2013年全国卷数学试题及答案(理)
2013年普通高等学校招生全国统一考试(全国大纲卷)数学试题 (理科) word解析版

绝密★启用前2013年普通高等学校招生全国统一考试数学(理科)(全国大纲卷)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ).A .3B .4C .5D .6 答案:B解析:由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素.故选B.2.(2013大纲全国,理2)3=( ).A .-8B .8C .-8iD .8i 答案:A解析:323=13=8-.故选A.3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-1 答案:B解析:由(m +n )⊥(m -n )⇒|m |2-|n |2=0⇒(λ+1)2+1-[(λ+2)2+4]=0⇒λ=-3.故选B.4.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭C .(-1,0)D .1,12⎛⎫ ⎪⎝⎭答案:B解析:由题意知-1<2x +1<0,则-1<x <12-.故选B.5.(2013大纲全国,理5)函数f (x )=21log 1x ⎛⎫+⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x ≠0) C .2x -1(x ∈R ) D .2x -1(x >0) 答案:A解析:由题意知11+x=2y ⇒x =121y -(y >0),因此f -1(x )=121x-(x >0).故选A.6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43-,则{a n }的前10项和等于( ). A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10)答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C.7.(2013大纲全国,理7)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ). A .56 B .84 C .112 D .168 答案:D解析:因为(1+x )8的展开式中x 2的系数为28C ,(1+y )4的展开式中y 2的系数为24C ,所以x 2y 2的系数为2284C C 168=.故选D.8.(2013大纲全国,理8)椭圆C :22=143x y +的左、右顶点分别为A 1,A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( ).A .13,24⎡⎤⎢⎥⎣⎦B .33,84⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .3,14⎡⎤⎢⎥⎣⎦答案:B解析:设P 点坐标为(x 0,y 0),则2200=143x y +, 2002PA y k x =-,1002PA y k x =+,于是12220222003334244PA PA x y k k x x -⋅===---. 故12314PA PA k k =-.∵2PA k ∈[-2,-1], ∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B.9.(2013大纲全国,理9)若函数f (x )=x 2+ax +1x 在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ). A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)答案:D解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D.10.(2013大纲全国,理10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23B.3 C.3 D .13答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11=CH BD CH C O BD C O O ⊥⎫⎪⊥⎬⎪⎭CH ⊥平面C 1BD , ∴∠HDC 为CD 与平面BDC 1所成的角.设AA 1=2AB =2,则==22AC OC,1C O =由等面积法,得C 1O ·CH =OC ·CC 1,即222CH ⋅⋅=, ∴2=3CH . ∴sin ∠HDC =223==13HC DC .故选A.11.(2013大纲全国,理11)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若0MA MB ⋅=,则k =( ).A .12B.2 CD .2答案:D解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k 2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k(+),x 1x 2=4.① 由112222y k x y k x =(-)⎧⎨=(-)⎩121221212124,[24].y y k x x k y y k x x x x +=(+)-⎧⎨=-(+)+⎩①② ∵0MA MB ⋅=,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0,即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D.12.(2013大纲全国,理12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ).A .y =f (x )的图像关于点(π,0)中心对称B .y =f (x )的图像关于直线π=2x 对称 C .f (x )D .f (x )既是奇函数,又是周期函数 答案:C解析:由题意知f (x )=2cos 2x ·sin x =2(1-sin 2x )sin x . 令t =sin x ,t ∈[-1,1], 则g (t )=2(1-t 2)t =2t -2t 3. 令g ′(t )=2-6t 2=0,得=t ±. 当t =±1时,函数值为0;当t =;当3t =时,函数值为9.∴g (t )max,即f (x ).故选C.二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,理13)已知α是第三象限角,sin α=13-,则cot α=__________.答案:解析:由题意知cos α=3==-. 故cot α=cos sin αα14.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.(用数字作答)答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种).15.(2013大纲全国,理15)记不等式组0,34,34x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是__________.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示.∵直线y =a (x +1)过定点C (-1,0),由图并结合题意可知12BC k =,k AC =4, ∴要使直线y =a (x +1)与平面区域D 有公共点, 则12≤a ≤4.16.(2013大纲全国,理16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于__________. 答案:16π解析:如下图,设MN 为两圆的公共弦,E 为MN 的中点,则OE ⊥MN ,KE ⊥MN ,结合题意可知∠OEK =60°. 又MN =R ,∴△OMN 为正三角形.∴OER . 又OK ⊥EK ,∴32=OE ·sin 60°R ∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n }的前n 项和为S n .已知S 3=22a ,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.解:设{a n }的公差为d .由S 3=22a 得3a 2=22a ,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得22S =S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.18.(2013大纲全国,理18)(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac .(1)求B ;(2)若sin A sin C=14,求C . 解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-,因此B=120°.(2)由(1)知A+C=60°,所以cos(A-C)=cos A cos C+sin A sin C=cos A cos C-sin A sin C+2sin A sin C=cos(A+C)+2sinA sin C=1+22=,故A-C=30°或A-C=-30°,因此C=15°或C=45°.19.(2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△P AB和△P AD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的大小.(1)证明:取BC的中点E,连结DE,则ABED为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OE.由△P AB和△P AD都是等边三角形知P A=PB=PD,所以OA=OB=OD,即点O为正方形ABED对角线的交点,故OE⊥BD,从而PB⊥OE.因为O是BD的中点,E是BC的中点,所以OE∥CD.因此PB⊥CD.(2)解法一:由(1)知CD⊥PB,CD⊥PO,PB∩PO=P,故CD⊥平面PBD.又PD⊂平面PBD,所以CD⊥PD.取PD的中点F,PC的中点G,连结FG,则FG∥CD,FG⊥PD.连结AF,由△APD为等边三角形可得AF⊥PD.所以∠AFG为二面角A-PD-C的平面角.连结AG,EG,则EG∥PB.又PB⊥AE,所以EG⊥AE.设AB=2,则AE=EG=12PB=1,故AG3.在△AFG中,FG=12CD=,AF=AG=3,所以cos∠AFG=22223 FG AF AGFG AF+-=-⨯⨯.因此二面角A-PD-C的大小为πarccos3-解法二:由(1)知,OE,OB,OP两两垂直.以O为坐标原点,OE的方向为x轴的正方向建立如图所示的空间直角坐标系O-xyz.设|AB|=2,则A(0,0),D(0,,0),C(0),P(0,0).PC =(2,2-),=(0,,). AP =,0),AD =,0).设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1·PC =(x,y ,z )·(,)=0,n 1·PD =(x ,y ,z )·(0,,=0, 可得2x -y -z =0,y +z =0.取y =-1,得x =0,z=1,故n 1=(0,-1,1). 设平面P AD 的法向量为n 2=(m ,p ,q),则n 2·AP =(m ,p ,q ,0)=0,n 2·AD =(m ,p ,q ,,0)=0,可得m +q =0,m -p =0. 取m =1,得p =1,q =-1,故n 2=(1,1,-1).于是cos〈n 1,n 2〉=1212||||=·n n n n . 由于〈n 1,n 2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C 的大小为πarccos3-20.(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X 表示前4局中乙当裁判的次数,求X 的数学期望. 解:(1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”. 则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14. (2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B 3表示事件“第3局乙参加比赛时,结果为乙负”.则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)·P (A 3)=18,P (X =2)=P (1B ·B 3)=P (1B )P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1151848--=,EX =0·P (X =0)+1·P (X =1)+2·P (X =2)=98.21.(2013大纲全国,理21)(本小题满分12分)已知双曲线C :2222=1x y a -(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C .(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF2|,|AB |,|BF 2|成等比数列.(1)解:由题设知c a=3,即222a b a +=9,故b 2=8a 2. 所以C 的方程为8x 2-y 2=8a 2.将y=2代入上式,求得x=由题设知,=a2=1.所以a=1,b=(2)证明:由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8.①由题意可设l的方程为y=k(x-3),k(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=2268kk-,x1·x2=22988kk+-.于是|AF1|==-(3x1+1),|BF1|3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=2 3 -.故226283kk=--,解得k2=45,从而x1·x2=199-.由于|AF2|==1-3x1,|BF2|3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16. 因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f(x)=1ln(1+)1x xxxλ(+)-+.(1)若x≥0时,f(x)≤0,求λ的最小值;(2)设数列{a n}的通项111=1+23nan+++,证明:a2n-a n+14n>ln 2.(1)解:由已知f(0)=0,f′(x)=22121x xxλλ(-)-(+),f′(0)=0.若12λ<,则当0<x<2(1-2λ)时,f′(x)>0,所以f(x)>0.若12λ≥,则当x>0时,f′(x)<0,所以当x>0时,f(x)<0.综上,λ的最小值是1 2 .(2)证明:令12λ=.由(1)知,当x>0时,f(x)<0,即2ln(1) 22x xxx(+)>++.取1xk=,则211>ln21k kk k k++(+).于是212111422(1)nn nk na an k k-=⎡⎤-+=+⎢⎥+⎣⎦∑=2121211ln21n nk n k nk kk k k--==++>(+)∑∑=ln 2n-ln n=ln 2.所以21ln 24n n a a n-+>.。
2013年江西高考数学理科试卷(带详解)

2013年普通高等学校招生全国统一考试(江西卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,i M z =,i 为虚数单位,{}{}3,4,4N M N == ,则复数z =( )A.2i -B.2iC.4i -D.4i 【测量目标】集合的基本运算和复数的四则运算 【考查方式】利用并集运算、复数的乘法运算求解. 【难易程度】容易 【参考答案】C【试题解析】{}{}1,2,i ,3,4,M z N == 由{}4,M N = 得4,i=4,M z ∈∴4i.z =- 2.函数)y x =-的定义域为( )A.(0,1)B.[0,1)C.(0,1]D.[0,1]【测量目标】函数的定义域.【考查方式】利用根式和对数函数有意义的条件求解. 【难易程度】容易 【参考答案】B【试题解析】由00110x x x ⎧⇒<⎨->⎩…….3.等比数列,33,66x x x ++, 的第四项等于 ( )A.24-B.0C.12D.24【测量目标】等比数列性质.【考查方式】利用等比中项和等比数列的特点求解. 【难易程度】容易 【参考答案】A【试题解析】由2(33)(66)1x x x x +=+⇒=-或3x =-,(步骤1) 当1x =-时,330x +=,故舍去,(步骤2)所以当3x =-,则等比数列的前3项为3,6,12---,故第四项为24-.(步骤3)4.总体有编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号【测量目标】简单的随机抽样.【考查方式】利用随机抽样方法中随机数表的应用求解. 【难易程度】容易 【参考答案】D 【试题解析】依题意,第一次得到的两个数为65,6520>,将它去掉;第二次得到的两个数为72,由于7220>,将它去掉;第三次得到的两个数字为08,由于0820<,说明号码08在总体内,将它取出;继续向右读,依次可以取出02,14,07,02;但由于02在前面已经选出,故需要继续选一个,再选一个数就是01,故选出来的第五个个体是01. 5.2532()x x-展开式中的常数项为 ( )A.80B.-80C.40D.40-【测量目标】二项式定理.【考查方式】利用二项展开式的通项公式求解.【难易程度】容易 【参考答案】C【试题解析】展开式的通项为2510515532C ()()(2)C rrr r r r r T x x x --+=-=-, 令10502r r -=⇒=,故展开式的常数项为225(2)C 40-=.6.若22221231111,,e ,x S x dx S dx S dx x ===⎰⎰⎰则123,,S S S 的大小关系为( )A.123S S S <<B.213S S S <<C.231S S S <<D.321S S S <<【测量目标】定积分的几何意义.【考查方式】利用定积分的求法比较三个的大小来求解. 【难易程度】中等 【参考答案】B 【试题解析】32222212311122271,ln ln 2,e e e e 11133x x x S x dx S dx x S dx x =========-⎰⎰⎰,显然213S S S <<7.阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为( )第7题图A.22S i =-B.21S i =-C.2S i =D.24S i =+ 【测量目标】循环结构的程序框图.【考查方式】根据程序框图表示的算法对i 的取值进行验证. 【难易程度】中等 【参考答案】C【试题解析】当2i =时,22510;S =⨯+=<当3i =时,仍然循环,排除D;当4i =时,241910S =⨯+=< 当5i =时,不满足10,S <即此时10S …输出i .(步骤1)此时A 项求得2528,S =⨯-=B 项求得2519,S =⨯-=C 项求得2510,S =⨯=故只有C 项满足条件. (步骤2)8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线,CE EF 相交的平面个数分别记为,m n ,那么m n += ( )第8题图A.8B.9C.10D.11 【测量目标】线面平行的判定.【考查方式】利用线面平行,线面相交的判断及空间想象力求解. 【难易程度】中等 【参考答案】A【试题解析】直线CE 在正方体的下底面内,与正方体的上底面平行;与正方体的左右两个侧面,前后两个侧面都相交,故4m =;(步骤1)作CD 的中点G ,显然易证平面EFG 的底边EG 上的高线与正方体的前后两个侧面平行,故直线EF 一定与正方体的前后两个侧面相交;另外,直线EF 显然与正方体的上下两个底面相交;综上,直线EF 与正方体的六个面所在的平面相交的平面个数为4,故4n =,所以8m n +=.(步骤2)9.过点引直线l 与曲线y =,A B 两点,O 为坐标原点,当AOB △的面积取最大值时,直线l 的斜率等于 ( )A.3 B.3- C.3± D.【测量目标】直线与圆的位置关系.【考查方式】利用角形的面积,点到直线的距离公式,三角函数的最值求解. 【难易程度】中等 【参考答案】B【试题解析】因为AOB △的面积在π2AOB ∠=时,取得最大值.设直线l 的斜率为k ,则直线l 的方程为(y k x =,即0kx y -=,(步骤1)由题意,曲线y =O 到直线l 的距离为π1sin4⨯=,23k =⇒=(舍去),或k =.(步骤2) 10.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线,12,l l 之间1l l ,l 与半圆相交于,F G 两点,与三角形ABC 两边相交于,E D 两点,设弧 FG 的长为(0π)x x <<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图象大致是( )第10题图A B C D 【测量目标】函数图象的判断.【考查方式】利用函数的图象、扇形弧长、三角函数,以及数形结合的数学思想求解. 【难易程度】较难 【参考答案】D【试题解析】连接OF ,OG ,过点O 作,OM FG ⊥过点A 作AH BC ⊥,交DE 于点N .因为弧 FG的长度为x ,所以,FOG x ∠=则cos,2x AN OM ==所以cos ,2AN AE x AH AB ==则,2xAE =.2x EB ∴=2x y EB BC CD ∴=++=π)2xx =+<< 第Ⅱ卷 二、填空题:本大题共4小题,每小题5分,共20分.11.函数2sin2y x x =+的最小正周期为T 为 . 【测量目标】三角函数的周期.【考查方式】利用三角恒等变换求解三角函数的最小周期. 【难易程度】容易 【参考答案】π【试题解析】2πsin 2sin sin 2cos 22sin(233y x x x x x =+==-,故最小正周期为2ππ2T ==. 12.设1e ,2e 为单位向量.且1e ,2e 的夹角为π3,若123=+a e e ,12=b e ,则向量a 在b 方向上的射影为 ___________.【测量目标】平面向量的数量积运算.【考查方式】利用向量的投影,向量的数量积运算求解. 【难易程度】容易 【参考答案】52【试题解析】121(3)2||cos ||||||||2θ+===e e e a b a b a a a b b2112π2611cos 2653.222+⨯⨯⨯+=== e e e 13.设函数()f x 在(0,)+∞内可导,且(e )e x x f x =+,则(1)f '= .【测量目标】导数的运算.【考查方式】利用导数的运算,函数解析式的求解,以及转化与化归的数学思想求解. 【难易程度】中等 【参考答案】2【试题解析】由1(e )e ()ln (0)()1(0)xxf x f x x x x f x x x'=+⇒=+>⇒=+>,故(1)2f '=. 14.抛物线22(0)x py p =>的焦点为F ,其准线与双曲线22133x y -=相交于,A B 两点,若ABF △为等边三角形,则p = .【测量目标】直线与双曲线位置关系.【考查方式】利用抛物线与双曲线的简单性质,等边三角形的特征求解. 【难易程度】中等 【参考答案】6【试题解析】不妨设点A 在左方,AB 的中点为C ,则易求得点(0,),2pF (),2pA -)2pB -.(步骤1)因为ABF △为等边三角形,所以由正切函数易知tan 606FCp CB==⇒= . (步骤2)三、选做题:请在下列两题中任选一题作答,若两题都做,则按第一题评阅计分,本题共5分 15.(1).(坐标系与参数方程选做题)设曲线C 的参数方程为2x t y t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 . 【测量目标】极坐标与参数方程.【考查方式】利用参数方程、直角坐标系方程和极从标的互化. 【难易程度】容易【参考答案】2cos sin 0ρθθ-=【试题解析】由曲线C 的参数方程为2,x t y t ==(t 为参数), 得曲线C 的直角坐标系方程为2x y =,(步骤1) 又由极坐标的定义得,2(cos )sin ρθρθ=,即化简曲线C 的极坐标方程为2cos sin 0ρθθ-=.(步骤2)(2).(不等式选做题)在实数范围内,不等式211x --…的解集为 . 【测量目标】解绝对值不等式.【考查方式】利用绝对值不等式的解法,结合绝对值的性质求解. 【难易程度】容易 【参考答案】[]0,4【试题解析】||2|1|11|2|110|2|222204x x x x x --⇒---⇒-⇒--⇒剟剟剟剟?.四、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为,,a b c ,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若1a c +=,求b 的取值范围 【测量目标】两角和与差的正余弦,余弦定理.【考查方式】给出相关信息,利用两角和的余弦函数,余弦定理求解. 【难易程度】中等【试题解析】(1)由已知得cos()cos cos cos 0A B A B A B -++=即有sin sin cos 0A B A B = (步骤1)因为sin 0A ≠,所以sin 0B B =,又cos 0B ≠,所以tan B =又0πB <<,所以π3B ∠=.(步骤2) (2)由余弦定理,有2222cos b a c ac B =+-.(步骤3)因为11,cos 2a c B +==,有22113()24b a =-+.又01a <<,于是有2114b <…,即有112b <….(步骤4)17.(本小题满分12分)正项数列{}n a 的前n 项和n S 满足:222(1)()0n n S n n S n n -+--+=(1)求数列{n a }的通项公式n a ; (2)令221(2)n n b n a+=+,数列{n b }的前n 项和为n T .证明:对于任意的*n ∈N ,都有564n T <【测量目标】数列的通项公式与前n 项和n S 的关系,裂项求和法.【考查方式】利用数列通项公式的求法和数列的求和,裂项求和法求出其前n 项和,通过放缩法证明. 【难易程度】中等【试题解析】(1)由222(1)()0n n S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+.(步骤1)于是112,2a S n ==…时,221(1)(1)2n n n a S S n n n n n -=-=+----=. 综上,数列{}n a 的通项2n a n =.(步骤1) (2)证明:由于2212,(2)n n nn a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦.(步骤3) 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦ (22221111)1151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦.(步骤4) 18.(本小题满分12分)小波以游戏方式决定参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从12345678,,,,,,,,A A A A A A A A (如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若0X =就参加学校合唱团,否则就参加学校排球队. (1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.第18题图【测量目标】古典概型,离散型随机变量分布列和期望.【考查方式】利用组合数的公式、向量数量积运算、古典概型概率等求解. 【难易程度】中等【试题解析】(1)从8个点中任意取两点为向量终点的不同取法共有28C 28=种,当0X =时,两向量夹角为直角共有8种情形,所以小波参加学校合唱团的概率为82(0)287P X ===.(步骤1) (2)两向量数量积X 的所有可能取值为2,1,0,1,2X --=-时,有两种情形;1X =时,有8种情形;1X =-时,有1(2)+(1)01.14147714EX =-⨯-⨯+⨯+⨯=-(步骤2)19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥平面,ABCD E 为BD 的中点,G 为PD 的中点,3,12DAB DCB EA EB AB PA ====△≌△,,连接CE 并延长交AD 于F . (1)求证:AD CFG ⊥平面;(2)求平面BCP 与平面DCP 的夹角的余弦值.第19题图【测量目标】线面垂直的判定,二面角,空间直角坐标系,空间向量及运算. 【考查方式】利用线面垂直的定理求解,通过建系求二面角的平面角的余弦值. 【难易程度】中等 【试题解析】(1)在ABD △中,因为E 是BD 的中点,所以1EA EB ED AB ====,故ππ,23BAD ABE AEB ∠=∠=∠=,(步骤1) 因为DAB DCB △≌△,所以EAB ECB △≌△, 从而有FED FEA ∠=∠,(步骤2)故,EF AD AF FD ⊥=,又因为,PG GD =所以FG PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG .(步骤3)(2)以点A 为坐标原点建立如图所示的坐标系,则3(0,0,0),(1,0,0),(2A B C D,第19题(2)图3(0,0,)2P ,故1333(0),(),(,2222222BC CP CD ==--=- ,, (步骤4)设平面BCP 的法向量111(1,,)y z =n,则111102233022y y z ⎧+=⎪⎪⎨⎪--+=⎪⎩ ,解得1123y z ⎧=⎪⎪⎨⎪=⎪⎩,即12(1,,)33=-n .(步骤5)设平面DCP 的法向量222(1,,)y z =n,则222302330222y y z ⎧-+=⎪⎪⎨⎪--+=⎪⎩,解得222y z ⎧=⎪⎨=⎪⎩,(步骤6)即2(1=n .从而平面BCP 与平面DCP的夹角的余弦值为12124cos θ=== n n n n (步骤7)20. (本小题满分13分)如图,椭圆2222+=1(>>0)x y C a b a b:经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x .(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=k k k λ?若存在求λ的值;若不存在,说明理由.第20题图【测量目标】椭圆的方程,直线与椭圆的位置关系. 【考查方式】利用椭圆方程的方法及直线的斜率求解. 【难易程度】较难【试题解析】(1)由3(1,)2P 在椭圆上得,221914a b += ① 依题设知2a c =,则223b c =. ②(步骤1) ②代入①解得2221,4,3c a b ===.故椭圆C 的方程为22143x y +=.(步骤2) (2)方法一:由题意可设AB 的斜率为k , 则直线AB 的方程为(1)y k x =- ③代入椭圆方程223412x y +=并整理,得2222(43)84(3)0k x k x k +-+-=,(步骤3) 设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k -+==++ ④(步骤4)在方程③中令4x =得,M 的坐标为(4,3)k .从而121231233331222,,11412y y k k k k k x x ---====----. 注意到,,A F B 共线,则有AF BF k k k ==,即有121211y y k x x ==--.所以1212121212123331122()1111212y y y y k k x x x x x x --+=+=+-+------ 121212232.2()1x x k x x x x +-=--++ ⑤(步骤5)④代入⑤得22122222823432214(3)8214343k k k k k k k k k k -++=-=---+++ , 又312k k =-,所以1232k k k +=.故存在常数2λ=符合题意. (步骤6)方法二:设000(,)(1)B x y x ≠,则直线FB 的方程为:00(1)1y y x x =--,令4x =,求得003(4,)1y M x -,从而直线PM 的斜率为0030212(1)y x k x -+=-,(步骤3)联立0022(1)1143y y x x x y ⎧=-⎪-⎪⎨⎪+=⎪⎩ ,得0000583(,)2525x y A x x ---,(步骤4) 则直线PA 的斜率为:00102252(1)y x k x -+=-,直线PB 的斜率为:020232(1)y k x -=-,所以00000123000225232122(1)2(1)1y x y y x k k k x x x -+--++=+==---,(步骤5) 故存在常数2λ=符合题意. (步骤6)21. (本小题满分14分)已知函数1()=(12)2f x a x --,a 为常数且>0a . (1)证明:函数()f x 的图象关于直线1=2x 对称;(2)若0x 满足00(())=f f x x ,但00()f x x ≠,则称0x 为函数()f x 的二阶周期点,如果()f x 有两个二阶周期点12,,x x 试确定a 的取值范围;(3)对于(2)中的12,x x 和a , 设3x 为函数()()ff x 的最大值点,()()()1,,A x f f x()()()()223,,,0.B x f f x C x 记ABC △的面积为()S a ,讨论()S a 的单调性.【测量目标】函数单调性的综合应用.【考查方式】利用函数的对称性,解方程,导数的应用及函数单调性求解. 【难易程度】较难【试题解析】(1)证明:因为11()(12),()(12),22f x a x f x a x +=--=- 有11()()22f x f x +=-,(步骤1)所以函数()f x 的图象关于直线12x =对称. (步骤2) (2)当102a <<时,有224,(())4(1),a x f f x a x ⎧⎪=⎨-⎪⎩1,21.2x x >…所以(())f f x x =只有一个解0x =,又(0)0f =,故0不是二阶周期点. (步骤3)当12a =时,有1,2(()).11,2x x f f x x x ⎧⎪⎪=⎨⎪->⎪⎩… 所以(())f f x x =有解集1|2x x ⎧⎫⎨⎬⎩⎭…,又当12x …时,()f x x =,故1|2x x ⎧⎫⎨⎬⎩⎭…中的所有点都不是二阶周期点.(步骤4)当12a >时,有2222214,41124,42(()).1412(12)4,244144,4a x x a a a x x a f f x a a a a x x a a a a x x a ⎧⎪⎪⎪-<⎪=⎨-⎪-+<⎪⎪-⎪->⎩……… 所以(())f f x x =有四个解2222240,,,141214a a a a a a +++,(步骤5)又22(0)0,()1212a af f a a==++, 22222244(),()14141414a a a a f f a a a a ≠≠++++,故只有22224,1414a a a a ++是()f x 的二阶周期点.(步骤6) 综上所述,所求a 的取值范围为12a >.(步骤7)(3)由(2)得2122224,1414a a x x a a ==++,因为3x 为函数(())f f x 的最大值点,所以314x a =或3414a x a-=.(步骤8)当314x a =时,221()4(14)a S a a -=+.求导得:22112(22()(14)a a S a a ---'=-+,所以当1(2a ∈时,()S a单调递增,当)a ∈+∞时()S a 单调递减;(步骤9)当3414a x a -=时,22861()4(14)a a S a a -+=+,求导得:2221243()2(14)a a S a a +-'=+,因12a>,从而有2221243()02(14)a aS aa+-'=>+,(步骤10)所以当1(,)2a∈+∞时()S a单调递增. (步骤11)。
2013年北京高考数学理科试卷(带详解)

2013年普通高等学校招生全国统一考试(北京卷)数学(理)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上答无效.考试结束后,将本卷和答题卡一并交回.第一部分 (选择题 共40分)一、选择题共8小题.每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合{1,0,1}A =-,{|11}B x x =-<…,则A B = ( )A.{0}B.{1,0}-C.{0,1}D.{1,0,1}-【测量目标】集合的基本运算.【考查方式】给出两个集合求两者交集. 【难易程度】容易 【参考答案】B【试题解析】{-1,0,1} {x |-1…x <1}={-1,0}.2.在复平面内,复数2(2i)-对应的点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【测量目标】复数代数形式的四则运算,复平面.【考查方式】给出复数的代数形式先化简再判断该复数对应的点所在的复平面. 【难易程度】容易 【参考答案】D【试题解析】∵(2-i)2=3-4i ,∴该复数对应的点位于第四象限,故选D.3.“πϕ=”是“sin(2)y x ϕ=+过坐标原点”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【测量目标】四种命题及其之间的关系.【考查方式】给出两个命题判断其之间的关系. 【难易程度】容易 【参考答案】A【试题解析】∵φ=π,∴y =sin(2x +π)=-sin 2x , ∴曲线过坐标原点,故充分性成立;(步骤1)∵y =sin(2x +φ)过原点,∴sin φ=0,∴φ=k π,k ∈Z . (步骤2) 故必要性不成立.故选A. 4.执行如图所示的程序框图,输出的S 值为 ( )第4题图 JC93A.1B.23C.1321D.610987【测量目标】循环结构的程序框图.【考查方式】阅读题中所给的循环结构的程序框图,运行并得出所需结果. 【难易程度】容易 【参考答案】C【试题解析】依次执行的循环为S =1,i =0;23S =,i =1;1321S =,i =2.故选C. 5.函数()f x 的图象向右平移1个单位长度,所得图象与曲线e x y =关于y 轴对称,则()f x =( )A.1ex + B.1ex - C.1ex -+ D.1ex --【测量目标】指数函数的图象及其性质.【考查方式】给出函数的图像进过平移所得与另一函数图像关于轴对称求原函数的解析式. 【难易程度】容易 【参考答案】D【试题解析】依题意,f (x )向右平移1个单位之后得到的函数应为y =e x -,于是f (x )相当于y=e x-向左平移1个单位的结果,∴f (x )=1ex --,故选D.6.若双曲线22221x y a b-=则其渐近线方程为 ( )A.2y x =±B.y =C.12y x =±D.2y x =± 【测量目标】双曲线的简单几何性质.【考查方式】已知双曲线的离心率求解双曲线的渐近线方程. 【难易程度】容易 【参考答案】Bc ,∴b .∴渐近线方程为by x a=±=,故选B.7.直线l 过抛物线2:4C x y =的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43B.2C.83【测量目标】直线与抛物线的位置关系及抛物线的简单几何性质.【考查方式】已知直线与抛物线的位置关系求解直线与抛物线所围面积. 【难易程度】容易 【参考答案】C【试题解析】由题意可知,l 的方程为y =1.如图,B 点坐标为(2,1),∴所求面积S =4-2202d 4x x ⎰=4-3202|12x ⎛⎫ ⎪⎝⎭=83,故选C.第7题图 JC1008.设关于,x y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点00(,)P x y ,满足0022x y -=,求得m 的取值范围是 ( ) A.4(,)3-∞ B.1(,)3-∞C.2(,)3-∞-D.5(,)3-∞-【测量目标】判断不等式组表示的平面区域.【考查方式】给出一个不等式组求在其所表示的平面区域内的点所满足的方程的未知参数. 【难易程度】中等 【参考答案】C【试题解析】图中阴影部分表示可行域,要求可行域内包含y =12x -1上的点,只需要可行域的边界点(-m ,m )在y =12x -1下方,也就是m <12-m -1,即23m <-.故选C.第8题图 JC101第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分.9.在极坐标系中,点π(2,)6到直线sin 2ρθ=的距离等于_____. 【测量目标】极坐标系,点到直线的距离.【考查方式】直接求极坐标系中的点到直线的距离. 【难易程度】中等 【参考答案】1【试题解析】在极坐标系中,点π2,6⎛⎫⎪⎝⎭对应直角坐标系中坐标为1),直线ρsin θ=2对应直角坐标系中的方程为y =2,所以点到直线的距离为1.10.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q =__________;前n 项n S =_____.【测量目标】等比数列的性质及其前n 项和.【考查方式】已知等比数列中项之间的关系求解其公比与及其前n 项和. 【难易程度】中等 【参考答案】2 12n +-2【试题解析】由题意知352440220a a q a a +===+.由a 2+a 4=a 2(1+q 2)=a 1q (1+q 2)=20,∴a 1=2.∴S n =21212n (-)-=12n +-2.11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若3PA =,:9:16PD DB =,则PD =__________,AB =__________.第11题图 JC94【测量目标】切割线定理.【考查方式】给出圆与有关该圆的某些直线,运用切割线定理求解线段的长度. 【难易程度】容易 【参考答案】954【试题解析】设PD =9k ,则DB =16k (k >0).由切割线定理可得,P A 2=PD PB , 即32=9k 25k ,可得15k =.∴PD =95,PB =5. 在Rt △APB 中,AB=4.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________.【测量目标】排列组合的实际应用.【考查方式】运用排列组合的相关性质求解实际问题. 【难易程度】容易 【参考答案】96(种)【试题解析】连号有4种情况,从4人中挑一人得到连号参观券,其余可以全排列,则不同的分法有4×1343C A =96(种).13.向量,,a b c 在正方形网格中的位置如图所示,若λμ=+c a b (,)λμ∈R ,则λμ=__________.第13题图 JC95【测量目标】平面向量的数量积的综合应用.【考查方式】已知平面向量之间的关系求解未知量. 【难易程度】容易 【参考答案】4【试题解析】可设a =-i +j ,i ,j 为单位向量且i ⊥j ,则b =6i +2j ,c =-i -3j , (步骤1由c =λa +μb =(6μ-λ)i +(λ+2μ)j ,∴6123,μλλμ-=-⎧⎨+=-⎩,解得21.2λμ=-⎧⎪⎨=-⎪⎩,∴4λμ=.(步骤2) 14.如图,在棱长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在线段1D E 上,点P 到直线1CC 的距离的最小值为__________.第14题图 JC96【测量目标】立体几何体中点到直线的距离.【考查方式】已知几何体中点与线之间的关系求解点到直线的距离. 【难易程度】中等【试题解析】过E 点作EE 1垂直底面A 1B 1C 1D 1,交B 1C 1于点E 1,连接D 1E 1,过P 点作PH 垂直于底面A 1B 1C 1D 1,交D 1E 1于点H ,P 点到直线CC 1的距离就是C 1H ,故当C 1H 垂直于D 1E 1时,P 点到直线CC 1距离最小,此时,在Rt △D 1C 1E 1中,C 1H ⊥D 1E 1,D 1E 1 C 1H =C 1D 1C 1E 1,∴C 1H=第14题图 JC97三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)在ABC △中,3a =,b =2B A ∠=∠. (Ⅰ)求cos A 的值; (Ⅱ)求c 的值.【测量目标】正弦定理,解三角形.【考查方式】已知三角形中的角与边运用正弦定理求解未知的角与边. 【难易程度】容易【试题解析】(Ⅰ)因为a =3,b =B =2∠A ,所以在△ABC 中,由正弦定理得3sin sin 2A A=.所以2sin cos sin 3A A A =.故cos A =3(步骤1)(Ⅱ)由(Ⅰ)知,cos A =3sin A 3=.(步骤2)又因为∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B 3=.(步骤3)在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B .所以c =sin sin a CA=5. (步骤4)16.(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.第16题图 JC113(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【测量目标】离散型随机变量的分布列,期望和方差;用样本数字特征估计总体数字特征. 【考查方式】运用概率的相关知识提取实际问题中的关键要素构成分布列求其数学期望并解答.【难易程度】中等【试题解析】(Ⅰ)设i A 表示事件“此人于3月i 日到达该市”(i =1,2,…,13). 根据题意,P (i A )=113,且i j A A =∅(i ≠j ). 设B 为事件“此人到达当日空气重度污染”,则B =58A A . 所以P (B )=P (58A A )=P (5A )+P (8A )=213.(步骤1) (Ⅱ)由题意可知,X 的所有可能取值为0,1,2,且P (X =1)=()()()()()3671136711413P A A A A P A P A P A P A =+++= , P (X =2)=()()()()()121213121213413P A A A A P A P A P A P A =+++=P (X =0)=1-P (X =1)-P (X =2)=513.所以X 的分布列为:2)故X 的期望EX =0×513+1×413+2×413=1213.(步骤3) (Ⅲ)从3月5日开始连续三天的空气质量指数方差最大.17.(本小题共14分)如图,在三棱柱111ABC A B C -中,11AAC C 是边长为4的正方形.平面ABC ⊥平面11AAC C ,3AB =,5BC =. (Ⅰ)求证:1AA ⊥平面ABC ;(Ⅱ)求二面角111A BC B --的余弦值;(Ⅲ)证明:在线段1BC 上存在点D ,使得1AD A B ⊥,并求1BDBC 的值.第17题图 JC98【测量目标】线面垂直,异面直线所成的角,线线垂直的判断.【考查方式】运用线面垂直的相关判定求解线面垂直与异面直线所成的角. 【难易程度】中等【试题解析】(Ⅰ)因为11AAC C 为正方形,所以1AA AC ⊥. 因为平面ABC ⊥平面11AAC C ,且1AA 垂直于这两个平面的交线AC , 所以1AA ⊥平面ABC . (步骤1) (Ⅱ)由(1)知1AA ⊥AC ,1AA ⊥AB .由题知AB =3,BC =5,AC =4,所以AB ⊥AC . (步骤2) 如图,以A 为原点建立空间直角坐标系A -xyz , 则B (0,3,0),1A (0,0,4),1B (0,3,4),1C (4,0,4).设平面11A BC 的法向量为n =(x ,y ,z ),则1110,0,A B A C ⎧=⎪⎨=⎪⎩ n n 即340,40.y z x -=⎧⎨=⎩ 令z =3,则x =0,y =4,所以n =(0,4,3). 同理可得,平面11B BC 的法向量为m =(3,4,0).(步骤3)所以cos 〈n ,m 〉=16||||25= n m n m .(步骤4)由题知二面角111A BC B --为锐角,所以二面角111A BCB --的余弦值为1625.(步骤5)第17题(Ⅱ)图 JC99(Ⅲ)设D (x ,y ,z )是直线1BC 上一点,且BD =λ1BC ,所以(x ,y -3,z )=λ (4,-3,4). 解得x =4λ,y =3-3λ,z =4λ.所以AD=(4λ,3-3λ,4λ).(步骤6) 由AD 1A B =0,即9-25λ=0,解得925λ=. 因为925∈[0,1],所以在线段1BC 上存在点D ,使得AD ⊥1A B .此时,1925BD BC λ==.(步骤7) 18.(本小题共13分)设l 为曲线ln :xC y x=在点(1,0)处的切线. (Ⅰ)求l 的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C 在直线l 的下方. 【测量目标】利用导数求直线方程,导数的几何意义.【考查方式】已知直线是另一曲线在某点处的切线,求解直线方程. 【难易程度】中等【试题解析】(Ⅰ)设()ln x f x x =,则()21ln xf x x -'=.所以()11f '=. 所以l 的方程为y =x -1.(步骤1)(Ⅱ)令g (x )=x -1-f (x ),则除切点之外,曲线C 在直线l 的下方等价于g (x )>0(∀x >0,x ≠1).(步骤2)g (x )满足g (1)=0,且()g x '=1-()f x '=221ln x x x -+.当0<x <1时,2x -1<0,ln x <0,所以()g x '<0,故g (x )单调递减;当x >1时,2x -1>0,ln x >0,所以()g x '>0,故g (x )单调递增.所以,g (x )>g (1)=0(∀x >0,x ≠1). (步骤3) 所以除切点之外,曲线C 在直线l 的下方.(步骤4)19.(本小题共14分)已知A ,B ,C 是椭圆22:14x W y +=上的三个点, O 为坐标原点. (Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 【测量目标】椭圆的简单几何性质.【考查方式】已知椭圆的基本量,利用椭圆的简单几何性质判定椭圆内四边形是否存在以及其面积的求解. 【难易程度】中等【试题解析】(Ⅰ)椭圆W :24x +y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m=±(步骤1)所以菱形OABC 的面积是12OB AC =12×2×2m (步骤2) (Ⅱ)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).(步骤3)由2244,x y y kx m⎧+=⎨=+⎩消y 并整理得()2214k x ++8kmx +24m -4=0. 设()()1122,,,A x y C x y ,则1224214x x km k +=-+,121222214y y x x mk m k++=+=+ . 所以AC 的中点为M 224,1414kmm k k ⎛⎫- ⎪++⎝⎭.(步骤4) 因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k-.因为k 14k ⎛⎫- ⎪⎝⎭≠-1,所以AC 与OB 不垂直.所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.(步骤5)20.(本小题共13分)已知{}n a 是由非负整数组成的无穷数列,该数列前n 项的最大值记为n A ,第n 项之后各项12,,n n a a ++⋅⋅⋅的最小值记为n B ,n n n d A B =-.(Ⅰ)若{}n a 为2,1,4,3,2,1,4,3,⋅⋅⋅,是一个周期为4的数列,(即对任意n *∈N ,4n n a a +=),写出1d ,2d ,3d ,4d 的值;(Ⅱ)设d 是非负整数,证明:n d d =-(1,2,3,)n =⋅⋅⋅的充分必要条件为{}n a 是公差为d 的等差数列.(Ⅲ)证明:若12a =,1n d =(1,2,3,)n =⋅⋅⋅,则{}n a 的项只能是1或者2,且有无穷多项为1.【测量目标】数列的综合运用,数列的性质.【考查方式】给出一个数列,运用其相关性质求解未知数. 【难易程度】较难【试题解析】(Ⅰ)1d =2d =1,3d =4d =3.(步骤1) (Ⅱ)(充分性)因为{}n a 是公差为d 的等差数列,且d …0, 所以12n a a a ……剟.剟因此1,,n n n n A a B a +==,1n n n d a a +=- =-d (n =1,2,3,…).(步骤2) (必要性)因为n d =-d …0(n =1,2,3,…),所以n n n n A B d B =+….(步骤3) 又因为1,,n n n n a A a B +剠所以1n n a a +….于是1,n n n n A a B a +==,因此1n n n n n a a B A d d +-=-=-=, 即{}n a 是公差为d 的等差数列.(步骤4) (Ⅲ)因为112,1a d ==,所以111112,1A a B A d ===-=. 故对任意11,1n n a B =厖.(步骤5) 假设{}n a (n …2)中存在大于2的项. 设m 为满足m a >2的最小正整数, 则m …2,并且对任意1…k <m ,2k a ….(步骤6) 又因为12a =,所以12,m A -=2m m A a =>. 于是m m m B A d =->2-1=1,{}1min ,2m m m B a B -=…. 故111220m m m d A B ---=--=…,与1m d -=1矛盾. 所以对于任意1n …,有2n a …,即非负整数列{}n a 的各项只能为1或2. (步骤7) 因为对任意1n …,2n a …=1a ,所以2n A =.(步骤8) 故211n n n B A d =-=-=.因此对于任意正整数n ,存在m 满足m >n ,且1m a =, 即数列{}n a 有无穷多项为1. (步骤9)。
2013年高考数学全国卷1(完整版试题+答案+解析)

2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516题图第13第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)第14题图三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE∥CD ,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.AB CDEF已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二.填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分 1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分 (Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BGABCDEF G∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y……………………………………9分 当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分)解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分 222)1(2)()1()(x xb ax x a x f +⋅+-+='12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分 (Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分 ∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B2013年高考数学全国卷1(完整版试题+答案+解析)- 11 - / 11 由AB AC 2= 得)22(22212-=-x x , 化简得22221=-x x …………………………………………8分 联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12, 得0821682=-+-k kx x ∴k x 8221=+① …………………………………………10分 联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y 得0821632)2168()41(2222=--+-++k k x k k x k ∴22241821622kk k x +-=+② …………………………………………12分 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。
2013年高考理科数学全国新课标卷1试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ). A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和2133n n S a =+,则{an}的通项公式是an =_______.15.(2013课标全国Ⅰ,理15)设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax +b)的图像关于直线x =-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,ABBC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y =f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x +a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±.5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=- 则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ), 所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2)上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∴f (-2=[1-(-22][(-22+8(-2)+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2)=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA . (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α=4,即tan ∠PBA =4. 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-1,0),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,2013 全国新课标卷1理科数学 第11页 则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.x x y ⎧=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11A CA C ⋅n n =5-. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为5. 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以 P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y=k (x +4).由l 与圆M , 解得k =当k y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x1,2=47-±.所以|AB|2118|7x x-=.当k=|AB|=187.综上,|AB|=|AB|=187.21.解:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2,则F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0得x1=-ln k,x2=-2.①若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0.即F(x)在(-2,x1)单调递减,在(x1,+∞)单调递增.故F(x)在[-2,+∞)的最小值为F(x1).而F(x1)=2x1+2-21x-4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.2013 全国新课标卷1理科数学第12页2013 全国新课标卷1理科数学 第13页 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
(完整版)2013年陕西高考理科数学试题及答案详解

2013年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)(陕西卷)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分).1.(2013陕西,理1)设全集为R ,函数f (x )=21x -的定义域为M ,则R M 为().A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)1)∪(1,+∞).2.(2013陕西,理2)根据下列算法语句,当输入x 为60时,输出y的值为( ).A .25B .30C .31D .613.(2013陕西,理3)设a ,b 为向量,则“|a·b |=|a ||b |”是“a∥b ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(2013陕西,理4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ).A .11B .12C .13D .145.(2013陕西,理5)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( ). A .π14-B .π12-C .π22-D .π4 6.(2013陕西,理6)设z 1,z 2是复数,则下列命题中的假.命题是( ). A .若|z1-z2|=0,则12z z = B .若12z z =,则12z z =C .若|z1|=|z2|,则1122z z z z⋅=⋅ D .若|z1|=|z2|,则z12=z22 7.(2013陕西,理7)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .不确定8.(2013陕西,理8)设函数f (x )=610,0,x x x x x ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪-≥⎩,,则当x >0时,f [f (x )]表达式的展开式中常数项为 A .-20 B .20 C .-15 D .159.(2013陕西,理9)在如图所示的锐角三角形空地中,欲建一个面积不小于300m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( ).A.[15,20] B.[12,25]C.[10,30] D.[20,30]10.(2013陕西,理10)设[x]表示不大于x的最大整数,则对任意实数x,y,有( ).A.[-x]=-[x] B.[2x]=2[x]C.[x+y]≤[x]+[y] D.[x-y]≤[x]-[y]第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.(2013陕西,理11)双曲线22116x ym-=的离心率为54,则m等于__________.12.(2013陕西,理12)某几何体的三视图如图所示,则其体积为__________.13.(2013陕西,理13)若点(x,y)位于曲线y=|x-1|与y=2所围成的封闭区域,则2x-y的最小值为__________.14.(2013陕西,理14)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n个等式可为__________.15.(2013陕西,理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为__________.B.(几何证明选做题)如图,弦AB与CD相交于e O内一点E,过E作BC的平行线与AD的延长线交于点P,已知PD=2DA=2,则PE=__________.C.(坐标系与参数方程选做题)如图,以过原点的直线的倾斜角θ为参数,则圆x2+y2-x=0的参数方程为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.(2013陕西,理16)(本小题满分12分)已知向量a =1cos ,2x ⎛⎫-⎪⎝⎭,b =x ,cos 2x ),x ∈R ,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.17.(2013陕西,理17)(本小题满分12分)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.18.(2013陕西,理18)(本小题满分12分)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1.(1)证明:A1C⊥平面BB1D1D;(2)求平面OCB1与平面BB1D1D的夹角θ的大小.19.(2013陕西,理19)(本小题满分12分)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望.20.(2013陕西,理20)(本小题满分13分)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.21.(2013陕西,理21)(本小题满分14分)已知函数f (x )=e x ,x ∈R .(1)若直线y =kx +1与f (x )的反函数的图像相切,求实数k 的值;(2)设x >0,讨论曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数;(3)设a <b ,比较2f a f b ()+()与f b f a b a()-()-的大小,并说明理由.2013年普通高等学校夏季招生全国统一考试数学(理科)(陕西卷)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分).1.答案:D解析:要使函数f (x )=21x -有意义,则1-x 2≥0,解得-1≤x ≤1,则M =[-1,1],R M =(-∞,-1)∪(1,+∞).2.答案:C 解析:由算法语句可知0.5,50,250.650,50,x x y x x ≤⎧=⎨+(-)>⎩所以当x =60时,y =25+0.6×(60-50)=25+6=31.3.答案:C解析:若a 与b 中有一个为零向量,则“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件;若a 与b 都不为零向量,设a 与b 的夹角为θ,则a ·b =|a ||b |cos θ,由|a ·b |=|a ||b |得|cos θ|=1,则两向量的夹角为0或π,所以a ∥b .若a ∥b ,则a 与b 同向或反向,故两向量的夹角为0或π,则|cos θ|=1,所以|a ·b |=|a ||b |,故“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件.4.答案:B解析:840÷42=20,把1,2,…,840分成42段,不妨设第1段抽取的号码为l ,则第k 段抽取的号码为l +(k -1)·20,1≤l ≤20,1≤k ≤42.令481≤l +(k -1)·20≤720,得25+120l -≤k ≤37-20l .由1≤l ≤20,则25≤k ≤36.满足条件的k 共有12个.5.答案:A解析:S 矩形ABCD =1×2=2,S 扇形ADE =S 扇形CBF =π4.由几何概型可知该地点无信号的概率为 P =π2π2124F ABCD ADE CB ABCD S S S S ---==-矩形扇形扇形矩形. 6.答案:D解析:对于选项A ,若|z 1-z 2|=0,则z 1=z 2,故12z z =,正确;对于选项B ,若12z z =,则122z z z ==,正确;对于选项C ,z 1·1z =|z 1|2,z 2·z 2=|z 2|2,若|z 1|=|z 2|,则1122z z z z ⋅=⋅,正确;对于选项D ,如令z 1=i +1,z 2=1-i ,满足|z 1|=|z 2|,而z 12=2i ,z 22=-2i ,故不正确.7.答案:B解析:∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴π2A =,故△ABC 为直角三角形. 8.答案:A解析:当x >0时,f (x )=x -<0,则f [f (x )]=66⎛= ⎝. 663221666C (1)C (1)C r r r r r r r r r r r T x x x ----+⎛=⋅=-⋅=- ⎝.令3-r =0,得r =3,此时T 4=(-1)336C =-20.9.答案:C解析:设矩形另一边长为y ,如图所示.404040x y -=,则x =40-y ,y =40-x .由xy ≥300,即x (40-x )≥300,解得10≤x ≤30,故选C .10.答案:D解析:对于选项A ,取x =-1.1,则[-x ]=[1.1]=1,而-[x ]=-[-1.1]=-(-2)=2,故不正确;对于选项B ,令x =1.5,则[2x ]=[3]=3,2[x ]=2[1.5]=2,故不正确;对于选项C ,令x =-1.5,y =-2.5,则[x +y ]=[-4]=-4,[x ]=-2,[y ]=-3,[x ]+[y ]=-5,故不正确;对于选项D ,由题意可设x =[x ]+β1,0≤β1<1,y =[y ]+β2,0≤β2<1,则x -y =[x ]-[y ]+β1-β2,由0≤β1<1,-1<-β2≤0,可得-1<β1-β2<1.若0≤β1-β2<1,则[x -y ]=[[x ]-[y ]+β1-β2]=[x ]-[y ];若-1<β1-β2<0,则0<1+β1-β2<1,[x -y ]=[[x ]-[y ]+β1-β2]=[[x ]-[y ]-1+1+β1-β2]=[x ]-[y ]-1<[x ]-[y ],故选项D 正确.第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.答案:9解析:由双曲线方程知a =4.又54c e a ==,解得c =5,故16+m =25,m =9. 12. 答案:π3解析:由三视图可知该几何体是如图所示的半个圆锥,底面半圆的半径r =1,高SO =2,则V 几何体=1π2π323⨯⨯=.13.答案:-4解析:由y =|x -1|=1,1,1,1x x x x -≥⎧⎨-+<⎩及y =2画出可行域如图阴影部分所示.令2x -y =z ,则y =2x -z ,画直线l 0:y =2x 并平移到过点A (-1,2)的直线l ,此时-z 最大,即z 最小=2×(-1)-2=-4.14.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·12n n (+) 解析:第n 个等式的左边第n 项应是(-1)n +1n 2,右边数的绝对值为1+2+3+…+n =12n n (+),故有12-22+32-42+…+(-1)n +1n 2=(-1)n +112n n (+). 15.(2013陕西,理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A .答案:2解析:(am +bn )(bm +an )=abm 2+(a 2+b 2)mn +abn 2=ab (m 2+n 2)+2(a 2+b 2)≥2abmn +2(a 2+b 2)=4ab +2(a 2+b 2)=2(a 2+2ab +b 2)=2(a +b )2=2(当且仅当m =n 时等号成立).B .解析:∠C 与∠A 在同一个e O 中,所对的弧都是»BD,则∠C =∠A .又PE ∥BC ,∴∠C =∠PED .∴∠A =∠PED .又∠P =∠P ,∴△PED ∽△PAE ,则PE PD PA PE=,∴PE 2=PA ·PD .又PD =2DA =2,∴PA =PD +DA=3,∴PE 2=3×2=6,∴PE . C .答案:2cos ,sin cos x y θθθ⎧=⎨=⎩(θ为参数)解析:由三角函数定义知y x=tan θ(x ≠0),y =x tan θ,由x 2+y 2-x =0得,x 2+x 2tan 2θ-x =0,x =211tan θ+=cos 2θ,则y =x tan θ=cos 2θtan θ=sin θcos θ,又π2θ=时,x =0,y =0也适合题意,故参数方程为2cos ,sin cos x y θθθ⎧=⎨=⎩(θ为参数).三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.解:f (x )=1cos ,2x ⎛⎫- ⎪⎝⎭x ,cos 2x )x sin x -12cos 2xx -12cos 2x =ππcos sin 2sin cos 266x x - =πsin 26x ⎛⎫- ⎪⎝⎭. (1)f (x )的最小正周期为2π2ππ2T ω===, 即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2, ∴ππ5π2666x -≤-≤.由正弦函数的性质, 当ππ262x -=,即π3x =时,f (x )取得最大值1. 当ππ266x -=-,即x =0时,f (0)=12-, 当π52π66x -=,即π2x =时,π122f ⎛⎫= ⎪⎝⎭, ∴f (x )的最小值为12-.因此,f (x )在π0,2⎡⎤⎢⎥⎣⎦上最大值是1,最小值是12-. 17.(1)解:设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n , ∴111nn a q S q (-)=-,∴11,1,1, 1.1n n na q S a q q q =⎧⎪=(-)⎨≠⎪-⎩ (2)证明:假设{a n +1}是等比数列,则对任意的k ∈N +,(a k +1+1)2=(a k +1)(a k +2+1),21k a ++2a k +1+1=a k a k +2+a k +a k +2+1,a 12q 2k +2a 1q k =a 1q k -1·a 1q k +1+a 1q k -1+a 1q k +1,∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾,∴假设不成立,故{a n +1}不是等比数列.18.(1)证法一:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立直角坐标系,如图.∵AB =AA 1,∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1). 由11A B u u u u r =AB u u u r ,易得B 1(-1,1,1). ∵1AC u u u r =(-1,0,-1),BD u u u r =(0,-2,0), 1BB u u u r =(-1,0,1), ∴1AC u u u r ·BD u u u r =0,1AC u u u r ·1BB u u u r =0,∴A 1C ⊥BD ,A 1C ⊥BB 1,∴A 1C ⊥平面BB 1D 1D .证法二:∵A 1O ⊥平面ABCD ,∴A 1O ⊥BD .又∵ABCD 是正方形,∴BD ⊥AC ,∴BD ⊥平面A 1OC ,∴BD ⊥A 1C .又∵OA 1是AC 的中垂线,∴A 1A =A 1C,且AC =2,∴AC 2=AA 12+A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C .又BB 1∥AA 1,∴A 1C ⊥BB 1,∴A 1C ⊥平面BB 1D 1D .(2)解:设平面OCB 1的法向量n =(x ,y ,z ), ∵OC u u u r =(-1,0,0),1OB u u u r =(-1,1,1), ∴10,0,OC x OB x y z ⎧⋅=-=⎪⎨⋅=-++=⎪⎩u u u r u u u r n n ∴0,.x y z =⎧⎨=-⎩取n =(0,1,-1), 由(1)知,1AC u u u r =(-1,0,-1)是平面BB 1D 1D 的法向量,∴cos θ=|cos 〈n ,1AC u u u r 〉|12=. 又∵0≤θ≤π2,∴π3θ=.19.解:(1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=1223C 2C 3=,P (B )=2435C 3C 5=. ∵事件A 与B 相互独立,∴观众甲选中3号歌手且观众乙未选中3号歌手的概率为P (A B )=P (A )·P (B )=P (A )·[1-P (B )]=2243515⨯=.13242335C C 4.C C 15P AB ⎛⎫⋅()== ⎪⋅⎝⎭或 (2)设C 表示事件“观众丙选中3号歌手”,则P (C )=2435C 3C 5=, ∵X 可能的取值为0,1,2,3,且取这些值的概率分别为P (X =0)=1224()35575P ABC =⨯⨯=, P (X =1)=()()()P ABC P ABC P ABC ++ =2221321232035535535575⨯⨯+⨯⨯+⨯⨯=, P (X =2)=P (AB C )+P (A B C )+P (A BC )=2322231333335535535575⨯⨯+⨯⨯+⨯⨯=, P (X =3)=P (ABC )=2331835575⨯⨯=, ∴X 的分布列为∴X 的数学期望40123757575757515EX ⨯+⨯+⨯+⨯===. 20.(1)解:如图,设动圆圆心O 1(x ,y ),由题意,|O 1A |=|O 1M |,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点,∴1||O M =1||O A = = 化简得y =8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x ,∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中,得k 2x 2+(2bk -8)x +b 2=0,其中Δ=-32kb +64>0.由求根公式得,x 1+x 2=282bk k -,① x 1x 2=22b k,② 因为x 轴是∠PBQ 的角平分线,所以121211y y x x =-++, 即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0,2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0,∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0).21.解:(1)f (x )的反函数为g (x )=ln x .设直线y =kx +1与g (x )=ln x 的图像在P (x 0,y 0)处相切,则有y 0=kx 0+1=ln x 0,k =g ′(x 0)=01x , 解得x 0=e 2,21ek =. (2)曲线y =e x与y =mx 2的公共点个数等于曲线2e x y x=与y =m 的公共点个数. 令()2e x x x ϕ=,则3e 2()x x x x ϕ(-)'=, ∴φ′(2)=0.当x ∈(0,2)时,φ′(x )<0,φ(x )在(0,2)上单调递减;当x ∈(2,+∞)时,φ′(x )>0,φ(x )在(2,+∞)上单调递增,∴φ(x )在(0,+∞)上的最小值为2e (2)4ϕ=. 当0<m <2e 4时,曲线2e x y x =与y =m 无公共点; 当2e 4m =时,曲线2e xy x=与y =m 恰有一个公共点; 当2e 4m >时,在区间(0,2)内存在1x =,使得φ(x 1)>m ,在(2,+∞)内存在x 2=m e 2,使得φ(x 2)>m .由φ(x )的单调性知,曲线2e xy x=与y =m 在(0,+∞)上恰有两个公共点. 综上所述,当x >0时,若0<m <2e 4,曲线y =f (x )与y =mx 2没有公共点; 若2e 4m =,曲线y =f (x )与y =mx 2有一个公共点; 若2e 4m >,曲线y =f (x )与y =mx 2有两个公共点. (3)解法一:可以证明2f a f b f b f a b a()+()()-()>-. 事实上,2f a f b f b f a b a()+()()-()>-⇔e e e e 2a b b a b a +->-⇔e e 2e e b a b a b a -->+⇔2e 12e e a b a b a ->-+⇔212e 1b a b a -->-+(b >a ).(*) 令2()12e 1x x x ψ=+-+(x ≥0), 则2222212e e 14e e 1()02e 12e 12e 1x x x x x x x x ψ(+)-(-)'=-==≥(+)(+)(+)(仅当x =0时等号成立), ∴ψ(x )在[0,+∞)上单调递增,∴x >0时,ψ(x )>ψ(0)=0.令x =b -a ,即得(*)式,结论得证. 解法二:e e e e 22b a b af a f b f b f a b a b a()+()()-()+--=--- =e e e e 2e 2e 2b a b a b ab b a a b a +---+(-)=e 2ab a (-)[(b -a )e b -a +(b -a )-2e b -a +2], 设函数u (x )=x e x +x -2e x+2(x ≥0),则u ′(x )=e x +x e x +1-2e x ,令h (x )=u ′(x ),则h ′(x )=e x +e x +x e x -2e x =x e x ≥0(仅当x =0时等号成立),∴u ′(x )单调递增,∴当x >0时,u ′(x )>u ′(0)=0,∴u (x )单调递增.当x >0时,u (x )>u (0)=0.令x =b -a ,则得(b -a )e b -a +(b -a )-2e b -a +2>0, ∴e e e e >02b a b ab a+---, 因此,2f a f b f b f a b a()+()()-()>-.。
2013年辽宁高考数学理科试卷(带详解)
2013年普通高等学校招生全国统一考试(卷)数 学(理)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.复数的1i 1z =-模为 ( ) A.12B.22C.2D.2【测量目标】复数代数形式的四则运算.【考查方式】直接给出复数,利用2i 1=-对复数进行化简,然后再求模.【难易程度】容易 【参考答案】B【试题解析】111112i,i i 12222z z ==--∴=--=-. 2.已知集合{}4|0log 1A x x =<<,{}|2B x x =,则 A B = ( )A .()01,B .(]02,C .()1,2D .(]12, 【测量目标】集合的基本运算.【考查方式】考查了对数不等式及交集运算. 【难易程度】容易 【参考答案】D 【试题解析】{}{}4|0log 1|14A x x x x =<<=<<,{}|2B x x =,{}{}{}14212A B x x x x x x ∴=<<=<.3.已知点()1,3A ,()4,1B -,则与向量AB 同方向的单位向量为 ( )A.3455⎛⎫ ⎪⎝⎭,-B.4355⎛⎫ ⎪⎝⎭,-C.3455⎛⎫- ⎪⎝⎭,D.4355⎛⎫- ⎪⎝⎭,【测量目标】向量的基本概念.【考查方式】给出两点坐标及方向,求同方向的单位向量. 【难易程度】容易 【参考答案】A【试题解析】()3,4AB =-,则与其同方向的单位向量34(,)55ABAB==-e . 4.下面是关于公差0d >的等差数列()n a 的四个命题:1p :数列{}n a 是递增数列; 2p :数列{}n na 是递增数列;3p :数列n a n ⎧⎫⎨⎬⎩⎭是递增数列; 4p :数列{}3n a nd +是递增数列;其中的真命题为 ( )A.12,p pB.34,p pC.23,p pD.14,p p【测量目标】等差数列的性质.【考查方式】给出d >0的等差数列,求数列的增减性. 【难易程度】中等 【参考答案】D【试题解析】根据等差数列的性质判定.0d >,∴1n n a a +>,∴1p 是真命题, (步骤1)1n n +>,但是n a 的符号不知道,∴2p 是假命题. (步骤2)同理3p 是假命题.13(1)340n n a n d a nd d +++--=>,∴4p 是真命题. (步骤3)5.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[)[)20,40,40,60, [)[)60,80,80,100,若低于60分的人数是15人,则该班的学生人数是 ( ) A.45 B.50 C.55 D.60第5题图【测量目标】频率分布直方图.【考查方式】给出频率分布直方图及某一频数,求总体频数. 【难易程度】容易 【参考答案】B【试题解析】根据频率分布直方图的特点可知,低于60分的频率是00050012003...+⨯=(),所以该班的学生人数是15500.3=. 6.在ABC △上,角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且,a b >则B ∠= ( )A .π6B .π3C .2π3D .5π6【测量目标】正弦定理,两角和的正弦,诱导公式.【考查方式】给出三角形各边长及角和边长的公式,求角. 【难易程度】中等 【参考答案】A【试题解析】根据正弦定理与和角公式求解.由正弦定理可得sin sin cos A B C +1sin sin cos sin 2C B A B =, (步骤1)又sin 0B ≠,∴ sin cos A C +1sin cos 2C A =,∴1sin sin 2(A C )B +==.(步骤2)a b >,∴π6B ∠=. (步骤3) 7.使得()3nx n x x +⎛+∈ ⎪⎝⎭N 的展开式中含有常数项的最小的n 为 ( )A .4B .5C .6D .7【测量目标】二项式定理.【考查方式】考查了二项展开式的通项公式. 【难易程度】中等 【参考答案】B【试题解析】根据二项展开式的通项公式求解.()521=C 3C 3rn r n rr r n r r nn T x x x x ---+= ⎪⎝⎭,当1r T +是 常数项时,502n r -=,当2r =,5n =时成立. 8.执行如图所示的程序框图,若输入10n =,则输出的S = ( )A .511B .1011C .3655D .7255第8题图【测量目标】循环结构的程序框图.【考查方式】给出输入值10n =,求输出值S . 【难易程度】中等 【参考答案】A 【试题解析】13S =,410i =<, 21123415S ∴=+=-,610i =<,(步骤1)22135617S ∴=+=-, 8<10i =,23147819S ∴=+=-,1010i ==,2415910111S ∴=+=-,1210i =>,输出S . (步骤2)9.已知点()()()30,0,0,,,.O A b B a a 若OAB △为直角三角形,则必有 ( )A .3b a =B .31b a a=+ C .()3310b ab a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a-+--= 【测量目标】直线的倾斜角与斜率.【考查方式】给出三点坐标,由三角形l 的边的性质,求出,a b 之间的关系.【难易程度】中等 【参考答案】C【试题解析】根据直角三角形的直角的位置求解.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;(步骤1)若π2A ∠=,则30b a =≠,若π2B ∠=,根据斜率关系可知 321a b a a -=-,3()1a a b ∴-=-,即310b a a--=.以上两种情况皆有可能,故只有C 满足条件.(步骤2)10.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A.2 B ..132D .【测量目标】立体几何的综合问题.【考查方式】给出三条棱长及两棱垂直关系,求三棱柱外接球的半径. 【难易程度】较难 【参考答案】C【试题解析】根据球的接三棱柱的性质求解.直三棱柱中13412AB ,AC ,AA ,===AB AC ⊥,∴5BC =,且BC 为过底面ABC 是截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面11BCC B ,矩形11BCC B 的对角线长即为球直径,∴213R =,即132R =.11.已知函数()()2222f x x a x a =-++,()()22228g x x a x a =-+--+.设1()H x ()(){}max ,f x g x =,()()(){}2min ,H x f x g x =,{}max ,p q 表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 的最小值为A ,()2H x 的最小值为B ,则A B -=( )A.2216a a --B.2216a a +- C.16- D.16【测量目标】二次函数的图象与性质.【考查方式】给出两函数解析式,设出较大值、较小值、最大值、最小值,求最值. 【难易程度】较难 【参考答案】C【试题解析】根据二次函数图象的特征解决.由()()f x g x =,得2()4x a -= , (步骤1)∴当2x a =-和2x a =+时,两函数值相等.()f x 图象为开口向上的抛物线,()g x 图象为开口向下的抛物线,两图象在2x a =-和2x a =+处相交,则1()H x =()(2),()(22),()(2),f x x ag x a x a f x x a -⎧⎪-<<+⎨⎪+⎩2()(2),()()(22),()(2),g x x a H x f x a x a g x x a -⎧⎪=-<<+⎨⎪+⎩ (步骤2)∴1min ()(2)44A H x f a a ==+=--,2max ()(2)412B H x g a a ==-=-+,∴16.A B -=-(步骤3)12.设函数()f x 满足()()2e 2x xf x xf x x '+=,()2e 28f =,则0x >时,()f x ( )A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值【测量目标】利用导数求函数的极值.【考查方式】通过构造函数,将问题转化,考查转化能力.通过导数判断函数单调性,考查知识的 灵活应用能力. 【难易程度】较难 【参考答案】D【试题解析】由题意知2'33e 2()e 2()()x x f x x f x f x x x x-=-=.(步骤1) 令2()e 2()x g x x f x =-,则()222e 2()e 2()4()e 2()2()e e 1x xxxx g x x f x xf x x f x xf x x x ⎛⎫'''=--=-+=-=- ⎪⎝⎭.(步骤2)由()0g x '=得2x =,当2x =时,222mine ()e 2208g x =-⨯⨯=,即()0g x ,则当0x >时,3()()0g x f x x'=,(步骤3) 故()f x 在()0,+∞上单调递增,既无极大值也无极小值.(步骤4) 二、填空题:本大题共4小题,每小题5分.13.某几何体的三视图如图所示,则该几何体的体积是 .第13题图【测量目标】由三视图求几何体的体积.【考查方式】给出三视图,求体积. 【难易程度】容易 【参考答案】16π16-【试题分析】由三视图可知该几何体是一个圆柱部挖去一个正四棱柱,圆柱底面圆半径为2,高为 4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π16.- 14.已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S = .【测量目标】等比数列及其性质,等比数列的前n 项和.【考查方式】给出方程,已知等比数列为递增数列,先求等比数列中两项值,即方程的两根,再由数 列为递增数列求出数列的前n 项和. 【难易程度】中等 【参考答案】63 【试题分析】13,a a 是方程2540x x -+=的两个根,且数列{}n a 是递增的等比数列,∴131,4,2,a a q ===661263.12S -==-15.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F 椭圆C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos 5AB AF ABF ==∠=,则C 的离心率e = . 【测量目标】余弦定理,椭圆的简单几何性质.【考查方式】画图表示椭圆及直线位置,通过数量关系确定三角形形状以及椭圆系数,考查数形结合的能力.【难易程度】中等 【参考答案】57【试题解析】根据椭圆的定义及性质和余弦定理求解.设椭圆的右焦点为1F ,直线过原点,16AF BF ∴==,BO AO =.(步骤1)在ABF △中,设BF x =,由余弦定理得24361002105x x =+-⨯⨯,(步骤2) 解得8x =,即8BF =.90BFA ∴∠=,ABF ∴△是直角三角形,(步骤3)26814a ∴=+=,即7a =.(步骤4)又在Rt ABF △中,BO AO =,152OF AB ∴==,即5c =,(步骤5) 57e ∴=.(步骤6) 16.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组 的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的 最大值为 .【测量目标】用样本数字特征估计总体数字特征.【考查方式】给出样本平均数、样本方差样本组数,求样本数据中的最大值. 【难易程度】较难 【参考答案】10【试题解析】设5个班级中参加的人数分别为12345,,,,,x x x x x 则由题意知2222212345123457,(7)(7)(7)(7)(7)20,5x x x x x x x x x x ++++=-+-+-+-+-=五个整数的平方和为20,则必为0119920++++=,由73x -=可得10x =或4x =,由71x -=可得8x =或6x =,由上可知参加的人数分别为4,6,7,8,10,故样本数据中的最大值为10.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)设向量)()π,sin ,cos ,sin ,0,.2x x x x x ⎡⎤==∈⎢⎥⎣⎦a b(I )若=a b 求x 的值; (Ⅱ)设函数()f x =a b ,求()f x 的最大值.【测量目标】平面向量的基本概念、向量的数量积运算、两角和与差的正弦和三角函数的最值. 【考查方式】给出两向量坐标,两向量模的关系,函数与向量的关系,求x 的值,函数的最大值. 【难易程度】容易 【试题解析】(Ⅰ)2222222(3sin )sin 4sin ,cos sin 1,x x x x x =+==+=a b ,=a b∴24sin 1.x = (步骤1)又x ∈π0,2⎡⎤⎢⎥⎣⎦,∴1sin ,2x =∴π6x =. (步骤2)(Ⅱ)()3sin f x x ==a b 2311π1cos sin sin 2cos 2sin(2),2262x x x x x +=-+=-+ ∴当π3x =∈π0,2⎡⎤⎢⎥⎣⎦时,πsin(2)6x -取最大值1. (步骤3) ∴()f x 的最大值为32. (步骤4)18.(本小题满分12分)如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I )求证:平面PAC ⊥平面PBC ;(II )若2AB AC PA ===,1,1,求证:二面角C PB A --的余弦值.第18题图【测量目标】面面垂直的判定,二面角,空间直角坐标系和空间向量及其运算.【考查方式】面面垂直的判定及二面角的平面角的确定考查定理的灵活应用能力,空间直角坐标系的建立考查空间想象能力及运算求解能力. 【难易程度】中等【试题解析】(Ⅰ)由AB 是圆的直径,得AC BC ⊥,(步骤1) 由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA BC ⊥,又PA AC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,BC ∴⊥平面PAC BC ⊂平面PBC ∴平面PBC ⊥平面PAC .(步骤2)(Ⅱ)解法一:如图(1),以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴,y 轴,z 轴建立空间直角坐标系. 在Rt ABC △中,2AB =,1AC =,3BC ∴=又1PA =,()0,1,0A ∴,)3,0,0B,()0,1,1P .(步骤3)故()3,0,0CB =,()0,1,1CP =.设平面BCP 的法向量为()1111,,x y z =n ,则110,0,CB CP ⎧•=⎪⎨•=⎪⎩n n 11130,0,x y z ⎧=⎪∴⎨+=⎪⎩不妨令11y =,则()10,1,1=-n .(步骤4)()0,0,1AP =,()3,1,0AB =-,设平面ABP 的法向量为()2222,,x y z =n ,则220,0,AP AB ⎧=⎪⎨=⎪⎩n n 2220,30,z x y =⎧⎪∴⎨-=⎪⎩(步骤5) 不妨令21x =,则()21,3,0=n . 于是1236cos ,422==n n . 由图(1)知二面角C —PB —A 为锐角,故二面角C —PB —A 的余弦值为64.(步骤6)第18题图(1)解法二:如图(2),过C 作CM AB ⊥于M ,PA ⊥平面ABC ,CM ⊂平面ABC ,PA CM ∴⊥.又PA AB A =,且PA ⊂平面PAB ,AB ⊂平面PAB ,CM ∴⊥平面PAB . 过M 作MN PB ⊥于N ,连接NC ,由三垂线定理得CN PB ⊥ CNM ∴∠为二面角C —PB —A 的平面角.(步骤3) 在Rt ABC △中,由2AB =,1AC =,得3BC =,32CM =,32BM =. 在Rt PAB △中,由2AB =,1PA =,得5PB =.Rt BNM △∽Rt BAP △,3215MN∴=,35MN ∴=.(步骤4) ∴在Rt CNM △中,30CN =,6cos CNM ∴∠=,∴二面角C —PB —A 的余弦值为6.(步骤5)第18题图(2)19.(本小题满分12分)现有10道题,其中6道甲类题,4道乙类题,同学从中任取3道题解答.(I )求同学至少取到1道乙类题的概率;(II )已知所取的3道题中有2道甲类题,1道乙类题.设同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示同学答对题的个数,求X 的分布列和数学期望.【测量目标】古典概型,互斥事件与对立事件的概率,离散型随机变量的分布列及期望.【考查方式】至少类问题反面求解考查转化化归能力,分布列及数学期望的求解考查运算求解能力. 【难易程度】中等【试题解析】 (1)设事件A =“同学所取的3道题至少有1道乙类题”,则有A = “同学所取的3道题都是甲类题”.()36310C 1C 6P A ==,()()516P A P A ∴=-=.(步骤1)(2)X 所有的可能取值为0,1,2,3.(步骤2)()020232140=C 555125P X ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭;(步骤3) ()11021022321324281C +C 555555125P X ⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(步骤4) ()2112122321324572C +C 555555125P X ⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(步骤5) ()222324363C 555125P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.(步骤6) X ∴的分布列为:X 0 12 3P4125 28125 5712536125(步骤7)()428573601232125125125125E X ∴⨯⨯⨯⨯==+++.(步骤8)20.(本小题满分12分)如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O ),012x =-,切线MA的斜率为12-.(I )求p 的值;(II )当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为第20题图【测量目标】导数的几何意义,圆锥曲线的轨迹方程.【考查方式】给出两抛物线方程,利用导数的几何意义及坐标中点与直线的关系求解;利用椭圆与直 线的位置关系及待定系数法求解. 【难易程度】中等 【试题解析】(Ⅰ)抛物线21:4C x y =上任意一点(,)x y 的切线斜率为'2xy =,且切线MA 的斜率为12-,∴A 点坐标为(1-,14), (步骤1) ∴切线MA 的方程为11(1)24y x =-++. (步骤2).点M (01)y 在切线MA 及抛物线2C 上,∴0113(2244y -=--+=-①20(1322y p p-=-=-② (步骤3)由①②得2p =. (步骤4)(Ⅱ)设22121212(,),(,),(,),,44x x N x y A x B x x x ≠N 为线段AB 中点∴122x x x +=,③22128x x y +=.④ (步骤5) ∴切线MA,MB 的方程为2111()24x x y x x =-+,⑤2222()24x x y x x =-+.⑥ (步骤6)由⑤⑥得MA,MB 的交点M (00,)x y 的坐标为121200,.24x x x xx y +== (步骤7)点M (00,)x y 在2C 上,即200,4x y =-∴221212.6x x x x +=-⑦ (步骤8) 由③④⑦得24,0.3x y x =≠ (步骤9)当12x x =时,A,B 重合于原点O,AB 中点N 为O ,坐标满足24.3x y =∴AB 中点N 的轨迹方程为24.3x y = (步骤10)21.(本小题满分12分)已知函数()()21e xf x x -=+,()312cos 2x g x ax x x =+++.当[]0,1x ∈时, (I )求证:()111x f x x-+ ;(II )若()()f x g x 恒成立,数a 取值围.【测量目标】利用导数求函数的单调区间,不等式恒成立问题.【考查方式】第一问不等式的证明利用构造函数法,通过导数证明,考查简单的转化化归能力;第二问的两种解法都对转化化归能力进一步升级考查,解法一利用第一问的结论进行转化,解法二通过构造函数,两次利用导数转化. 【难易程度】较难【试题解析】(Ⅰ)证明:要证[]0,1x ∈时,()21e 1xx x -+-,只需证明()()1e 1e x x x x -+-.(步骤1) 记()()(1)e 1e xx h x x x -=--+,则()()e e x x h x x -'=-,(步骤2) 当()0,1x ∈时,()0h x '>,因此()h x 在[]0,1上是增函数,(步骤3) 故()()00h x h =.所以()[]10,1f x x x ∈-,.(步骤4) 要证[]0,1x ∈时,21(1)e 1xx x-++,只需证明e1x x +.(步骤5)记()e 1x K x x =--,则()e 1x K x '=-,(步骤6)当()0,1x ∈时,()0K x '>,因此()K x 在[]0,1上是增函数,(步骤7) 故()()00K x K =.所以()11f x x+,[]0,1x ∈.(步骤8) 综上,()111xf x x-+,[]0,1x ∈.(步骤9) (Ⅱ)解法一:()()32(1)e 12cos 2xx f x g x x ax x x -⎛⎫-=-+++ ⎪⎝⎭+3112cos 2x x ax x x -----2(12cos )2x x a x =-+++.(步骤10)设()22cos 2x G x x =+,则()2sin G x x x '=-.(步骤11) 记()2sin H x x x =-,则()12cos H x x '=-,(步骤12)当()0,1x ∈时,()0H x '<,于是()G x '在[]0,1上是减函数,(步骤13)从而当()0,1x ∈时,()()00G x G ''<=,故()G x 在[]0,1上是减函数.(步骤14) 于是()()02G x G =,从而()13a G x a +++.(步骤15)所以,当3a-时,()()f x g x 在[]0,1上恒成立.(步骤16) 下面证明当3a >-时,()()f x g x 在[]0,1上不恒成立.()()3112cos 12x f x g x ax x x x -----+ 32cos 12x x ax x x x -=---+ 212cos 12x x a x x ⎛⎫=-+++ ⎪+⎝⎭,(步骤17)记()2112cos ()121x I x a x a G x x x =+++=++++, 则()21()(1)I x G x x -''=++,(步骤18) 当()0,1x ∈时,()0I x '<,故()I x 在[]0,1上是减函数,(步骤19)于是()I x 在[]0,1上的值域为[12cos 13]a a ++,+.(步骤20)因为当3a >-时,3>0a +,()00,1x ∴∃∈,使得()00I x >,(步骤21) 此时()()00f x g x <,即()()f x g x 在[]0,1上不恒成立.(步骤22) 综上,实数a 的取值围是(],3-∞-.(步骤23) 解法二:先证当[]0,1x ∈时,22111cos 124x xx --.(步骤10)记()21cos 12F x x x =-+,则()sin F x x x '=-+.(步骤11)记()sin G x x x =-+,则()cos 1G x x '=-+,(步骤12) 当()0,1x ∈时,()0G x '>,于是()G x 在[]0,1上是增函数,(步骤13)因此当()0,1x ∈时,()()00G x G >=,从而()F x 在[]0,1上是增函数.(步骤14)因此()()00F x F =,所以当[]0,1x ∈时,211cos 2x x -.(步骤15)同理可证,当[]0,1x ∈时,21cos 14x x -.(步骤16)综上,当[]0,1x ∈时,22111cos 124x x x --.(步骤17)当[]0,1x ∈时,()()()321e 12cos 2xx f x g x x ax x x -⎛⎫-=+-+++ ⎪⎝⎭321(1)12124x x ax x x ⎛⎫------ ⎪⎝⎭()3a x =-+.(步骤18)所以当3a-时,()()f x g x 在[]0,1上恒成立.(步骤19) 下面证明当3a >-时,()()f x g x 在[]0,1上不恒成立.()()()321e 12cos 2xx f x g x x ax x x -⎛⎫-=+-+++ ⎪⎝⎭3211121122x ax x x x ⎛⎫----- ⎪+⎝⎭ 23(3)12x x a x x =+-++ 32(3)23x x a ⎡⎤-+⎢⎥⎣⎦,(步骤20) ()00,1x ∴∃∈ (例如0x 取33a +和12中的较小值)满足()()00f x g x <.(步骤21) 即()()f x g x 在[]0,1上不恒成立.(步骤22)综上,实数a 的取值围是(],3-∞-.(步骤23)请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 为半圆O 的直径,直线CD 与半圆O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 与F ,连接,AE BE .证明:(I )FEB CEB ∠=∠; (II )2.EF AD BC =⋅第22题图【测量目标】几何证明选讲.【考查方式】给出点、线、面之间的各种关系,根据圆中直线的垂直等角关系证明;根据圆中三角形 的全等和线段间的关系求解. 【难易程度】容易【试题解析】(Ⅰ)直线CD 与⊙O 相切,∴.CEB EAB ∠=∠ (步骤1)AB 为⊙O 的直径,∴AE EB ⊥,∴π2EAB EBF ∠+∠=; (步骤2) 又EF AB ⊥,∴π2FEB EBF ∠+∠=. (步骤3) ∴FEB EAB ∠=∠.∴.FEB CEB ∠=∠ (步骤4)(Ⅱ)BC CE ⊥,EF AB ⊥,,FEB CEB BE ∠=∠是公共边, ∴Rt BCE △≌Rt BFE △,∴BC BF =. (步骤5)类似可证Rt ADE △≌Rt AFE △,得AD AF =. (步骤6)又在Rt AEB △中,EF AB ⊥,∴2EF AF BF =,∴2EF AD BC =. (步骤7)23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为π4sin ,cos 2 2.4ρθρθ⎛⎫=-= ⎪⎝⎭(I )求1C 与2C 交点的极坐标;(II )设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为3312x t a b y t ⎧=+⎪⎨=+⎪⎩(t ∈R 为参数),求,a b 的值.【测量目标】极坐标与参数方程.【考查方式】给出各直线的极坐标方程或参数方程,联立1C 与2C 方程求交点;由参数方程的性质求 解.【难易程度】容易【试题解析】(Ⅰ)圆1C 的直角坐标方程为2224x y +-=(),直线2C 的直角坐标方程为40x y -+=. 解222440x y x y ⎧+-=⎨+-=⎩(),,得1104x y =⎧⎨=⎩,,2222x y =⎧⎨=⎩, (步骤1) ∴1C 与2C 交点的极坐标为ππ42224⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,. (步骤2) 注:极坐标系下点的表示不是唯一的.(Ⅱ)由(Ⅰ)可得,P 点与Q 点的直角坐标分别为()()0213,,,.∴直线PQ 的直角坐标方程为20x y -+=, (步骤3)由参数方程可得b aby x 22=-+1. (步骤4)∴12122b ab ⎧=⎪⎪⎨⎪-+=⎪⎩,,解得12a b =-⎧⎨=⎩,. (步骤5)24.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,其中1a >. (I )当=2a 时,求不等式()fx 4x a --的解集;(II )已知关于x 的不等式(2)2()f x a f x +-2的解集为{1xx}2,求a 的值.【测量目标】绝对值不等式的解法,含参不等式的解法.【考查方式】给出函数方程,求不等式的解集.再给出不等式的解集,求未知数a 的值. 【难易程度】中等【试题解析】(1)当2a =时,2624224264x x fx x x x x .-+⎧⎪+-=<<⎨⎪-⎩,,(),,, (步骤1) 当2x时,由4f x x -()4-得264x -+,解得1x ; (步骤2) 当24x <<时,44f x x --()无解; (步骤3) 当4x时,由44f x x --()得264x -,解得5x. (步骤4)∴44f x x --() 的解集为{1x x或}5x. (步骤5)(2)记22h x f x a f x =+-()()(),则204202a x h x x a x a a x a.-⎧⎪=-<<⎨⎪⎩,,(),,, (步骤6)由2h x (),解得1122a a x-+. (步骤7) 又2h x ()的解集为{}12x x ,∴112122a a -⎧=⎪⎪⎨+⎪=⎪⎩,, ∴3a =. (步骤8)。
2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。
2013年高考全国数学卷一理科试题及答案
2013年普通高等学校招生全国统一考试(全国卷一】数 学(理工类】参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分】注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( 】A 、42 B 、35 C 、28 D 、212、复数2(1)2i i-=( 】 A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( 】 A 、不存在 B 、等于6 C 、等于3 D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( 】ABCD5、函数1(0,1)x y a a a a=->≠的图象可能是( 】6、下列命题正确的是( 】A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( 】 A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2013年高考理科数学全国卷1(含详细答案)
数学试卷 第1页(共48页)数学试卷 第2页(共48页)数学试卷 第3页(共48页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合20{}|2A x x x =->,{|55}B x x <<=-,则( )A .AB =R B .A B =∅C .B A ⊆D .A B ⊆ 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为( )A .4-B .45-C .4D .453.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为5,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为( )A .3866πcm 3 B .3500πcm 3 C .31372πcm 3D .32048πcm 37.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m =( )A .3B .4C .5D .68.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+9.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .810.已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 11.已知函数22,0,()ln(1),0.x x x f x x x ⎧-+=⎨+>⎩≤若|()|f x ax ≥,则a 的取值范围是 ( )A .(,1]-∞B .(,0]-∞C .[2,1]-D .[2,0]-12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3,n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )A .{}n S 为递增数列B .{}n S 为递减数列C .21{}n S -为递增数列,2{}n S 为递减数列D .21{}n S -为递减数列,2{}n S 为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________.14.若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________.16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在ABC △中,90ABC ∠=,3AB =,1BC =,P 为ABC △内一点,90BPC ∠=.(Ⅰ)若12PB =,求PA ; (Ⅱ)若150APB ∠=,求tan PBA ∠.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共48页)数学试卷 第5页(共48页) 数学试卷 第6页(共48页)18.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果3n =,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4n =,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.20.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .21.(本小题满分12分)设函数2()f x x ax b =++,()e ()xg x cx d =+.若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线42y x =+.(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若2x -≥时,()()f x kg x ≤,求k 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF △外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02π)ρθ≥≤<.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a ->,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围.=|2A B x{A B=R,故选【提示】根据一元二次不等式的解法,求出集合,再根据的定义求出A B和A B.【考点】并集及其运算,一元二次不等式的解法【答案】D4i)34=+,故z的虚部等于i553/ 16故选A.=,解得1)1245 / 16故选A .(2)(2+1)7!!!(+1)!m m m m m m =⨯,即13,再利用组合数的计算公式,解方程综上可知:[,0]2a∈-.(步骤4)67 / 16【提示】由1n n a a +=可知n n n A B C △的边n n B C 为定值1a ,由111112(2)2n n n n b c a b c a +++=+--及1112b c a +=得12n n b c a +=,则在n n n A B C △中边长1n n B C a =为定值,另两边n n n n A C A B 、的长度之和12n n b c a +=为定值,由此可知顶点n A 在以n n B C 、为焦点的椭圆上,根据111()2n n n n b c b c ++=---,得1111()2n n n b c b c -⎛⎫=- ⎪⎝⎭-,可知n →+∞时n n b c →,据此可判断n n n A B C △的边n n B C 的高n h 随着n 的增大而增大,再由三角形面积公式可得到答案. 【答案】2t =【解析】∵(1)c ta t b =-+,∴2(+1)||b t b ab t =-.(步骤又∵||||1a b ==,且a 与b 夹角为60,b c ⊥,∴0|cos6|||0+t a b =︒2【提示】由于0b c =,对式子(1)c ta t b =-+两边与b 作数量积可得|cos6|||0+a b ︒【考点】平面向量的数量积.85)(22,--+)(25,-+5)单调递增,在5)2-+单调递增,在9 / 161OCOA O =,所以1OAC 平面两两相互垂直.为坐标原点,OA的方向为|OA|为单位长,建立如图所示的空间直角坐标系则(1,0,BC=,11(1,BB AA==-,(0,3,AC=-设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩即可取,1(3,n=-10cos,5||||n ACn ACn AC=-〈〉=BB1C1C所成角的正弦值为51111得1AB AC⊥;(Ⅱ)易证OA,1OA,OC两两垂直.以O为坐标原点,OA的方向为x轴的正向,||OA为单位长,建立坐标系,可得BC,1BB,AC的坐标,设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩,可解得,1(3,n=-,n AC〈〉,即为所求正弦值.1011 / 1622)()A B ,411161616⨯+1【提示】(Ⅰ)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得1212()()|+|+++4PM PN R r r R r r ==-=||,而||2NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(Ⅱ)设曲线C 上任意一点,()P x y ,由于||2222PM PN R ≤|-|=-,所以2R ≤,当且仅当圆P 的圆心为所以可设l :4)+(y k x =,与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【考点】圆的标准方程及其性质,椭圆的的定义及其几何性质,直线与双曲线的位置关系.21.【答案】(Ⅰ)4a =2b =2c =2d =(Ⅱ)2[1,]e【解析】(Ⅰ)由已知得(0)2f =,(0)2g =,(0)4f '=,(0)4g '=.(步骤1)而+()2f x x a =',((+))+x g x e cx d c '=,故2b =,2d =,4a =,+4d c =.(步骤2)从而4a =,2b =,2c =,2d =.(步骤3)13 / 16(Ⅱ)由(Ⅰ)知,2()+4+2f x x x =,()21)+(x g x e x =.设函数2()()()2()+142x F x kg x f x ke x x x =-=---,则()2+()2242+1(2())x x F x ke x x x ke '=--=-.由题设可得(0)0F ≥,即1k ≥(步骤4)令()0F x '=得1ln x k =-,22x -=.(步骤5)①若21k e ≤<,则120x <≤-.从而当12(),x x ∈-时,()0F x '<;当1(),+x x ∈∞时,()0F x '>.即()F x 在1()2,x -单调递减,在1(),+x ∞单调递增.故()F x 在[)2,+-∞的最小值为1()F x .(步骤6)而1111211()2+24+0)22(F x x x x x x =--=-≥-.故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤7)②若2k e =,则2222+()()()2x F e x e e x -'=-.从而当2x >-时,)0(F x '>,即F (x )在()2,+-∞单调递增.而()20F -=,故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤8)③若2k e >,则22222+220()()F ke e k e ---=-=-<-.从而当2x ≥-时,()()f kg x x ≤不可能恒成立.综上,k 的取值范围是2[1,]e .(步骤9)【提示】(Ⅰ)对()f x ,()g x 进行求导,已知在交点处有相同的切线及曲线()y f x =和曲线()y g x =都过点(0,2)P ,从而解出a ,b ,c ,d 的值;(Ⅱ)由(Ⅰ)得出()f x ,()g x 的解析式,再求出()F x 及它的导函数,通过对k 的讨论,判断出()F x 的90,由勾股定理可得,故DG 60.30,所以CF ⊥BF ,故60.从而30.得到15 / 16【提示】(Ⅰ)对于曲线1C 利用三角函数的平方关系式22sin cos 1t t +=即可得到圆1C 的普通方程;再利用极坐标与直角坐标的互化公式即可得到1C 的极坐标方程;(Ⅱ)先求出曲线2C 的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标3⎝⎦21||23|2|x x y x +-=---,画出函数y 的图象,数形结合可得结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.、甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为 ,各局比赛的结果相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
15.记不等式组 所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是________.
15. [解析]已知不等式组表示的平面区域如图1-2中的三角形ABC及其内部,直线y=a(x+1)是过点(-1,0)斜率为a的直线,该直线与区域D有公共点时,a的最小值为MA的斜率,最大值为MB的斜率,其中点A(1,1),B(0,4),故MA的斜率等于 = ,MB的斜率等于 =4,故实数a的取值范围是 .
· =(x1+2,y1-2)·(x2+2,y2-2)=x1x2+2(x1+x2)+4+y1y2-2(y1+y2)+4
=4+16t2+8+4-16-16t+4=16t2-16t+4=4(2t-1)2=0,解得t= ,所以k= =2.
12.、已知函数f(x)=cosxsin2x,下列结论中错误的是()
A.y=f(x)的图像关于点(π,0)中心对称
= +2×
= ,
故A-C=30°或A-C=-30°,
因此C=15°或C=45°.
19.、如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形.
(1)证明:PB⊥CD;
(2)求二面角A-PD-C的大小.
19.解:(1)取BC的中点E,联结DE,则四边形ABED为正方形.
过P作PO⊥平面ABCD,垂足为O.
联结OA,OB,OD,OE.
由△PAB和△PAD都是等边三角形知PA=PB=PD,
所以OA=OB=OD,即点O为正方形ABED对角线的交点,
故OE⊥BD,从而PB⊥OE.
因为O是BD的中点,E是BC的中点,所以OE∥CD.因此PB⊥CD.
(2)解法一:由(1)知CD⊥PB,CD⊥PO,PB∩PO=P,
4.已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为()
A.(-1,1)B.
C.(-1,0)D.
4.B[解析]对于f(2x+1),-1<2x+1<0,解得-1<x<- ,即函数f(2x+1)的定义域为 .
5.函数f(x)=log2 (x>0)的反函数f-1(x)=()
A. (x>0)B. (x≠0)
9.、若函数f(x)=x2+ax+ 在 是增函数,则a的取值范围是()
A.[-1,0]B.[-1,+∞)
C.[0,3]D.[3,+∞)
9.D[解析]f′(x)=2x+a- ≥0在 上恒成立,即a≥ -2x在 上恒成立,由于y= -2x在 上单调递减,所以y<3,故只要a≥3.
10.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()
21.解:(1)由题设知 =3,即 =9,故b2=8a2.
故CD⊥平面PBD.
又PD⊂平面PBD,所以CD⊥PD.
取PD的中点F,PC的中点G,连FG.
则FG∥CD,FG⊥PD.
联结AF,由△APD为等边三角形可得AF⊥PD.
所以∠AFG为二面角A-PD-C的平面角.
联结AG,EG,则EG∥PB.
又PB⊥AE,所以EG⊥AE.
设AB=2,则AE=2 ,EG= PB=1,
取y=-1,得x=0,z=1,故1=(0,-1,1).
设平面PAD的法向量为2=(m,p源自q),则2· =(m,p,q)·( ,0, )=0,
2· =(m,p,q)·( ,- ,0)=0,
可得m+q=0,m-p=0.
取m=1,得p=1,q=-1,故2=(1,1,-1).
于是cos〈,2〉= =- .
13.已知α是第三象限角,sinα=- ,则cotα=________.
13.2 [解析]cosα=- =- ,所以cotα= =2 .
14.、6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答)
14.480[解析]先排另外四人,方法数是A ,再在隔出的五个位置安插甲乙,方法数是A ,根据乘法原理得不同排法共有A A =24×20=480种.
B1表示事件“第1局结果为乙胜丙”,
B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,
B3表示事件“第3局乙参加比赛时,结果为乙负”.
则P(X=0)=P(B1·B2·A3)=P(B1)P(B2)P(A3)= ,
P(X=2)=P(B1·B3)=P(B1)P(B3)= ,
P(X=1)=1-P(X=0)-P(X=2)=1- - = ,
2013·全国卷(理科数学)
1.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()
A.3B.4
C.5D.6
1.B[解析]1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M中有4个元素.
2.(1+ i)3=()
A.-8B.8
8.、椭圆C: + =1的左、右顶点分别为A1,A2,点P在C上且直线PA2斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是()
A. B.
C. D.
8.B[解析]椭圆的左、右顶点分别为(-2,0),(2,0),设P(x0,y0),则kPA1kPA2= · = ,而 + =1,即y = (4-x ),所以kPA1kPA2=- ,所以kPA1=- ∈ .
(2)X表示前4局中乙当裁判的次数,求X的数学期望.
20.解:(1)记A1表示事件“第2局结果为甲胜”,
A2表示事件“第3局甲参加比赛,结果为甲负”,
A表示事件“第4局甲当裁判”.
则A=A1·A2.
P(A)=P(A1·A2)=P(A1)P(A2)= .
(2)X的可能取值为0,1,2.
记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,
E(X)=0·P(X=0)+1·P(X=1)+2·P(X=2)= .
21.、、已知双曲线C: - =1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为 .
(1)求a,b;
(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.
B.y=f(x)的图像关于直线x= 对称
C.f(x)的最大值为
D.f(x)既是奇函数,又是周期函数
12.C[解析]因为对任意x,f(π-x)+f(π+x)=cosxsin2x-cosxsin2x=0,故函数f(x)图像关于点(π,0)中心对称;因为对任意x恒有f(π-x)=cosxsin2x=f(x),故函数f(x)图像关于直线x= 对称;f(-x)=-f(x),f(x+2π)=f(x),故f(x)既是奇函数也是周期函数;对选项C中,f(x)=2cos2xsinx=2(1-sin2x)sinx,令t=sinx∈[-1,1],设y=(1-t2)t=-t3+t,y′=-3t2+1,可得函数y的极大值点为t= ,所以y在 上的极大值为- + = ,函数的端点值为0,故函数y在区间 的最大值为 ,函数f(x)的最大值为 ,所以选项C中的结论错误.
17.、等差数列{an}前n项和为Sn.已知S3=a ,且S1,S2,S4成等比数列,求{an}的通项公式.
17.解:设{an}的公差为d.
由S3=a ,得3a2=a ,故a2=0或a2=3.
由S1,S2,S4成等比数列得S =S1S4.
又S1=a2-d,S2=2a2-d,S4=4a2+2d,
故(2a2-d)2=(a2-d)(4a2+2d).
所以sin∠CDE= = .
11.、已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A,B两点.若 ·MB=0,则k=()
A. B.
C. D.2
11.D[解析]抛物线的焦点坐标为(2,0),设直线l的方程为x=ty+2,与抛物线方程联立得y2-8ty-16=0.设A(x1,y1),B(x2,y2),则y1y2=-16,y1+y2=8t,x1+x2=t(y1+y2)+4=8t2+4,x1x2=t2y1y2+2t(y1+y2)+4=-16t2+16t2+4=4.
C.2x-1(x∈)D.2x-1(x>0)
5.A[解析]令y=log2 ,则y>0,且1+ =2y,解得x= ,交换x,y得f-1(x)= (x>0).
6.已知数列{an}满足3an+1+an=0,a2=- ,则{an}的前10项和等于()
A.-6(1-3-10)B. (1-310)
C.3(1-3-10)D.3(1+3-10)
C.-8iD.8i
2.A[解析](1+ i)3=13+3×12( i)+3×1×( i)2+( i)3=1+3 i-9-3 i=-8.
3.已知向量=(λ+1,1),=(λ+2,2),若(+)(-),则λ=()
A.-4B.-3
C.-2D.-1
3.B[解析](+)⊥(-)⇔(+)·(-)=0⇔2=2,所以(λ+1)2+12=(λ+2)2+22,解得λ=-3.
若a2=0,则d2=-2d2,所以d=0,
此时Sn=0,不合题意;
若a2=3,则(6-d)2=(3-d)(12+2d),
解得d=0或d=2.
因此{an}的通项公式为an=3或an=2n-1.
18.、设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.
(1)求B;
(2)若sinAsinC= ,求C.