 的解x 是正数,y 是负数解 由已知方程组得x =1325-k ,13152+-=k y .由题意,得 1325-k <0 且 13152+k >0,解得 k <-215.变式4 若关于x ,y 的方程组⎩⎨⎧-=++=-52223m y x m y x 中的x 的值大于719,y 的值不大于-1,求m 的整数值.解 由已知方程组,得 x =783-m ,y =719-m . 由题意得 783-m >719 且 719-m ≤-1,解得⎩⎨⎧≤129m m >∴ 9<m ≤12,因此整数m 的值为m = 10,11,12.变式5 解不等式组 ⎩⎨⎧>--<+-.0),1(213k x x x解 原不等式组可化为 ⎩⎨⎧>>.,5k x x ① 当k ≤5时,解为x >5.② 当k <5时,解为x >k .变式6 把一些书分给几个学生.如果没人分3本,那么余6本;如果前面的每个学生分5本,那么最后一人就分不到3本.问这些书有多少本学生有多少人解 设学生人数为x 人,书友(3x + 8)本. 由题意,得 5(x -1)≤3x + 8<5(x -1)+ 3, 解得 x = 6,3x + 8 = 26.变式7 先阅读,再解不等式12-x x>1.解 12-x x -1>0,即121--x x>0,则有 ① ⎩⎨⎧--01201>>x x 或 ② ⎩⎨⎧--01201<<x x解 ① 得21<x <1;② 无解.∴ 原不等式的解为21<x <1.请根据以上思想方法解不等式:223-+x x <2.解223-+x x -2<0,即26-+x x <0 则有 ① x + 6>0且x -2<0, 或 ② x + 6<0且 x -2>0. 解 ① 得-6<x <2;② 无解. ∴ 原不等式的解集为 -6<x <2.变式7 (2009恩施市)如果一元一次不等式组3x x a >⎧⎨>⎩的解集为3x >.则a 的取值范围是()(答案:C )A .3a >B .a ≥3C .a ≤3D .3a <变式8 (2009年重庆市江津区)不等式组⎪⎩⎪⎨⎧≤<-15112x xx 的解集在数轴上表示正确的是 ( )(答案:C )变式9 (2009湖北省荆门市)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )(答案:A )A .1a >-B .1a -≥C .1a ≤D .1a <变式10 (2009烟台市)如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b+的值为.(答案:1)统计调查题目为了解全校学生的平均身高,小明调查了座在自己旁边的3位同学,把他们的平均身高作为全校学生的平均身高的估计.(1)小明的调查是抽样调查吗(2)如果是抽样调查,指出总体、个体、样本、样本容量.(3)这个调查结果能够较好的反映总体的情况吗(人教课本P1551题)解(1)小明的调查是抽样调查.(2)总体:全校学生的平均身高;个体:每个学生的身高;样本:被调查德3位同学的身高;样本容量:3.(3)不能够.点评考查全体对象的调查就叫做全面调查,抽样调查:抽取一部分对象进行调查的方法,叫抽样调查,总体:所要考察对象的全体,个体:总体的每一个考察对象叫个体,样本:抽取的部分个体叫做一个样本,样本容量:样本中个体的数目,抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当;②抽取的样本要有随机性,一般情况下,样本容量越大,估计精确度就越高.演变变式1 为了了解某中学七年级600名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中总体是指().A.600名学生 B.取的50名学生C.七年级600名学生的体重 D.被抽取的50名学生的体重(答案:C)变式2 一次数学考试考生约12万名,从中抽取5000名考生的数学成绩进行分析,在这个个问题中,样本指的是().A.5000 B.5000名考生的数学成绩C.12万名考生的数学成绩 D.5000名考生(答案:B)变式3 下列调查工作需采用的普查方式的是().A.环保部门对淮河某段水域的水污染情况的调查B.电视台对正在播出的某电视节目收视率的调查C.质检部门对各厂家生产的电池使用寿命的调查D.企业在给职工做工作服前进行的尺寸大小的调查(答案:D)变式4 为了了解某种矿泉水含钠是否超标进行的调查是调查.(答案:抽样)变式5 如图,甲、乙两所学校,其中男女生情况可见下列统计图,甲学校有1000人,乙有1250人,则().A.甲校的女生比乙校的女生多B.甲校的女生比乙校的女生少C.甲校与乙校的女生一样多D.甲校与乙校男生共是2250人(答案:C)变式6 池塘中放养了鲤鱼10000条,鲢鱼若干,在几次随机捕捞中,共抓到鲤鱼400条,鲢鱼320条,估计池中放养了鲢鱼___________条.(答案:8000条)变式7 (2009年宁波市)下列调查适合作普查的是().A.了解在校大学生的主要娱乐方式B.了解宁波市居民对废电池的处理情况C.日光灯管厂要检测一批灯管的使用寿命D.对甲型H1N1流感患者的同一车厢的乘客进行医学检查(答案:D)变式8(2009年义乌)下列调查适合作抽样调查的是().A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查(答案:A)变式9 (2009年河南)下列调查适合普查的是().A.调查2009年6月份市场上某品牌饮料的质量B.了解中央电视台直播北京奥运会开幕式的全国收视率情况C.环保部门调查5月份黄河某段水域的水质量情况D.了解全班同学本周末参加社区活动的时间(答案:D)变式10 (2009年湘西自治州)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是().A.个体 B.总体 C.样本容量D.总体的一个样本(答案:C)。