2013年全国统一高考数学试卷(文科)(新课标一)及答案

合集下载

2013年高考文科数学真题及答案全国卷

2013年高考文科数学真题及答案全国卷

2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。

【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A.B .11+i 2- C . D .【答案】B【考点】本题主要考查复数的基本运算。

【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-.3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。

【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .B .C .12y x =±D .【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。

【解析】∵5e =5c a =2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。

2013年高考新课标全国卷Ⅰ文科数学试题(附答案)

2013年高考新课标全国卷Ⅰ文科数学试题(附答案)

2013年全国高考试题独家解析(新课标卷Ⅰ)文科数学试题第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =( )(A ){}14, (B ){}23,(C ){}916,(D ){}12,(2)212(1)ii +=-( ) (A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14(D )16(4)已知双曲线2222:1x y C a b -=(0,0)a b >>的离心率为2,则C 的渐近线方程为( )(A )14y x =±(B )13y x =± (C )12y x =±(D )y x =± (5)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )(A )p q ∧ (B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝ (6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =-(C )43n n S a =-(D )32n nS a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F为抛物线2:C y =的焦点,P 为C上一点,若||PF =,则POF ∆的面积为( ) (A )2(B) (C) (D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )A B C D(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10 (B )9 (C )8 (D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+ (C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年高考新课标全国(I卷)文科数学试题及答案最全面(精华版)

2013年高考新课标全国(I卷)文科数学试题及答案最全面(精华版)

2013 年普通高等学校夏季招生全国统一考试数学文史类( 全国卷I新课标)第Ⅰ卷5 分,在每小题给出的四个选项中,只有一项是符合题目一、选择题:本大题共12小题,每小题要求的.1.已知集合A={1,2,3,4}2 ,n∈A} ,则A∩B=( ,B={ x| x=n) .A.{1,4}.{1,2}.{2,3}B.{9,16}C D1 1 2ii=( ) .2.21 1 1 11 i 1+ i 1+ i 1 iA.2中任取2 2 22 的概率是...B C D3.从1,2,3,41A.22 个不同的数,则取出的个数之差的绝对值为) .2(131 14 6B C D...2 2 52,则 C 的渐近线方程为() .x y4.( ,文4) 已知双曲线C:=12 2( a>0,b>0) 的离心率为a b1 14 1 2x x x3.y=.y=B CA.y=5.( ,文5) 已知命题D.y=±xp:? x∈R,2x<3 x;命题q:?x∈R,x3 =1-x2,则下列命题中为真命题的是q() .A.p∧q B.p ∧q C.p∧q D .p∧2的等比数列3 S n,则) .6.(,文6)设首项为1,公比为a n}的前n 项和为({A.Sn =2an-1 B .Sn=3an -2 C .Sn=4-3an .Sn =3-2anD7.( ,文7) 执行下面的程序框图,如果输入的t ∈[ -1,3] ,则输出的s 属于( ) .A.[ -3,4] C.[ -4,3].[ -5,2].[ -2,5] BD2=4则△2xPOF=4 2为上一点,若| PF|,8.( ,文为坐标原点, F 为抛物线C:y P(C 8) O的焦点,的面积为) ..2 2 2 3A.29.( ,文.4-π,π]的图像大致为B C Dx 在[.9) 函数 f ( x) =(1 -cos x)sin ) .(10.(,知锐角文△10) 已ABC 2A+cos2A=0,a=7,c=6,则b=() .的内角A,B,C 的对边分别为a,b,c, 23cosA.10 .9 C .8 D .5B11 .( ,文11) 某几何体的三视图如图所示,则该几何体的体积为) .(A.16 +8πB.8+8 πC.16 +16πD.8+16 π****2 , x x 0,2若| f ( x)| ≥ax ,则 a 的取12 .(,文12) 已知函数 f ( x) =xln( x 1), x 0.值范围是() .A.( -≦,C.[ -2,1].( -≦,1]0] BD.[ -2,0]1第 Ⅱ卷二、填空题:本大题共4 小题,每小题 5 分.13 . ( ,文 已知两个单位向量a , b的夹角为 1 60°, c = ta + (1 - t ) b . 若 b ·c = 0 ,则t = 13). 则z = 2x - y 的最大值为.x 3, 14 . ( ,文 14) 设 x , y 满足约束条件 1 x y 0,AH ∶ HB = 1 ∶2, AB ⊥平面 α, H α截球 15 . ( ,文 15) 已知 H 是球 O 的直径 AB 上一点, 为垂足, O 所得截面的面积为 π, 则 球 的表面积为 . O 设当x = θ时,函数θ= .16 . ( ,文 16) f ( x ) =sin x - 2cos x 取得最大值,则cos三、解答题:解答应写出文字说明,证明过程或演 算步骤.{ a n } 的前 n S n 满足 S 3= 0 , S 5 =- 17 . ( ,文 17)( 本小题满分 12 分 ) 已知等差数列 项和 5. 求 { a n } 的通项公式; (1) 1 a1 求数列(2) 的前 n 项和.a2n 2n 118 . ( ,文 18)( 本小题满分 12 分 ) 为了比较两种治疗失眠症的药 ( 分别称为 A 药, B 药 ) 的疗效,随机地选取 20 位患者服用A 药, 20 位患者服用 下:B 药,这 40 位患者在服用一段时间后,记录他们日平均增加的睡眠时间 ( 单位: h) .试验的观测结果如服用 0.6 服用 3.2A 药的 1.2B 药的 1.720 2.7 20 1.9位患者日平均增加的睡眠时间: 1.5 2.8 1.8 2.2 2.33.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 位患者日平均增加的睡眠时间: 0.80.92.41.22.61.31.41.60.51.80.62.11.12.51.22.70.5分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? 根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?(1) (2) ABC - A 1 B 1C 1 中, CA = CB , AB = AA 1 ,∠ BAA 1=19 . ( ,文 19)( 本小题满分 60° . (1) 证明: AB ⊥ A 1C ;1C =12 分 ) 如图,三棱柱6 ABC - A,求三棱柱(2) 若 AB = CB = 2, A 1B 1C 1 的体积.****20 .( ,文20)( 本小题满分12 分) 已知函数 f ( x) =e-x2 -4x,曲线y=f ( x) 在点(0 ,f (0)) 处的切线方程为y=4x +4. x( ax+b)(1) 求a,b 的值;(2) 讨论 f ( x) 的单调性,并求 f ( x) 的极大值.2+y 2=1,圆N:(x-1) 2 +y2=9,动圆切,与圆M 外切并且与圆内P N21 .( ,文21)( 本小题满分12 分) 已知圆M:( x+1)圆心的轨迹为曲线P C.求C 的方程;(1)(2) l 是与圆P,圆M 都相切的一条直线,l 与曲线 C 交于A,B 两点,当圆P 的半径最长时,求| AB|.4请考生在第(22) 、 (23) 、 (24) 三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第 做答时请用2B 铅笔在答题卡上将所选题号后的方框 涂 黑. 一 个题 目计分 ,22 . ( ,文 如图,直线22)( 本小题满分 10 分 ) 选修4— 1 :几何证明选 讲 为圆的切线,切点为 B ,点 C 在圆上, A ∠BC 的角平分线 交圆于点 E , DB 垂直 交圆于点 AB BE BE D .x y 4 5 5cos t, 5sin tC ( t 23 ( 23)( 分 选修— 10 ) 4 4. ,文本为参数 ) ,小题满分 :坐标系与参数方程已知曲线的参数方程为1x 轴的正半轴为极轴建立极坐标系,曲 C 2 的极坐标方程为 ρ= 2sin θ.以坐标原点为极点, 线 C(1)把 的参数方程化为极坐标方程;1(2) C 与 C 交点的极坐标 求 (0,0 2 ) θ< ρ≥ ≤ π . 1 2510 分 ) 选修4— 5 :不等式选讲已知函数 f ( x ) = |2 x - 1| f ( x ) < g ( x ) 的解集;x + a | , g ( x ) = x + 3. 24 . ( ,文 24)( 本小题满分 2 时,求不等式 + |2 (1) 当 a =- 时, f ( x ) ≤ g ( x ) ,求 a 的取值范围.a 2 12(2) 设a >- x ∈1,且当 ,2013 年普通高等学校夏季招生全国统一考试数学文 史类 ( 全国卷 I 新课标)第 Ⅰ卷5 分,在每小题给出的四个选项中,只有一项是符合题目 一、选择题:本1大题共2 小题,每小题 1. 答案: A解析: ≧ B = { x | x = n 要求的.2, n ∈A } = {1,4,9,16}2. , ? A ∩B = {1,4} . 答案: B 1 2i1 2i 1 2i i2 i 1 2解析:= 1+i .21 i2i223.答案: B解析:由题意知总事件数为 6,且分别为 , (1,3) , (1,4) ,(2,3) , (2,4) , (3,4) ,满足条件的事件数是 2,所以所求(1,2) 1 3的概率为 .4. 答案: C 25 ca 5 25 4c解析: ≧,即.e, ?22a 21 4 b a1 2 b2= a 2+ b 2= a 2+ b2,?≧c. ?.2ab a ≧双曲线的渐近线方程为 ,y x 1?渐近线方程为 yx . 故选 C.25.答案: B解析:由 0 = 30 知, 2 p 为假命题.令h ( x ) = x 3- 1+ x 2, ≧h (0) =- 1< 0, h (1) ? x = 1 >0, 3- 1+ x 2 = 0 在(0,1) 内有解. ? ? x ∈R , x 3= 1- x 2 ,即命题 q 为真命题.由此可知只有p ∧q 为真命题.故选B. 6 .答案: D= 3- 2a n ,故选 D.2 nn1a aq aa q13解析:11nSn21 1 1qq37.答案: A解析:当- 1≤ t s = 3t ,则s ∈[ < 1 时, - 3,3) . 当 1≤ t ≤ 3 时, s = 4t - t2.≧该函数的对称轴为 t = 2,?该函数在[1,2] 上单调递增, 在 [2,3] 上单调递减. s max = 4, s min =? 3. ? s ∈[3,4] .- 3,4] .故选 综上知 s ∈[ A.****8. 答案: Cx2 4 2 x P = 32 解析:利用 | PF | ,可得= .P12 2 6 23 .SP =. ?P| y= ? y △POF= OF | ·| | 故选 C.9 . 7答案: Cπ 2解析:由 f ( x ) = (1 - cos x )sin x 知其为奇函数.可排除 B .当 x ∈时, f ( x ) > 0,排除 A.0,2x + cos x (1 - cos x ) =- 2cos 2x + cos x + 1.当 x ∈(0 ,π) 时, f ′( x ) = sin 2 令 f ′( x ) = 0,得x.π32 故极值点为 x,可排除 πD ,故选 C.10 . 答案: D31 252A+ cos 2 A解析:由 23cos = 0,得 cos 2A =2A + cos 2 .A = 0,得 cos 2A =π 21 5,? cos A =.≧A ∈0,213 36 b 49 ,? b = 5 或≧cos A = b( 舍 ) .2 6b5故选 11 . 答案: AD. 解析:该几何体为一个半圆柱与一个长方体组成的一个组合体.1V =π×2半圆柱2×4= 8π,V2= 4×2×2= 16.长方体所以所求体积为 12 . 答案: D解析:可画出16 + 8π. 故选 A. | f ( x )| 的图象如图所示.当 a > 0 时, y = ax 与 y = | f ( x )| 恒有公共点,所以排除 B , C ;当 a ≤ 若 x ≤ 时,若 x > 0,则 | f ( x )| ≥ ax 恒成立. y = ax 与 y = | - x2+ 2x | 相切为界限,0 0,则以 y ax,2x得 x2- ( a + 2) x由= 0.y 2x,2- ( a + 2) x = 0.2= 0,? a =- 2.≧Δ= ( a + 2)a ∈[ - 2,0] .故选 ? D.第 Ⅱ卷第 13 题~第 本卷包括必考题和选考题两部 分 .生根据要求做答. 21 题为必考题, 每个试题考生都必须做答.第 22 题~第 24 题为选考题, 考二、填空题:本大题共 4 小题,每小题5 分.13 .答案: 21 21 2a ·b = 1 1解析: ≧ b ·c = 0, | a | = | b | = 1,〈 a , b 〉= 60 °, ? .? b ·c = [ ta + (1 - t ) b ] ·b = 0 , 即 ta ·b + (1 - t ) b2= 0.2= 0.1t + 1 -t = 0. ?2? t = 2.14 .答案: 3解析:画出可行域如图所示.****时,画出直线2x-y=0,并平移,当直线经过点A(3,3) z 取最大值,且最大z=2×3-3=3.值为89 2π15 .答案: 解析:如图,设球 O 的半径为R , 2R 3, 则A H =ROH =.3 又≧π·EH2= π,? EH = 1.2R 398 2+1,? 2=R ≧在 2 =Rt △OEH 中, R . 2=2=9 π? 球= 4πRS2=.2 2 516 .答案:5解析: ≧ f ( x ) = sin x - 2cos 5 5 5x = x - φ) ,sin( 2 5 φ=φ=其中 sin , cos .5π( k ∈Z) 2πx - φ= 2k π+当 时, f ( x ) 取最大值.π+ φ( k ∈Z) .2即 θ- φ= 2k π+( k ∈Z) , θ=2k π+ 2π 22 5 φ=? cos θ==- sin cos.5三、解答题:解答应写出文字说明,证明过程或 17 .演 算步骤. n(n 1) 解: (1) 设 { a n } 的公差为d ,则S n =nad .123a5a3d 10d0, 5,由已知可得11解得 a 1 = 1, d =- 1.故 { a n } 的通项公式为a n = 2- n .1 a 2n 1 2n 1a1 12 1 2n3 12n = ,(2) 由 (1)知 a3 2n 1 2n11从而数列的前 n 项和为a2 n 12 n 11 21 1 n1 1 1 1131 1 2n 32n 1=.1 2n18 .A 药观测数据的平均数为x ,B 药观测数据的平均数为y 解: (1) 设 . 由观测结果可 得****1 20 (0.6 +1.2 +1.2 +1.5 +1.5 +1.8 +2.2 +2.3 +2.3 +2.4 +2.5 +2.6 +2.7 +2.7 +2.8 +2.9 +3.0 +3.1 +3.2 +x =90.7)= 2.3 ,1 20( 0.5 + 0.5 + 0.6 + 0.8 + 0.9 + 1.1 + 1.2 + 1.2 + 1.3 + 1.4 + 1.6 + 1.7 + 1.8 + 1.9 + 2.1 + 2.4 + 2.5 + 2.6 + 2.7 +y =3.3)= 1.6.x > y 由以上计算结果可得A 药的疗效更好.,因此可看出(2) 由观测结果可绘制如下茎 叶图:的叶集中在茎 0,177 从以上茎叶图可以看出, A 药疗效的试验结果有的叶集中在茎 上,而 药疗效的试验结果有 2,3 B 1010上,由此可看出 19 .A 药的疗效更好.(1) 证明:取 AB 的中点 O ,连结 OC , OA 1 , A 1B . 因为 由于 CA = CB , 所以 OC ⊥AB . AB = AA 1,∠BAA1 = 60°, 故△AA 1B 为等边三角形,所以 OA 1⊥AB . 因为 OC ∩OA 1= O ,所以 AB ⊥平面OA 1 C . 又 A 1 C ? 平面 OA 1C ,故 AB ⊥A 1 C .(2) 解:由题设知 △ ABC 与△AA 1 B 都是边长为 所以 OC = OA2 的等边三角形,3 1=.2+22= OCOA6 1C =,则A ,又 A 1C1故 OA 1⊥OC .因为 OC ∩AB = O ,所以 OA 1 ⊥平面 ABC , OA 1 为三棱柱 ABC -A 1B 1C 1 的高.3 ,故三棱柱△ABC=ABC - A1 B 1C 1 的体积V = S △ABC ×OA 1= 3.又△ABC 的面积S 20 .解: (1) f ′( x ) = ex( ax + a + b ) - 2x - 4.由已知得 f (0) = 4, f ′(0) = 4. 故 b = 4, a + b = 8. 从而 a = 4 ,b = 4.(2) 由 (1) 知, f ( x ) = 4ex( x + 1) - x 2- 4x ,e 1x( x + 2) - 2x - 4= 4( x + 2) ·. f ′( x ) = 4ex2 - 当 故 当 令 f ′( x ) = 0 得, x =- ln 2 或 x =- 2. 从而当 x ∈( -≦,2) ∪( - ln 2 x ∈( - 2,- ,+ ≦) 时, f ′( x ) > 0; 时, f ′( x ) < 0.2) , ( - ln 2 ,+ ≦) 上单调递增,在 ln 2) f ( x ) 在 ( -≦,- ( - 2 ,- 上单调递减.ln 2) - 2) . x =- 时,函数f ( x ) 取得极大值,极大值为2 f ( -2) = 4(1 - e****21 .解:由已知得圆M 的圆心为M(-1,0) ,半径r 1=1;圆N 的圆心为N(1,0) ,半径r 2 =3. 设圆P 的圆心为P( x,y) ,半径为R.(1) 因为圆P 与圆M 外切并且与圆N 内切,所以| PM | +| PN | =( R+r 1 ) +( r2-R)=r 1+r 2=4.3由椭圆的定义可知,曲线是以M,N 为左、右焦点,长半轴长为2,短半轴长为C 的椭圆( 左顶点除外) ,其方程为2 2x 4 y3(x≠-.=1 2)10(2) 对于曲线 C 上任意一点 P ( x , y ) ,由于 2,| PM | - | PN | = 2 R - 2 ≤ 所以 R ≤ 2 ,当且仅当圆 P 的圆心为 (2,0) 时, R = 2. 所以当圆 P 的半径最长时,其方程为( x - 2)2+ y 2 = 4. 23 若 的倾斜角为 l 90 °,则 l 与 y 轴重合,可得 | AB | = .|QP | | QM R r1若 的倾斜角不为90°,由 l r1≠R 知 不平行于 x 轴,设l 与 轴的交点为Q ,则l x ,可求得 Q ( - 4,0) ,所以|可设l : y =k ( x +4) . |3k | 2 4由 与圆 相切得= 1,解得 k =l M .21 k222 42 4 6 72 x 4y 32+ 8x - 8= 0 ,解得 x时,将 ,当 k ==1yx 21,2=4,并整理得 7x182所以 | AB | =.1 k| x7 2- x 1| =2 418 7当 k =时,由图形的对称性可 知 | AB | =.1823 AB | 或 | AB | =综上, | = .7请考生在第(22) 、 (23) 、 (24) 三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第 做答时请用2B 铅笔在答题卡上将所选题号后的方框 涂 黑. 22 .一 个题 目计分, (1) 证明:连结DE ,交BC于点 G .由弦切角定理得, ∠ ABE =∠BCE . 而∠ABE =∠CBE ,故∠CBE = ∠BCE , BE = CE . 又因为 DB ⊥BE ,所以 DE 为直径, ∠ DCE = 90°, 由勾股定理可得(2) 解:由 (1) DB = DC .知, ∠CDE = ∠BDE , DB =DC , 故 DG 是 BC 的中垂线,3所以 BG =.2设D E 的中点为 O ,连结BO ,则 ∠BOG = 60 °. 从而 ∠ABE = ∠BCE = ∠CBE = 30 °, 所以 CF ⊥BF ,3 2故 Rt △BCF 外接圆的半径等于 .23 . 2+ ( y - 5) 2= 25,x y 4 5 5cost , 5sin t解: (1) 将消去参数 t ,化为普通方程( x - 4)即 C1 : x 2+ y 2-8x - 10 y + 16= 0. x ycos sin, 得 ρ2 - 8ρcos θ- 10 ρsin θ+ 16=将代入 0.x 2 + y 2 - 8 x - 10 y + 16 = 0 2+ y 2 - 8x - 10 y + 16 = 0 得 ρ2 - 8ρcos θ- 10 ρsin θ+ 16= 0.所以 C1的极坐标方程为 2- 8ρcos θ- 10 ρsin θ+ 16 = 0. ρ****(2) C 2 的普通方程为x2+ y 2 - 2y = 0.22xy8x 10y 16 0,由22xy1, 12 yx y0, 2.x y 解得或11π 4π 2,所以 C1 与 C .2,2, 24 .2交点的极坐标分别为 解: (1) 当 a =- 2 时,不等式f ( x ) <g ( x ) 化为|2 x - 1| + |2 x - 2| - x - 3< 0.设函数y = |2 x - 1| + |2 x - 2| - x - 3,15x, x ,2 1 则y =x 2, x 1,2 6,x3x1.x ∈(0,2) y < 0.其图像如图所示.从图像可知,当且 仅当 时, 所以原不等式的解集是 { x |0 < x < 2} . 时, f ( x ) = 1+a .a 2 12(2) 当 x ∈, 不等式 f ( x ) ≤ g ( x ) 化为1+ a ≤ x + 3. a 2 4 3 12都成立.所以 x ≥ a - 2 对x ∈, a 2故. ≥ a - 2,即 a ≤4 3从而 a 的取值范围是 .1,12。

2013年高考文科数学全国新课标卷1答案

2013年高考文科数学全国新课标卷1答案
4
f′(x)=4ex(x+2)-2x-4=4(x+2)· e x .
令 f′(x)=0 得,x=-ln 2 或 x=-2. 从而当 x∈(-∞,-2)∪(-ln 2,+∞)时,f′(x)>0; 当 x∈(-2,-ln 2)时,f′(x)<0. 故 f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. -2 当 x=-2 时,函数 f(x)取得极大值,极大值为 f(-2)=4(1-e ). 21. 解: 由已知得圆 M 的圆心为 M(-1,0), 半径 r1=1; 圆 N 的圆心为 N(1,0), 半径 r2=3.设圆 P 的圆心为 P(x, y),半径为 R. (1)因为圆 P 与圆 M 外切并且与圆 N 内切, 所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4. 由椭圆的定义可知,曲线 C 是以 M,N 为左、右焦点,长半轴长为 2,短半轴长为 3 的椭圆(左顶点除外), 其方程为
所以所求体积为 16+8π .故选 A. 12. 答案:D 解析:可画出|f(x)|的图象如图所示. 当 a>0 时,y=ax 与 y=|f(x)|恒有公共点,所以排除 B,C; 当 a≤0 时,若 x>0,则|f(x)|≥ax 恒成立. 2 若 x≤0,则以 y=ax 与 y=|-x +2x|相切为界限, 由
叶集中在茎 0,1 上,由此可看出 A 药的疗效更好. 19. (1)证明:取 AB 的中点 O,连结 OC,OA1,A1B. 因为 CA=CB, 所以 OC⊥AB. 由于 AB=AA1,∠BAA1=60°, 故△AA1B 为等边三角形, 所以 OA1⊥AB. 因为 OC∩OA1=O,所以 AB⊥平面 OA1C. 又 A1C⊂ 平面 OA1C,故 AB⊥A1C. (2)解:由题设知△ABC 与△AA1B 都是边长为 2 的等边三角形, 所以 OC=OA1= 3 . 又 A1C= 6 ,则 A1C =OC + OA1 ,

2013年高考数学(文)新课标全国卷Ⅰ试题及答案(word版)

2013年高考数学(文)新课标全国卷Ⅰ试题及答案(word版)

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题共12小题。

每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i (B)-1 + i (C)1 + i (D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b= (A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年高考文科数学全国新课标卷1试题与答案word解析版

2013年高考文科数学全国新课标卷1试题与答案word解析版

2013年普通高等学校招生全国统一考试(新课标全国卷I )数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。

【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A. −1−12i B .11+i 2- C .1+12i D .1−12i 【答案】B【考点】本题主要考查复数的基本运算。

【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-.3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力.【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13。

4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0,则C 的渐近线方程为( ).A . y =±14x B .y =±13x C .12y x =± D .y =±x【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程.【解析】∵2e =2c a =,即2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C 。

2013年高考文科数学全国新课标卷1试题与答案word解析版



1 的前 n 项和 a2 n −1a2 n +1
2
令8 (以代令3 课标全 文 令8)(本小题满 令以 )为了比较两种治疗失 症的药( 别 为 ∪ 药 B 药)的 疗效 随机地选取 以代 位患者服用 ∪ 药 以代 位患者服用 B 药 这 4代 位患者在服用一段时间后 记录他们日 均增加的睡 时间(单位 h) 试验的观测结果如 服用 ∪ 药的 以代 位患者日 均增加的睡 时间 代.6 令.以 以.7 令.5 以.8 令.8 以.以 以.3 3.以 3.5 以.5 以.6 令.以 以.7 令.5 以.9 3.代 3.令 以.3 以.4 服用 B 药的 以代 位患者日 均增加的睡 时间 3.以 令.7 令.9 代.8 代.9 以.4 令.以 以.6 令.3 令.4 令.6 代.5 令.8 代.6 以.令 令.令 以.5 令.以 以.7 代.5 (令) 别计算两组数据的 均数 从计算结果看 哪种药的疗效更好 (以)根据两组数据完成 面茎 从茎 看 哪种药的疗效更好
文 4)已知双曲线 叶
x2 y2 5 − 2 =1 (a 代 b 代)的离心率为 2 a b 2
1 ± x 2
则 叶 的渐近线方程
∪ y 5 (以代令3 课标全 命题的是( ) ∪ p∧q 6 (以代令3 课标全 ) 以an 令
1 ± x 4
B y 叶 y 号 y ±x x x 3 文 5)已知命题 p ∀x∈R,以 3 命题 q ∃x∈R x 令 B




4
请考生在第(以以)、(以3)、(以4) 题中任选一题做答 注意 只能做所选定的题目 如果多做 则按所做的 第一个题目计 做答时请用 以B 铅笔在答题卡 将所选题 后的方框涂黑 以以 (以代令3 课标全 文 以以)(本小题满 令代 )选修 4—令 几何证明选讲 如 直线 ∪B 为圆的 线 点为 B 点 叶 在圆 ∠∪B叶 的角 线 B∵ 交圆于点 ∵ 号B 垂直 B∵ 交圆于 点 号.

2013年高考数学(文科)(课标I)真题及答案

2013年高考数学(文科)(课标I )真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题共12小题。

每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x |x =n 2,n ∈A},则A∩B=( ) (A ){1,4} (B ){2,3} (C ){9,16} (D ){1,2} (2) 1+2i (1-i)2= ( )(A )-1-12i (B )-1+12i (C )1+12i (D )1-12i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )12 (B )13(C )14 (D )16(4)已知双曲线C:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )(A )y =±14x (B )y =±13x (C )y =±12x (D )y =±x(5)已知命题p :∀x ∈R,2x ><3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )(A ) p∧q (B )¬p∧q (C )p∧¬q (D )¬p∧¬q (6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )(A )S n =2a n -1 (B )S n =3a n -2 (C )S n =4-(7)执行右面的程序框图,如果输入的 t ∈[-1,3],则输出的s 属于( ) (A )[-3,4] (B )[-5,2] (C )[-4,3] (D )[-2,5](8)O 为坐标原点,F 为抛物线C :y ²=42x 的焦点,P 为C 上一点,若|PF|=42,则△POF 的面积为( )(A )2 (B )2 2 (C )2 3 (D )4(9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( )(A ) (B ) (C ) (D )(10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos²A+cos2A=0,a=7,c=6,则b=( )(A )10 (B )9 (C )8 (D )5 (11(A )16+8π (B )8+8π (C )16+16π (D )8+16π(12)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x x ≤0ln(x +1) x >0,若| f (x )|≥ax ,则a 的取值范围是( )(A )(-∞,0] (B )(-∞,1] (C )[-2,1] (D )[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。

2013高考数学全国新课标Ⅰ文答案

2013年普通高等学校招生全国统一考试(全国卷)数 学(新课标Ⅰ文科)参考答案1.分析 先求出集合B ,再进行交集运算.解析:因为{}{}21,2,3,4,,A B x x n n A ===∈,所以{}1,4,9,16B =,所以{}1,4.AB =故选A.2.分析 先进行复数的乘方运算,再进行除法运算. 解析:()()2212i i 12i12i 12i 11i.12i i 2i 221i ++++====-+-+--故选B.3.分析 利用列举法求出事件的个数,再利用古典概型求概率.解析:从1,2,3,4中任取2个不同的数,有()1,2,()1,3,()1,4,()2,1,()2,3,()2,4,()3,1,()3,2,()3,4,()4,1,()4,2,()4,3,共12种情形,而满足条件“2个数之差的绝对值为2”的只有()1,3,()2,4,()3,1,()4,2,共4种情形,所以取出的2个数之差的绝对值为2的概率为41.123=故选B. 4.解析:同理科卷4题.答案C.5.分析 先判断命题,p q 的真假,再结合含有一个逻辑联结词命题真假的判断真值表求解.解析:当0x =时,有23x x =,不满足23x x <,所以:p x ∀∈R ,23x x <是假命题.如图,函数3y x = 与21y x =-有交点,即方程321x x =-有解,所以:q x ∃∈R ,321x x =-是真命题.所以p q ∧为假命题,排除A.因为p ⌝为真命题,所以p q ⌝∧是真命题.选B.6.分析 可以直接利用等比数列的求和公式求解,也可以先求出通项和前n 项和,再建立关系. 解析:方法一:在等比数列{}n a 中,1213322113n n n na a a qS a q -⋅-===---.方法二:在等比数列{}n a 中,121,,3a q ==所以11221.33n n n a --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭12113222313132.233313n n n n n S a -⎡⎤⎛⎫⨯-⎢⎥⎪⎡⎤⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦==-=-=-⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-故选D.7.解析:同理科卷5题.答案A.8.分析 先利用抛物线的焦半径公式求出点的坐标,再结合三角形面积公式求解.=0-1解析:设()00,P x y ,则04P F x =+所以0x=,所以20024y ===,所以0y =因为)F,所以01122POF S OF y =⋅==△故选C. 9.分析 先利用函数的奇偶性排除B ,再利用特殊的函数值的符号排除A ,而最后答案的选择则利用了特定区间上的极值点. 解析:在[],-ππ上,因为()()()()()1cos sin 1cos sin f x x x x x -=---=--=⎡⎤⎣⎦()()1cos sin x x f x --=-,所以()f x 是奇函数,所以()f x 的图象关于原点对称,排除B.取2x π=,则1cos 10f ππ⎛⎫⎛⎫=-= ⎪ ⎪22⎝⎭⎝⎭>,排除A.因为()()1cos sin f x x x =-,所以()()sin sin 1cos cos f x x x x x '=⋅+-2221cos cos cos 2cos cos 1.x x x x x =-+-=-++令()0f x '=,则cos 1x =或1cos 2x =. 结合[],x ∈-ππ,求得()f x 在(]0,π上的极大值点为23π,靠近π,故选C. 10.分析 先求出角A 的余弦值,再利用余弦定理求解.解析:由223cos cos 20A A +=得2223cos 2cos 10A A +-=,解得1cos 5A =±.因为A 是锐角, 所以1c o s 5A =.又2222cos a b c bc A =+-,所以214936265b b =+-⨯⨯⨯,所以5b =或135b =-.又因为0b >,所以5b >.故选D.11.解析:同理科卷8题.答案A. 12.解析:同理科卷11题.答案D. 13.解析:同理科卷13题.答案2.14.分析 作出可行域,进一步探索最大值.解析:作出可行域如图阴影部分.作直线20x y -=,并向右平移,当平移至直线过点B 时,2z x y =-取最大值.而由3,0,x x y =⎧⎨-=⎩得()3,3B .所以max 2333z =⨯-=.15.分析 利用球的截面建立直角三角形求解.解析:如图所示,设球O 的半径为R ,则由12AH HB =::得12233HA R R =⋅=,所以3R OH =.BA 25 2 1 03 1 4 56 729 8 7 7 6 5 4 3 3 2 1 2 2 3 4 6 7 8 918 5 5 2 2 5 5 6 8 906因为截面面积为()2HM π=π⋅,所以1HM =.在Rt HMO △中,222OM OH HM =+,所以222211199R R HM R =+=+,所以4R =所以229442S R ⎛⎫=π=π⋅=π ⎪ ⎪4⎝⎭球.16.解析:同理科卷15题.答案 17.分析 (1)结合等差数列的求和公式列出关于首项和公差的方程组求解;(2)裂项求和,但要注意裂项后的系数. 解析:(1)设{}n a 的公差为d ,则()11.2n n n S na d -=+由已知可得11330,510 5.a d a d +=⎧⎨+=-⎩解得11,1.a d =⎧⎨=-⎩故{}n a 的通项公式为2n a n =-. (2)由(1)知()()2121113212n n a a n n -+=--=11122321n n ⎛⎫- ⎪--⎝⎭,从而数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和为111111121113232112nn n n⎛⎫-+-++-= ⎪----⎝⎭. 18.分析 (1)直接求解平均数,并比较大小;(2)观察茎叶图,看看数据的离散情况及中位数的位置. 解析:(1)设A 药观测数所的平均数为x ,B 药观测数据的平均数为y .由观测结果可得(10.6 1.2 1.2 1.5 1.5 1.8 2.2 2.3 2.320x =++++++++)2.4 2.5 2.6 2.7 2.7 2.8 2.9 3.0 3.1 3.2 3.5 2.3+++++++++++=,(10.50.50.60.80.9 1.1 1.2 1.2 1.3 1.4 1.6 1.720y =+++++++++++)1.8 1.9 2.1 2.4 2.5 2.6 2.7 3.2 1.6++++++++=.由以上计算结果可得x y >,因此可看出A 药的疗效更好.(2)由观测结果可绘制茎叶图如图所示:ABCA 1C 1B 1O 从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎“2.”,“3.”上,而B 药疗效的试验结果有710的叶集中在茎“0.”,“1.”上,由此可看出A 药的疗效更好. 19.分析 (1)先证明直线与平面垂直,再利用线面垂直的性质求解;(2)先证明三棱柱的高,再利用体积公式求解体积. 解析:(1)取AB 的中点O ,连接OC ,11,OA A B .因为CA CB =,所以OC AB ⊥.由于1AB AA =,160BAA ∠=︒,故1AA B △为等边三角形,所以1OA AB ⊥.因为1OC OA O =,所以1A B O A C ⊥平面.又11AC OAC ⊂平面,故1AB AC ⊥.(2)由题设知ABC △与1AA B △都是边长为2的等边三角形,所以1OC OA ==又1AC =则22211AC OC OA =+,故1.OAOC ⊥因为OC AB O =,所以1OA ABC ⊥平面,1OA 为三棱柱111-ABC A B C 的高.又ABC △的面积ABC S △,故三棱柱111-A B C A B C 的体积13ABC V S OA =⋅=△.20.分析 (1)利用函数值和导函数值列出方程(组)求解字母的值;(2)先求出函数的导数、极值点,进一步确定单调区间,再根据极值点左右两边的符号判断函数的极值. 解析:(1)()()e24xf x ax a b x '=++--.由已知得()04f =,()04f '=.故4b =,8a b +=.从而4, 4.a b == (2)由(1)知,()2()4e14xf x x x x =+--,()()()14e 22442e 2x xf x x x x ⎛⎫'=+--=+-⎪⎝⎭. 令()0f x '=,得ln 2x =-或2x =-.从而当()(),2ln 2,x ∈-∞--+∞时,()0f x '>;当()2,ln2x ∈--时,()0f x '<.故()f x 在()(),2,ln 2,-∞--+∞上单调递增,在()2,ln2--上单调递减.当2x =-时,函数()f x 取得极大值,极大值为()()2241e f --=-.21.解析:同理科卷20题. 22.解析:同理科卷22题.23.解析:同理科卷23题.24.解析:同理科卷24题.。

2013年高考全国新课标I文科数学试卷及答案-推荐下载


11.某几何体的三视图如图所示,则该几何体的体积为( ).
A.16+8π
B.8+8π
C.16+16π
D.8+16π
x2 2x, x 0,
12.已知函数
f(x)= ln( x
1), x

0.
若|f(x)|≥ax,则
a
的取值范围是( ).
A.(-∞,0]
B.(-∞,1]
C.[-2,1]
2013 年全国统一考试数学文史类(新课标全国卷 I)
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求
的.
1.(2013 课标全国Ⅰ,文 1)已知集合 A={1,2,3,4},B={x|x=n2,n∈A},则 A∩B=( ).
A.{1,4}
2.(2013 课标全国Ⅰ,文 2)
19. (本小题满分 12 分)如图,三棱柱 ABC-A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°. (1)证明:AB⊥A1C; (2)若 AB=CB=2,A1C= 6 ,求三棱柱 ABC-A1B1C1 的体积.
2
20. (本小题满分 12 分)已知函数 f(x)=ex(ax+b)-x2-4x,曲线 y=f(x)在点(0,f(0))处的切线方程 为 y=4x+4. (1)求 a,b 的值; (2)讨论 f(x)的单调性,并求 f(x)的极大值.
1 1 i A. 2B.{2,3}源自1+ 1 i B. 2
1 2i
1 i2
C.{9,16}
=( ).
1+ 1 i C. 2
3.(2013 课标全国Ⅰ,文 3)从 1,2,3,4 中任取 2 个不同的数,则取出的 2 个数之差的绝对值为 2 的概率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16} D.{1,2}2.(5分)=()A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i3.(5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y= C.y=±x D.y=5.(5分)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q6.(5分)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n﹣1 B.S n=3a n﹣2 C.S n=4﹣3a n D.S n=3﹣2a n7.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]8.(5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2 B.2 C.2 D.49.(5分)函数f(x)=(1﹣cosx)sinx在[﹣π,π]的图象大致为()A.B.C.D.10.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10 B.9 C.8 D.511.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π12.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]二.填空题:本大题共四小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为.15.(5分)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.16.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.18.(12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.请考生在第22、23、24三题中任选一题作答。

注意:只能做所选定的题目。

如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑。

22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.(选修4﹣4:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)24.(选修4﹣5:不等式选讲)已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)(2013•新课标Ⅰ)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16} D.{1,2}【分析】由集合A中的元素分别平方求出x的值,确定出集合B,找出两集合的公共元素,即可求出交集.【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选A.2.(5分)(2013•新课标Ⅰ)=()A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i【分析】利用分式的分母平方,复数分母实数化,运算求得结果.【解答】解:====﹣1+i.故选B.3.(5分)(2013•新课标Ⅰ)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.【分析】本题是一个等可能事件的概率,试验发生包含的事件是从4个不同的数中随机的抽2个,共有C42种结果,满足条件的事件是取出的数之差的绝对值等于2的有两种,得到概率.【解答】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从4个不同的数中随机的抽2个,共有C42=6种结果,满足条件的事件是取出的数之差的绝对值等于2,有2种结果,分别是(1,3),(2,4),∴要求的概率是=.故选B.4.(5分)(2013•新课标Ⅰ)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y= C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.5.(5分)(2013•新课标Ⅰ)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q【分析】举反例说明命题p为假命题,则¬p为真命题.引入辅助函数f(x)=x3+x2﹣1,由函数零点的存在性定理得到该函数有零点,从而得到命题q为真命题,由复合命题的真假得到答案.【解答】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.6.(5分)(2013•新课标Ⅰ)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n﹣1 B.S n=3a n﹣2 C.S n=4﹣3a n D.S n=3﹣2a n【分析】由题意可得数列的通项公式,进而可得其求和公式,化简可得要求的关系式.【解答】解:由题意可得a n=1×=,∴S n==3﹣=3﹣2=3﹣2a n,故选D7.(5分)(2013•新课标Ⅰ)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选A.8.(5分)(2013•新课标Ⅰ)O为坐标原点,F为抛物线C:y2=4x的焦点,P 为C上一点,若|PF|=4,则△POF的面积为()A.2 B.2 C.2 D.4【分析】根据抛物线方程,算出焦点F坐标为().设P(m,n),由抛物线的定义结合|PF|=4,算出m=3,从而得到n=,得到△POF的边OF上的高等于2,最后根据三角形面积公式即可算出△POF的面积.【解答】解:∵抛物线C的方程为y2=4x∴2p=4,可得=,得焦点F()设P(m,n)根据抛物线的定义,得|PF|=m+=4,即m+=4,解得m=3∵点P在抛物线C上,得n2=4×3=24∴n==∵|OF|=∴△POF的面积为S=|OF|×|n|==2故选:C9.(5分)(2013•新课标Ⅰ)函数f(x)=(1﹣cosx)sinx在[﹣π,π]的图象大致为()A.B.C.D.【分析】由函数的奇偶性可排除B,再由x∈(0,π)时,f(x)>0,可排除A,求导数可得f′(0)=0,可排除D,进而可得答案.【解答】解:由题意可知:f(﹣x)=(1﹣cosx)sin(﹣x)=﹣f(x),故函数f(x)为奇函数,故可排除B,又因为当x∈(0,π)时,1﹣cosx>0,sinx>0,故f(x)>0,可排除A,又f′(x)=(1﹣cosx)′sinx+(1﹣cosx)(sinx)′=sin2x+cosx﹣cos2x=cosx﹣cos2x,故可得f′(0)=0,可排除D,故选C10.(5分)(2013•新课标Ⅰ)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10 B.9 C.8 D.5【分析】利用二倍角的余弦函数公式化简已知的等式,求出cosA的值,再由a 与c的值,利用余弦定理即可求出b的值.【解答】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A=,A为锐角,∴cosA=,又a=7,c=6,根据余弦定理得:a2=b2+c2﹣2bc•cosA,即49=b2+36﹣b,解得:b=5或b=﹣(舍去),则b=5.故选D11.(5分)(2013•新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选A.12.(5分)(2013•新课标Ⅰ)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D二.填空题:本大题共四小题,每小题5分.13.(5分)(2013•新课标Ⅰ)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.14.(5分)(2013•新课标Ⅰ)设x,y满足约束条件,则z=2x﹣y的最大值为3.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x﹣y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:不等式组表示的平面区域如图所示,由得A(3,3),z=2x﹣y可转换成y=2x﹣z,z最大时,y值最小,即:当直线z=2x﹣y过点A(3,3)时,在y轴上截距最小,此时z取得最大值3.故答案为:3.15.(5分)(2013•新课标Ⅰ)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.【分析】本题考查的知识点是球的表面积公式,设球的半径为R,根据题意知由与球心距离为R的平面截球所得的截面圆的面积是π,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积.【解答】解:设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为R,∵α截球O所得截面的面积为π,∴d=R时,r=1,故由R2=r2+d2得R2=12+(R)2,∴R2=∴球的表面积S=4πR2=.故答案为:.16.(5分)(2013•新课标Ⅰ)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅰ)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.【分析】(Ⅰ)设出等差数列{a n}的首项和公差,直接由S3=0,S5=﹣5列方程组求出,然后代入等差数列的通项公式整理;(Ⅱ)把(Ⅰ)中求出的通项公式,代入数列{}的通项中进行列项整理,则利用裂项相消可求数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的首项为a1,公差为d,则.由已知可得,即,解得a1=1,d=﹣1,故{a n}的通项公式为a n=a1+(n﹣1)d=1+(n﹣1)•(﹣1)=2﹣n;(Ⅱ)由(Ⅰ)知.从而数列{}的前n项和S n==.18.(12分)(2013•新课标Ⅰ)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【分析】(Ⅰ)利用平均数的计算公式即可得出,据此即可判断出结论;(Ⅱ)利用已知数据和茎叶图的结构即可完成.【解答】解:(Ⅰ)设A药观测数据的平均数据的平均数为,设B药观测数据的平均数据的平均数为,则=×(0.6+1.2+2.7+1.5+2.8+1.8+2.2+2.3+3.2+3.5+2.5+2.6+1.2+2.7+1.5+2.9+3.0+3.1+2.3+ 2.4)=2.3.×(3.2+1.7+1.9+0.8+0.9+2.4+1.2+2.6+1.3+1.4+1.6+0.5+1.8+0.6+2.1+1.1+2.5+1.2+2.7+ 0.5)=1.6.由以上计算结果可知:.由此可看出A药的效果更好.(Ⅱ)根据两组数据得到下面茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在2,3上.而B药疗效的试验结果由的叶集中在0,1上.由此可看出A药的疗效更好.19.(12分)(2013•新课标Ⅰ)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.【分析】(Ⅰ)由题目给出的边的关系,可想到去AB中点O,连结OC,OA1,可通过证明AB⊥平面OA1C得要证的结论;(Ⅱ)在三角形OCA1中,由勾股定理得到OA1⊥OC,再根据OA1⊥AB,得到OA1为三棱柱ABC﹣A1B1C1的高,利用已知给出的边的长度,直接利用棱柱体积公式求体积.【解答】(Ⅰ)证明:如图,取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以.又,则,故OA 1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC﹣A1B1C1的高.又△ABC的面积,故三棱柱ABC﹣AB1C1的体积.20.(12分)(2013•新课标Ⅰ)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f (x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【分析】(Ⅰ)求导函数,利用导数的几何意义及曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4,建立方程,即可求得a,b的值;(Ⅱ)利用导数的正负,可得f(x)的单调性,从而可求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)(2013•新课标Ⅰ)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.请考生在第22、23、24三题中任选一题作答。

相关文档
最新文档