多项式概念及整式加减运算——(2)

合集下载

整式的加减--同类项、合并同类项

整式的加减--同类项、合并同类项

2.2(1)整式的加减--同类项、合并同类项一.【知识要点】1.同类项的概念:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项. 注意:①“两相同”同类项中要注意到两个相同:字母相同及相同的字母的指数也相同;②“两无关”是指同类项与(系数)和(字母)的顺序无关; ③所有的常数项都是同类项。

2.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 进行合并同类项的一般步骤: (1)先用相同的划线找到同类项;(2)利用加法交换律与加法结合律把同类项放在一起; (3)利用有理数的加减混合运算,进行系数相加; (4)字母与字母的系数不变. 二.【经典例题】 1.下列几组式子:(1)3y x 2与–3y x 2 (2)0.2b a 2与0.22ab (3)11abc 与9bc (4)224b a 和224n m(5)4332n m 与–3423m n (6)4z xy 2与4yz x 2 (7)6与6π (8)22和2a其中是同类项的是:_________________________________________.2.合并下列多项式中的同类项: (1)2a 2b -3a 2b+12a 2b ; (2)a 3-a 2b+ab 2+a 2b -ab 2+b 3.3.若25y x n -与m y x 2312是同类项,则=m ,=n 4.已知()2210a b -++=,求22222133542a b ab a b ab ab ab a b +-++-+的值5.已知0123=++y xb na b ma (m 、n 均不为0),求y x nm+-2的值。

6. 已知关于x,y 的单项式2322+-m n y x y ax与的和等于0,求a+m+n 的值为_______.7.(2020年绵阳期末第5题)若单项式﹣2m 2b n 3a﹣2与n a +1m b﹣1可以合并,则代数式2b ﹣a=( ) A .B .C .D .三.【题库】 【A 】1.化简:(1)3x -x =_____;(2)-2y 2x +3y 2x =______;(3)-22x -32x +y -2y =______.2.在代数式4x 2+4xy -8y 2-3x+1-5x 2+6-7x 2中,4x 2的同类项是 ,6的同类项是 .3.若2x k y k+2与3x 2y n 的和为5x 2y n ,则k= ,n= .4.若-3xm -1y4与13x2yn+2是同类项,求m,n.5.合并同类项:(1)3x 2-1-2x -5+3x -x 2;(2)-0.8a 2b -6ab -1.2a 2b+5ab+a 2b.6.下列判断中正确的个数为( )①23a 与23b 是同类项;②85与58是同类项;③x 2-与2x-是同类项;④4321y x 与347.0y x -是同类项A .1个B .2个C .3个D .4个7.若b a M 22=,23ab N =,b a P 24-=,则下面计算正确的是( )A .235b a N M =+B .ab P N -=+C .b a P M 22-=+D .b a P N 22=- 8.若323y xm-与n y x 42是同类项,则n m -的值是( )A .0B .1C .7D .-19.合并同类项22227435ab ab ab ab b a -+--=_______________ 10.求多项式3x 2+4x -2x 2-x+x 2-3x -1的值,其中x=-3. 11.下列计算正确的是( )A.2x +3y =5xyB.-3x -x =-x C.-xy +6x y =5x y D.5ab -b a =ab 2232252232227223212.已知单项式b a xy -y x +-431321与是同类项,那么b a ,的值分别是( ) A .⎩⎨⎧==.1,2b a B .⎩⎨⎧-==.1,2b a C .⎩⎨⎧-=-=.1,2b a D .⎩⎨⎧=-=.1,2b a13.若单项式﹣35a b 与2m a b 是同类项,则常数m 的值为( ) A.﹣3 B.4 C.3 D.2 14.合并下列各式中的同类项(1)b a ab b a ab b a 2228.44.162.0++--- (2)222614121x x x --(3)222234422xy y x xy xy xy y x -++-- (4)2238347669a ab a ab +-+-+-15.下列各组中的两式是同类项的是( ) A .()32-与()3n - B .b a 254-与c a 254- C .2-x 与2- D .n m 31.0与321nm - 16.若12x a -1y 3与-3x -b y 2a+b 是同类项,那么a,b 的值分别是( ) A.a=2, b=-1. B.a=2, b=1. C.a=-2, b=-1. D.a=-2, b=1. 17.指出下列多项式中的同类项:(1)3x -2y+1+3y -2x -5;(2)3x 2y -2xy 2+13xy 2-32yx 2.18. 下列合并同类项正确的是( )A. B. C. D. 19. 如果-13mx y 与221n x y +是同类项,则m=_______,n=________. 20.下列各组中的两项是同类项的为( )A .3m 3n 2和-3m 2n 3B .12xy 与22xy C .53与a 3D .7x 与7y21.下列运算正确的是( )A. 42232a a a =+B. b a b a +=+2)(2C. 2323a a a =-D. 22223a a a =- 22. 判断(1)4abc 与 4ab 不是同类项 ( )325a b ab +=770m m -=33622ab ab a b +=-+=a b a b ab 222(2) 325n m - 与 232m n 不是同类项 ( ) (3) y x 23.0- 与 2yx 是同类项 ( ) 23.若y x 25与 n m y x 1-是同类项,则m=( ) ,n=( )【B 】1.若单项式-5x m y 3与4x 3y n能合并成一项,则m n=( ) A.3 B.9 C.27 D.62. 若3231+a y x 与是同类项,求2222223612415b a ab b a ab b a ---+的值。

整式的加减(二)—添加减括号及化简求值 第2讲

整式的加减(二)—添加减括号及化简求值  第2讲

整式的加减(二)—添加减括号及化简求值(基础)【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用; 2. 会用整式的加减运算法则,熟练进行整式的化简及求值. 【要点梳理】【整式的加减(二)--去括号与添括号 去括号法则】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号. (3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形. 要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号; 添括号后,括号前面是“-”号,括到括号里的各项都要改变符号. 要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b ca b c +-+-添括号去括号, ()a b ca b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项. (2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d -2(3a -2b+3c );(2)-(-xy -1)+(-x+y ).练习1去掉下列各式中的括号:(1). 8m -(3n+5); (2). n -4(3-2m );(3). 2(a -2b )-3(2m -n ).2化简﹣16(x ﹣0.5)的结果是( )A . ﹣16x ﹣0.5B . ﹣16x+0.5C . 16x ﹣8D . ﹣16x+8 3化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1). 2345()()x y z t +-+=-=+2()x =-23()x y =+-; (2). 23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号. 练习()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.(5)22()101025()10()25x y x y x y +--+=+-+.(6)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.类型三、小马虎例1.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x 2+3xy ﹣y 2)﹣(﹣x 2+4xy ﹣y 2)=﹣x 2+y 2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 .例2.由于看错了运算符号,“小马虎”把一个整式减去多项式2ab -3bc +4误认为加上这个多项式,结果得出答案是2bc -1-2ab.问原题的正确答案应是多少?练习:1小明在一次测验中计算一个多项式A 减去xz yz xy 235+-时,不小心看成加上xz yz xy 235+-,计算出错误结果为xz yz xy 462-+,试求出原题目的多项式A 。

整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)

整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)

整式的加减专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.单项式的概念 (2)2.多项式的概念 (3)3.整式的概念 (4)4.正确列代数式 (5)5.同类项的概念 (7)6.合并同类项 (8)7.去括号法则 (9)8.整式的加减(合并同类项) (10)三、重难点题型 (11)1.整式加法的应用 (11)2.待定系数法 (12)3.整式的代入思想 (13)4.整数的多项式表示 (14)5.与字母的取值无关的问题 (15)6.整式在生活中的应用 (16)二、基础知识点1.单项式的概念单项式:数或字母的积叫作单项式注:①分母中有字母,那就是字母的商,不是单项式②“或”单独的一个数字或单独一个字母也称为单项式例:5x;100;x;10ab等系数:单项式中的数字叫做单项式的系数单项式的次数:一个单项式中所有字母的指数的和例1.判断下列各式中那些是单项式,那些不是?如果是单项式,请指出它的系数和次数。

-13b;13xy2;2π;−ab;32a2b;13a−b;−5x2y33答案:单项式有:-13b,系数为-13,次数为11 3xy2,系数为13,次数为1+2=32π,系数为2π,次数为032a2b,系数为9,次数为2+1=3−5x2y33,系数为−53,次数为2+3=5例2.−xy2z3的系数是,次数是。

答案:系数为:-1,次数为1+2+3=62.多项式的概念多项式:几个单项式的和叫作多项式注:减单项式,实际是加该单项式的负数,也称作“和”项:每个单项式叫做多项式的项,有几项,就叫做几项式常数项:不含字母的项多项式的次数:所有项中,次数最高的项的次数就是多项式的次数(最高次数是n次,就叫做n次式)x2y2按字母y作升幂排列。

例1.将多项式3xy3−4x4+15x2y2+3xy3答案:−4x4+15−4x4中y的次数为01x2y2中y的次数为253xy3中y的次数为3例2.指出下列多项式的项和次数,并说明每个多项式是几次几项式。

整式的加减

整式的加减

整式的加减概念总汇1、整式加减的有关概念(1)同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

几个常数项也是同类项。

如: 6x 2y 2和-4x 2y 2就是同类项,-3和5也是同类项;但b a 24与23ab 就不是同类项,因为相同字母的指数不相同。

(2)合并同类项:把多项式中的同类项合并成一项,即把同类项的系数相加,字母和字母的指数不变。

如:6x 2y 2+(-4x 2y 2)=2x 2y 2说明:①只有同类项才可合并,不是同类项的不能合并;②合并同类项,只合并系数,字母与字母的指数不变;③合并同类项后若其系数是带分数,要把它化成假分数;④多项式中,如果两同类项的系数互为相反数,合并后这两项互相抵消,结果为0。

(3)去括号法则:括号前面是正号,把括号和括号前的正号去掉后,括号里的各项不改变符号;括号前是负号,把括号和括号前的负号去掉,括号里的各项都要改变符号。

如:A +(5A +3B )—(A —2B )=A +5A +3B -A +2B =5A +5B 。

说明:去括号法则相当于乘法分配律的应用,如:A +(5A +3B )—(A —2B )=A +1×(5A +3B )+(-1)×(A -2B )=A +5A +3B +(-1)A +(-1)×(-2B )=A +5A +3B -A +2B =5A +5B 。

如果括号前面有数字因数,就按乘法分配律去括号。

如: 21(3a 2-2ab +4b 2)-2(43a 2-ab -3b 2) =23a 2-ab +2b 2-23a 2+2ab +6b 2=ab +8b 2 (4)添括号法则:给括号前添正号,括在括号里的各项都不改变符号;给括号前添负号,括到括号里的各项都要改变符号。

说明:去括号与添括号是互逆的过程,它们的依据是乘法分配律的顺逆运用。

可把+(a -b )看作(+1)(a -b ),把-(a -b )看作(-1)(a -b )则有+(a -b )=a -b , -(a -b )= -a +b ,这样乘法分配律的一个应用便是去括号;添括号可理解为乘法分配律的逆用。

整式的加减(公开课) ppt课件

整式的加减(公开课)  ppt课件

ppt课件
6
整式的加减 去括号
ppt课件
7
知识结构:
整式的概念 整式的加减
整式的计算
单项式 多项式
系数
次数 项,项数,常数项, 最高次项 次数
同类项与合并同类项 去括号 化简求值
用字母来表示生活中的量
ppt课件
8
如何进行整式的加减呢? 八字诀
去括号、合并同类项
ppt课件
9
口诀: 去括号,看符号: 是“+”号,不变号; 是“-”号,全变号.
整式的加减整式的加减整式的整式的概念整式的整式的计算单项式单项式多项式多项式系数系数次数次数项项数常数项项项数常数项最高次项最高次项次数次数同类项与合并同类项与合并同类项去括号去括号化简求值化简求值用字母来表示生活中的量用字母来表示生活中的量10例如
一、复习
什么是整式、单项式、多项式
整式
单项式(系数和次数) 多项式(项和次数)
合并同类项概念: _把__多__项_式__中__的__同__类_项__合__并__成__一_项_.
合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
ppt课件
5
1.下列各式中,是同类项的是:__③__⑤_⑥______
① 2x2 y3 与 x3 y2 ② x2 yz 与 x2 y
思维分析:把多项式看作一个整体,并用括号
括起来。 见多必括
解 (2x2 -3x + 1)+( -3x2 + 5x-7) = 2x2 -3x + 1 -3x2 + 5x-7
= (2x2 -3x2 )+(-3x + 5x)+(1-7)

整式的加减全章(经典例题)

整式的加减全章(经典例题)

整式的加减【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.。

(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;'(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念>1.指出下列各式中哪些是单项式哪些是多项式哪些是整式,,,10,,,,,,(举一反三:【变式】指出下列代数式中的单项式,并写出各单项式的系数和次数.,,,,,a-3,,,2.(2016春•新泰市期中)下列说法正确的是( )22x y +x -3a b +61xy +1x 217m n 225x x --22x x +7a 234a b -a -442x a mn 223a y π5-382-310tm ⨯2x yA .1﹣xy 是单项式B .ab 没有系数#C .﹣5是一次一项式D .﹣a 2b+ab ﹣abc 2是四次三项式举一反三:【变式1】(2014•佛山)多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .3,3B .3,2C .2,3D .2,2【变式2】若多项式31(4)5(2)n m x x x n m -++---+是关于x 的二次三项式,则________m =,________n =,这个二次三项式为 ."3. 已知多项式. (1)求多项式各项的系数和次数.(2)如果多项式是七次五项式,求m 的值.32312246753m x xy x y y x y ---+--举一反三::【变式】多项式是关于的二次三项式,求a 与b 的差的相反数.类型二、同类项及合并同类项4.判别下列各题中的两个项是不是同类项:(1)-4a 2b 3与5b 3a 2;(2)与;(3)-8和0;(4)-6a 2b 3c 与8ca 2. ·()34b a x x x b --+-x 2213x y z -2213xy z -5.(2016•邯山区一模)如果单项式5mx a y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项.求(1)(7a ﹣22)2013的值;(2)若5mx a y ﹣5nx 2a ﹣3y=0,且xy ≠0,求(5m ﹣5n )2014的值.《举一反三:【变式1】(2015•石城县模拟)如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( )A. a=2,b=3B. a=1,b=2C. a=1,b=3D. a=2,b=2;【变式2】若315212135m n m n x y x y --+-与是同类项,求出m, n 的值,并把这两个单项式相加.6.合并同类项:};;;【()221324325x x x x -++--()2222265256a b ab b a -++-()2223542625yx xy xy x y xy -+-+++举一反三:【变式1】化简:(1) (2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b)?.类型三、去(添)括号7.(2015•模拟)化简m ﹣n ﹣(m+n ) 化简2211()22x x x x ⎡⎤--+⎢⎥⎣⎦.?举一反三:【变式1】下列去括号正确的是( ). 32313125433xy x y xy x ---+A.2222--+=--+(2)2a ab b a a b bB.2222(2)()2-+--+=-++-x y x y x y x yC.22x x x x--=-+23(5)235D.3232---+-=-++-[4(13)]431a a a a a a#【变式2】(1) (x+y)2-10x-10y+25=(x+y)2-10(______)+25;(2) (a-b+c-d)(a+b-c-d)=[(a-d)+(______)][(a-d)-(______)].类型五、化简求值8.(2016春•盐城校级月考)先化简,再求值:3x2y﹣[2x2﹣(xy2﹣3x2y)﹣4xy2],其中|x|=2,y=,且xy<0.】举一反三:【变式1】当时,求多项式的值.)【变式2】若,求多项式的值.;1,2a b ==-3232399111552424ab a b ab a b ab a b --+---243(32)0a b b +++=222(23)3(23)8(23)7(23)a b a b a b a b +-+++-+【变式3】.】类型六、综合应用9. 对于任意有理数x ,比较多项式2452x x -+与2352x x --的值的大小.#举一反三:3422323323622已知与是同类项,求代数式的值a b x y xy b a b b a b +----+)【变式】设22232A x xy y x y =-+-+, 224623B x xy y x y =-++-. 若22(3)0x a y -++=且2B A a -=,求a .、【巩固练习】一、选择题1.A 、B 、C 、D 均为单项式,则A+B+C+D 为( ).A .单项式B .多项式C .单项式或多项式D .以上都不对2.下列计算正确的个数 ( )① ab b a 523=+;② 32522=-y y ; ③ y x x y y x 22254=-;④ 532523x x x =+; ⑤ xy xy xy =+-33]A .2B .1C .4D .03.现规定一种运算:a * b = ab + a - b ,其中a ,b 为有理数,则3 * 5的值为( ).A .11B .12C .13D .144.(2016春•钦州期末)﹣[x ﹣(y ﹣z )]去括号后应得( )A .﹣x+y ﹣zB .﹣x ﹣y+zC .﹣x ﹣y ﹣zD .﹣x+y+z5.已知a-b =-3,c+d =2,则(b+c)-(a-d)为( ).A .-1B .-5C .5D .16. 有理数a ,b ,c 在数轴上的位置如右图所示,则a c c b b a ++--+= ( )A .-2bB .0C .2cD .2c -2b{7.(2015•临沂)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第2015个单项式是( )A .2015x 2015B .4029x 2014C .4029x 2015D . 4031x 20158.如果32(1)n m a a --++是关于a 的二次三项式,那么m ,n 应满足的条件是( ).A .m =1,n =5B .m ≠1,n >3C .m ≠-1,n 为大于3的整数D .m ≠-1,n =5二、填空题9.(2015•大丰市一模)若﹣2a m b 4与5a 2b n+7是同类项,则m+n= .10.(1)-=+-222x y xy x (___________);(2)2a -3(b -c )=___________.(3)2561x x -+-(________)=7x+8.11.当b =________时,式子2a+ab-5的值与a 无关.12.若45a b c -+=,则30()b a c --=________.三、解答题14.已知关于x 的整式(k 2-9)x 3+(k-3)x 2-k①若是二次式,求k 2+2k +1的值 ②若是二项式,求k 的值15.(2015•宝应县校级模拟)先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2012.)。

整式的加减(2)

整式的加减(2)

2
3
= 3 x 2 y 5 xy2
2
3
例3 合并同类项:
(1)3x 2 y 2xy2 1 xy2 3 yx 2
小明的解法:
3
2
(2)3a a-b-2b2-a+b 2b2
(2)解:原式=(3a a a) (b b) (2b2 2b2 )
=a 2b
(2)错在把结合同类项时弄错了符号;

知识结构:
整式的概念 整式的加减
整式的计算
单项式 多项式
系数
次数 项,项数,常数项, 最高次项 次数
同类项与合并同类项 去括号 化简求值
用字母来表示生活中的量
定义:由__数__字__或_字__母__的__乘__积__组成的式子。 单独的_一__个__数_或_一__个__字__母_也是单项式。
单项式: 系数: 单项式中的__数_字__因__数__。 次数: 单项式中的___所_有__字__母__的__指_数__和___.
3
1、代数式中用到乘法时,若是数字与数字乘,要用“×”
若是数字与字母乘,乘号通常写成”.”或省略不写,如
3×y应写成3·y或3y,且数字与字母相乘时,字母与
字母相乘,乘号通常写成“·”或省略不写。
2、带分数与字母相乘,要写成假分数
3、代数式中出现除法运算时,一般用分数写,即用分数
线代替除号。
4、系数一般写在字母的前面,且系数“1”往往会省略;
正确的解法: (2)解:原式=(3a a a) (b b) (2b2 2b2 )
=a 4b2
总之,合并同类项现要找出式子中的同类项,并把它们写在一起, 最后合并,注意同类项的系数是带符号的。

整式的加减知识点总结及题型汇总

整式的加减知识点总结及题型汇总

整式的加减整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若 a、 b、 c、p、 q 是常数) ax2+bx+c 和 x2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:整式单项式. 多项式6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“ - ”号,括号里的各项都要变号 .9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列) . 注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列 .11.列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等. 抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了 .12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值 .13.列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多项式概念及整式加减运算
一、多项式概念:
1、概念:几个单项式的和
2、多项式的项:多项式中的每个单项式,包括它前面的符号。

3、多项式的次数:多项式中次数最高项的次数。

它与单项式的次数不同。

巩固练习:
1、分别说出下列多项式中的每一项以及这个多项式的次数。

⑴753423--+-xy y x x ⑵x 3+3x 2
y ⑶-31y 3+72xy 2+3x 2y-54x 3 2、4x 2-5x 2+7x 3-6+8x 是____次____项式,其中常数项是_____
二、多项式的排列:
多项式的排列分升幂排列和降幂排列两种
如:将3x 2y -
54x 3+72xy 2-31y 3按x 的降幂排列是____ __,按y 的降幂排列是__ ___. 巩固练习:
将-6x 3+671
xy 2+25
x 2y -25y 3. 按x 的降幂排列是____ __,按y 的降幂排列是__ ___.
三、合并同类项:
1、同类项的条件:两相同:①字母、②指数相同;
两无关:①与系数无关;②与字母顺序无关.
2、合并同类项的方法:合并同类项,系数全加上;字母和指数,全都不变样。

3、去括号:去括号法则。

例题1:下列各组单项式中,不是同类项的是( ) (A)5x
与x (B)4xy 2与-4y 2x (C)76
x 5y 与76
x 5 (D)4与-4
例题2:合并同类项
⑴=
-++-)7()35(x y y x ⑵m +n -(m -n) ⑶(2a+b+c )-2(a -b -c )
巩固练习:
1、)22()24(33xy x x yx xy +-+--
2、()[]{}y x x y x --+--32332
3、()[]x y x y x x -++--22
4、-3a 2-[-a 2+(-2a)2]-2a
4、多项式3x 2y -3xy 2加上多项式x 3-3x 2y 得( )
A.x 3+3xy 2;
B. x 3-3xy 2 ;
C.x 3-3x 2y;
D.x 3+3x 2y
5、已知A=2221
43b ab a -+,B=ab a 252
-,且2A -B+C=0,则C= 。

6、若a -b=2,a+c=6,则(2a+b+c )-2(a -b -c )= 。

7、求代数式2〔mn +(-3m)〕-3(2n -mn)的值,其中m +n=2,mn=-3.
8、一个多项式减去235m mn +得mn n 422--,求这个多项式。

相关文档
最新文档