超高层住宅结构优化设计

合集下载

【结构设计】超高层框架—核心筒结构的优化要点

【结构设计】超高层框架—核心筒结构的优化要点

超高层框架—核心筒结构的优化要点框架—核心筒结构是由核心筒与外围框架组成的一种结构形式.框架-核心筒结构因其良好的受力性能和内部空间的灵活性成为目前国际超高层建筑中采用的主流结构形式,在超高层建筑中有着广泛的应用.超高层结构的经济性控制往往都是一个难题,博牛最近完成了几个超高层项目的优化咨询,结构整体的含钢量及含砼量均远低于当地一般水平,得到了甲方的高度认可.现总结其优化要点如下:1、减少核心筒内部小墙肢的数量核心筒内部小墙肢对结构整体刚度和受力贡献不大,在保证结构成立的前提下,可充分利用梁的承载能力,最大程度的减少内部小墙肢的数量.2、控制墙厚控制核心筒墙体厚度.在满足结构整体刚度以及墙体稳定性要求前提下尽量减薄墙体厚度.例如:7度区,150m~200m的超高层建筑,筒体外墙厚度350~600mm为宜,应根据轴压比由下而上收进.内筒墙体基本可取200mm.3、加强区以下可设置构造边缘构件底部加强区以下的约束边缘构件可调整.根据高规7.2.14条,底部加强区以下(即负一层和负二层)均可做构造边缘构件,为保证嵌固端边缘构件纵筋延续,负一层边缘构件的纵筋同第一层,但箍筋可以按构造边缘构件控制.负二层及以下层可全部设置构造边缘构件,而且抗震等级可按规范要求降低.4、核心筒角部约束边缘构件的优化根据高规9.2.2条,底部加强区以上的核心筒角部也应设置约束边缘构件,但应注意根据轴压比调整箍筋配置,以及非阴影区长度.5、控制框架柱截面在满足结构整体刚度要求的前提下,控制柱截面,混凝土强度等级可适当取高.框筒结构中的绝大部分框架柱都是构造配筋,减小柱截面也就减小了柱配筋.6、框架柱的体积配箍率框筒结构中,下部框架柱由于截面较大,剪跨比往往都小于2,属于短柱,其体积配箍率不小于1.2%,随着楼层往上柱截面的减小,在某一层以上,框架柱的剪跨比将大于2,此时应根据轴压比计算结果来确定柱的体积配箍率,精细化柱箍筋配置.7、尽量不要设置内柱如必须设置,则内柱与核心筒距离不宜太小,否则内柱与内筒间的框架梁剪力会非常大,受力不合理.8、次梁的布置形式次梁的布置应沿内筒向四周发射布置单向梁,如下图所示.这种方式传力途径清晰效率高,有利于控制主梁高度,确保结构净高.9、平面外的梁按次梁设计一端与核心筒平面外连接,另一端与外围主梁连接的梁,应按次梁设计.目前PKPM还无法自动修改,须手动调整抗震等级.最新版本的YJK已可以在参数设置中自动实现此功能.10、控制角部楼板加强范围根据高规9.1.4条,角部加强区域满足规范要求即可,不需要人为放大,也不需要以板块为单位,即可以在一块板内标注加强区域范围.。

【结构设计】超限高层结构设计优化要点汇总(干货!)

【结构设计】超限高层结构设计优化要点汇总(干货!)

超限高层结构设计优化要点汇总(干货!)随着经济的发展,我国的高层建筑越来越多,越来越高,各大城市的地标建筑也多以超高层建筑为主.然而,超限高层建筑的专项审查工作往往占据了设计阶段的大量时间,且其直接奠定了后期的结构造价.在此分享关于超限高层项目的优化要点.超限高层建筑工程是指超出国家规范、规定所规定的适用高度和适用结构类型的高层建筑工程,体型特别不规则的高层建筑工程,以及有关规范、规程规定应当进行抗震专项审查的高层建筑工程.具体判别标准详见《超限高层建筑工程抗震设防专项审查技术要点》建质【2015】67号.需要注意的是,对于一些处于超限与否边界附近的建筑工程最好提前与审图机构,审查专家提前沟通好是否需要进行超限审查,以免造成时间上的延误.(1)结构体系结构体系的选取需经过严格比选.常见的各种结构体系优缺点如下表所示:结构体系优点缺点混凝土框架+核心筒造价经济、施工方便自重大、截面大、浪费空间型钢混凝土框架+核心筒结构抗震性能优良造价高钢管混凝土柱+核心筒延性延性好;柱截面较小造价高于型钢混凝土最终采用何种体系可综合考虑时间成本、施工成本、经济效益等方面.(2)风速剖面与风振分析《高规》4.2.7条规定:房屋高度大于200m或有下列情况之一时,宜进行风洞试验判断确定建筑物的风荷载:I.平面形状或立面形状复杂;II.立面开洞或连体建筑III.周围地形和环境较复杂.超限高层建筑分为高度超限和不规则性超限,所以往往需要进行风洞试验.由于风具有明显的地域性,且其强度和方向具有显著的方向性,利用这些特点可以有效降低结构和幕墙的造价.对于高度超过300~400m的超高层建筑,风沿高度方向变化的特性对结构设计影响很大,因此针对具体工程确定适用的最优风速剖面,而不仅依赖于《荷载规范》提供的指数变化曲线,能够有效降低风力作用,取得显著的经济效益.(3)设计地震动参数依据《防震减灾法》:“地震安全性评价单位应当对地震安全性评价报告的质量负责”.一般来说,安评报告提供的结构设计地震动参数往往偏大,将导致结构成本明显增加.通常小震应全部采用安评参数或全部用规范参数,对二者的基底剪力加以比较,按不利情况采用.中、大震计算一般采用规范参数.从而在保证结构安全的同时节约结构造价.此外,采用规范参数时需注意在不同类别场地分界附近的设计特征周期内插,如下图所示.之前笔者参与的北京某超限高层办公项目,8度区Ⅲ类场地,设计地震分组第一组,小震规范谱特征周期Tg=0.45s.因工程场地等效剪切波速接近分界线值,经内插特征周期减小为0.42s,地震作用约降低8%.(4)长周期结构的剪重比在2010版超限审查要求中对剪重比的规定比较严格,在2015版进行了放松,其规定如下:“结构总地震剪力以及各层的地震剪力与其以上各层总重力荷载代表值的比值,应符合抗震规范的要求,Ⅲ、Ⅳ类场地时尚宜适当增加.当结构底部计算的总地震剪力偏小需调整时,其以上各层的剪力、位移也均应适当调整.基本周期大于6s的结构,计算的底部剪力系数比规定值低20%以内,基本周期3.5~5s的结构比规定值低15%以内,即可采用规范关于剪力系数最小值的规定进行设计.基本周期在5~6s 的结构可以插值采用.6度(0.05g)设防且基本周期大于5s的结构,当计算的底部剪力系数比规定值低但按底部剪力系数0.8%换算的层间位移满足规范要求时,即可采用规范关于剪力系数最小值的规定进行抗震承载力验算.”此时,通常来讲可以满足要求.如果还是不能达到最小地震剪力要求,可以通过修改反应谱曲线的方法来使结构达到一定的设计剪重比,或通过位移值来控制结构变形.(5)周期折减系数《高规》4.3.17条对周期折减系数做了具体规定,但对于超高层建筑,若拘泥于规范给定的数值范围很可能造成巨大的浪费.一定要根据工程实际情况,隔墙的布置数量、隔墙材料等综合取值.例如,还是前述笔者说的北京某超限办公项目,框架-核心筒结构,规范给定的数值是0.7~0.8,但考虑到该工程隔墙较少,将周期折减系数取为0.90~0.95,地震作用约降低15%!(6)设计材料的选取I.混凝土高强混凝土:目前国内规范的混凝土最高强度等级为C80,实际可生产的最高等级为C150,因此在设计上对于超高层建筑优先考虑高强度混凝土,既能节省材料,又能节省空间.II.钢材高层建筑结构用钢板:与普通结构用钢相比,各项指标均能满足要求,同时具有良好的机械性能与焊接性.在实际工程中可根据构件的重要性和具体部位选取合适钢材,以求达到最优的经济效果.(7)施工模拟可通过调整施工顺序人为控制结构的内力生成,将高内力消除,改善结构合理性,降低用钢量.(8)性能目标的合理设置性能目标的设置能够使抗震设计从宏观定性的目标向具体量化的多重目标过渡,并由业主选择性能目标;对结构的抗震性能睡着进行深入的分析,并通过专家的评估论证.但是在实际的操作过程中往往发现好多工程的性能目标设置过于严格,类似于“有钱就是任性”,但实际上并不合适,只是白白带来了浪费.上述的无论采取何种措施或方法,最好都要事先向审查专家进行沟通交流,以避免在最终的审查中出现通不过或二次审查的情况.。

浅析高层建筑的结构优化设计

浅析高层建筑的结构优化设计

梁工程和高层与超高层建筑中 。 在强震国家 日本, 组合结构高层 建筑发展迅速 , 钢筋混凝土组合柱应用广泛 。 由于钢管 内混凝土
处于三轴受压状态 , 能提 高承载力 , 从而可节约钢 材。随着混凝 土 强度 的提 高以及构造和施工技术上的改进 ,组合结构在高层
建 筑 中 的应 用 可 望 进 一 步 扩 大 。
钢 结构 , 科技含 量也较高 , 对环境污 染也较少 , 已广泛应用 于冶 金、 造船、 电力 、 交通等 部门的建筑 中, 以迅猛 的势头进入 了桥 并
中, 更重要 的是必须进行很 多运 筹、 决策和规划 的工 作, 这些工 作 具有软科学的特点 。 所以, 工程设计应该是硬科学和软科学的 结合 , 这就需要建立全面 的、 新的工程设计理论 。在土建工程 崭 设计 的前期 , 有许多重大 的问题需要进行科学的决策 , 包括工程 项 目的可行性论证 、 工程项 目的总体规划及功能优化 、 结构的造 型、 结构设防水平 的决策等 。所有这些前期的决策工作, 其影响 都远大于 目前 的以结构计算为主 的优化设计工作。
2 工程优化设计理论的发展
21 工程 设计 软科 学的发 展 .
实 际上 , 人们在处理事物时都会遇到硬 、 软两种因素 。硬 因 素就是有实体的物质 系统中的一些因素;软因素就是精神意识 系统中的一些 因素。软科学和硬科学 的区分是相对 的, 不应该也 不 可能给 出截然划分 的界限。 目前 的工程设计主要侧重于力学 分析, 具有硬科学的性质 。 力学分析只是荷载决定后计算结构力
舒 适 的 生活 、 习 与 工作 环 境 空 间 。 学
土 结构具有整体性好 、 刚度 大、 移小、 位 舒适 度佳 、 耐腐蚀 、 耐高 温、 耐火 、 维护方便等优点。 此外, 即使是在美、 日等钢铁工业发达

基于高层住宅中混凝土剪力墙结构优化设计论文

基于高层住宅中混凝土剪力墙结构优化设计论文

基于高层住宅中混凝土剪力墙结构优化设计研究【摘要】在实际的高层住宅建造及设计过程中,一个值得注意的现象是,目前工程实践中大多数剪力墙结构的布置还主要取决于设计人员的经验,设计者出于结构的安全或设计进度等方面的考虑而对结构设计采取相对保守的结构布置方案,一定程度上忽略了结构的合理性和经济性。

因此对剪力墙结构的布置进行优化显然十分必要。

本文对高层住宅中混凝土剪力墙结构优化设计进行了研究和阐述。

【关键词】高层建筑;混凝土;剪力墙结构;优化设计前言在结构设计时,高层建筑的高度一般是指从室外地面至檐口或主要屋面的距离,不包括局部突出屋面的楼电梯间、水箱间、构架等高度。

随着高层建筑高度的大幅度增加,出现了超高层建筑。

“超高层建筑”一词来源于日本,英语中原来并无超高层建筑相应的词条,欧美等西方国家一般采用tall building或highrise building 来代表高层建筑,直到1995年才出现超高层建筑对应的词条super-tall building。

即使在日本,超高层建筑也没有明确的分界线,如在70年代,指70m以上的建筑,到80年代,提高到100m。

目前,日本一般将120m以上的建筑称为超高层建筑,由此可以看出,超高层建筑完全是人为界定的,特指当时日本最高的一些建筑物;日本还将30层以上的旅馆、办公楼和20层以上的住宅规定为超高层建筑。

目前,超高层建筑一词流行广泛,但又无统一和确切的定义,一般泛指某个国家或地区内较高的一些建筑。

国际上,通常将高度超过100m或层数在30层以上的高层建筑称为超高层建筑。

本文对高层建筑物中的混凝土剪力墙的优化设计进行阐述,主要从剪力墙结构的形式以及布置方面进行优化设计。

一、高层建筑结构设计特点分析高层建筑结构可以设想成为支承在地面上的竖向悬臂构件,承受着竖向荷载和水平荷载的作用。

与多层建筑结构相比,高层建筑结构的设计具有如下特点:1、水平荷载成为设计的决定性因素对于多层建筑结构,一般是竖向荷载控制着结构的设计。

某超高层剪力墙结构方案优化设计

某超高层剪力墙结构方案优化设计

3 1 结构 布置 .
舒 适度要求 , 需要有 足够 的抗侧 刚度 , 而建筑 平 面 中纵横 内墙 基 本 没有对齐 , 给结构 布 置带来 一定 难度 。通过 大量 的电算 比较 , 我 们采取 了以下措施 : 1 在中部电梯井筒及分 隔墙处适 当设 置较长 的竖 向剪 力墙 , )
以资 比较 , 主要有 以下三栋 :
・1 3・
b按 5 . 0年重现期风压作用计算 , 不考 虑连梁 刚度折减 , 计算 我方收 集 了武汉 市及外 地类似项 目的结 构平 面布置及控 制参数 结果 表明 , 此工况作用下绝大 多数 连梁 未出现超 筋情况 ; c按 l 重现期 基 本作 用验算 结构 顶 点的最 大加 速度 , . 0年 按 A栋 : 武昌区某超 高层住 宅。该项 目地处武 汉市武 昌区徐东
4 0 1 300
宋化为(95 ) 男, 17一 , 高级 工程师 , 一级注册结构师, 武汉正华建筑设计有限公 司, 湖北 武汉 40 1 300
27 2智 第 1年1 月 0卷 31 0 9
上 奇 :超司 力 结 朱 化 计 王十等某 高 剪 l 案L设l 口 不 I / 口方 l 舜_ 墙 优 寸 层 国构 /
比值 ( 偶然偏I 合 心)
M x /A e a- D v— D
13 .2
12 .4
2 剪力 墙混凝 土等级见 图 2 ) 。
3 弹性时程分析补充计算 。 )
本工程 采用 S T A WE程 序进行 弹性 时程分析 , 由于本工程 暂 无安评报告 , 考 C C 6 : 04建 筑工 程抗震 性态 设计 通则 , 参 E S 10 2 0
收 稿 日期 :0 10 — 1 2 1 —6 0

现代超高层结构优化分析设计综述

现代超高层结构优化分析设计综述

现代超高层结构优化分析设计综述摘要:随着世界超高层建筑的建设越来越多,世界各主要城市地标建筑越来越高,工程难度越来越大,并且高楼出现垮塌事故也屡见不鲜。

基于此,本文主要概述了城市超高层发展发展的现状,及设计阶段建筑物的结构设计优化,及主要的结构分析方法。

例如结构优化设计按设计变量性质分为连续变量优化和离散变量优化。

以及建筑结构研究优化设计现状,具体包括单目标结构优化设计及多目标结构优化设计及高层建筑存在的问题和结构优化设计考虑的问题。

关键词:城市超高层发展现状超高层结构设计优化建筑结构优化设计现状1、世界超高层发展现状及发展趋势1.1世界超高层发展现状随着世界经济发张迅速,城镇化率越来越高,特大城市的超过层建筑也越来越多,高层建筑是随近代社会经济发展的需求,现代人民生活需要也逐渐向高度上发展,例如超高层的写字楼,巨型的电视塔,大城市人口越来越集中,资源集中化,导致城市中心用地缺少,加速了现代高层建筑发展。

高层建筑的发展需要当代科学技术的发展、轻质高强材料的性能要求的提高以及电气化、计算机在建筑中的广泛应用。

现世界学术氛围对以上学科有大力发展,技术水平有显著提高。

以下高楼是现代著名的高楼,建于 1883 年的美国芝加哥家庭保险公司大楼(Home Insurance Build-ing),12 层,55 m 高,是近代高层建筑的开端。

19 世纪末钢结构被应用到高层建筑中,使建筑物的高度超过了 100 m,1931 年纽约建造的帝国大厦(Em-pire State Building),102 层,381m 高,享有世界最高建筑荣誉长达 40 年之久。

20 世纪 50 年代以后,随着新材料、新工艺以及新的结构体系的发展,层数和高度都有大幅度的突破,建筑结构体系也呈多样化、复杂化。

截止2010 年 2 月,世界范围内,按从地面到塔尖(spire)的高度计算,已建成最高的高层建筑为阿拉伯联合酋长国迪拜的哈利法塔(BurjKhalifar),162 层,828 m高(见图 1);我国台湾省的台北 101 购物中心(Taipei 101),101 层,508 m高(见图 2);我国上海的上海中心大厦(Shanghai Tow-er),124 层,632 m 高。

2024年超高层住宅建筑结构设计经验总结(2篇)

2024年超高层住宅建筑结构设计经验总结(2篇)

2024年超高层住宅建筑结构设计经验总结一、引言随着城市化进程的不断加快,超高层住宅建筑在城市中逐渐兴起。

超高层住宅建筑具有独特的建筑结构设计要求,需要满足抗震、抗风等多重工程技术要求,以确保建筑的安全性和可靠性。

本文就2024年超高层住宅建筑结构设计的经验进行总结,并对未来的发展进行展望。

二、经验总结1. 抗震设计超高层住宅建筑处于地震作用较大的区域,抗震设计是保证建筑安全的重要因素。

2024年超高层住宅建筑结构设计加强了抗震设计的力度,采用了更高的设防烈度、更大的基本减震系数,提高了建筑的抗震能力。

2. 抗风设计超高层住宅建筑容易受到风力的影响,所以在结构设计中加强了抗风设计。

采用了更大的基本风速、更严格的风振系数,通过合理的结构布局和剪力墙等措施来增加建筑的抗风能力。

3. 结构优化超高层住宅建筑的结构设计需要在保证安全的前提下,尽可能减少材料的使用,提高建筑的可持续性。

通过结构优化的方法,合理分配结构材料,控制材料的使用量,降低建筑成本,提高建筑的经济效益。

4. 刚度控制超高层住宅建筑的刚度控制是保证建筑安全性和人们舒适性的关键。

在2024年的超高层住宅建筑结构设计中,采用了多种刚度控制措施,如采用钢筋混凝土核心筒结构、设置剪力墙等,来增加建筑的整体刚度,减小变形。

5. 构件材料选择超高层住宅建筑的构件材料选择对于保证建筑的安全和可靠性至关重要。

在2024年的超高层住宅建筑结构设计中,选择了新型高强度材料,如高性能混凝土、高强度钢材等,以提高建筑的抗震性能和抗风性能。

三、未来展望随着技术的不断进步和建筑理念的不断更新,未来超高层住宅建筑的结构设计将会呈现以下特点:1. 系统集成化设计未来超高层住宅建筑结构设计将趋向于系统集成化设计,将建筑结构与其他系统(如机电设备、管道等)进行有机结合,实现资源共享和优化配置,提高建筑整体性能。

2. BIM技术应用建筑信息模型(BIM)技术将广泛应用于超高层住宅建筑结构设计中,通过数字化的建模和仿真,可以更加准确地分析建筑结构的受力状况,提前发现并解决存在的问题,提高设计效率和质量。

高层建筑结构选型设计及建筑结构优化设计

高层建筑结构选型设计及建筑结构优化设计

高层建筑结构选型设计及建筑结构优化设计摘要:在高层建筑中,由于其结构选择与设计管理是一项十分繁杂的工作,因此对其进行研究显得尤为重要。

在进行建筑结构设计时,必须保证设计计划的科学性和合理性,同时,在进行设计时,必须综合考量建设项目的各个建设阶段,从而提高设计计划的品质。

本文针对这一现状,就高层建筑的结构选择和结构的优选等问题作了一些探讨,为今后的工程实践提供了借鉴。

关键词:高层建筑;结构选型;优化设计1高层建筑结构选型分析1.1框架结构该体系由梁、柱和楼板等组成,梁和柱之间的刚接构成主梁,并根据建筑物的用途进行布置,其特点是自重轻,整体性能好,造价低廉,轴网布置灵活,空间利用率高,便于施工。

由于其薄弱环节:其抗侧移刚度较小,地震时水平位移较大,节点处应力集中,易受不均匀地基沉降影响,且建筑高度有限。

从框架结构抗震分析的结果可以看出,随着高度的提高,底层柱子轴力、水平荷载产生的弯矩和侧移会显著提高,而这会造成柱子截面面积和配筋过大,从而对其空间利用率和经济效益产生了不利的影响。

因此,在实际生活中,框架结构在地震作用下,会出现非结构性损坏的情况比较多,因此,适宜应用于10层或以下房屋建筑,如住宅、学校、办公楼等房屋,宜采用钢筋混凝土框架结构,地震设防烈度8度、设计基本地震加速度≥0.30 g、且层数大于5层的房屋,不宜选用钢筋混凝土框架结构。

对于大型公共建筑,多层工业建筑,以及大型商场,体育馆,火车站,剧院,展览厅,飞机库,停车场等一些特别的建筑,建议使用钢架。

1.2框架-剪力墙结构它是将框支和剪力墙两种形式组合起来,并在框支中配有合适的剪力墙。

在整体结构中,剪力墙板承受最多的横向荷载,而垂直荷载则以框架为主,二者在结构中具有明显的分工。

框剪结构通常适用于35层之下的楼房,若设计得适当,还可设得较高。

其中,剪力墙的布置地点通常是在电梯室,它通过核心筒来发挥对水平荷载的承受力,它的优点是:地震性能好,整体结构相对稳定,与框架结构相比,它在水平荷载力和侧向刚度方面都有了一定的提高,它在布置上也比剪力墙结构更加灵活,它更适合于10层至20楼之间的办公楼、教学楼等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刍议超高层住宅的结构优化设计
摘要:本文根据作者多年实践经验,结合某工程实例分析了超高层剪力墙结构设计与应用。

关键词:超高层住宅剪力墙计算
1、工程概况
本工程为超高层住宅小区,规划限高150m,总建筑面积45万m2左右,其中地下室12万m2,单层地下车库,地上17个单体塔楼,都是100 ~142m超高层,其中5#楼约为130m,7#、8#和16#、17#楼约为140m, 4#楼户型同5#楼,高约100m。

按照规范[1,2]结构体系的适用范围,采用剪力墙结构体系。

剪力墙厚度:地下室、底层架空层370mm或400mm,标准层均为240mm。

100m左右超高层竖向构件混凝土等级为c40~c30; 140m左右超高层竖向构件混凝土等级c55~c30.梁板混凝土等级为c35~c30。

该工程设计基准期为50年,结构设计适用年限为50年。

抗震设防烈度为6度,设计基本地震加速度为0.05g,地震分组为第一组,
设计特征周期为0.45s,抗震设防类别为丙类,结构安全等级为二级。

场地类别为ⅲ类。

采用桩筏基础,主楼区域采用直径700、800、900、1000mm钻孔灌注桩,一层地下车库采用管桩满足抗拔要求。

2、结构概念设计
高层建筑中,宜使结构平面内形状简单、规则、刚度和承载力均匀,根据高宽比选取合理的户型,结构平面布置应减少扭转的影响;高层建筑的竖向体型宜规则、均匀,避免有过大的外挑和内收。


构的侧向刚度宜下大上小,逐渐均匀变化,不应采用严重不规则的
结构体系。

对可能出现的薄弱部位,应采取有效措施予以加强。

4#、5#、7#、8#、16#、17#楼平面见图1~图3,其中11#、12#楼和7#、8#相同,本工程不规则超限[3]内容见表1,因此应严格控制其它不
规则指标,以避免成为复杂超限高层结构[3]。

尽管高层建筑结构抗震设计计算分析手段不断提高,分析原则
不断完善,但由于地震作用的复杂和不确定性,地基土影响的复杂
性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多,尤其是当结构进入弹塑性阶段之后,会出现构件局部
开裂甚至破坏,这时结构已很难用常规的计算原理去进行分析。

实践表明,设计中把握好高层建筑的概念设计是很重要的。

3、结构计算设计及设计要点
结构侧移是高层结构设计中的关键因素。

随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度h的4次方成正比(△=qh4/8ei)。

另外,高层建筑随着高度增加、轻质高强材料的应用、新建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够强度,还要具有足够的抗推刚度,使结
构在水平荷载下产生的侧移被控制在某一限度之内。

高层和超高层建筑减轻自重比多层建筑更有意义。

从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋
自重意味着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。

地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。

高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。

在满足地下室车库层和底层架空或者底层商铺的前提下,遵循对称、均匀、周边、拐角的原则,在结构周边、拐角和核心筒等部位对落地剪力墙进行较合理布置,主体结构抗震等级为三级(低于140m)和二级(高于140m)。

对结构薄弱部位如楼电梯周围,内庭院周围均设置了120mm厚楼板,采用双层双向拉通钢筋予以加强;对少量肢长受到限制的短肢剪力墙(墙肢长度∶墙厚<8∶1)按照高规要求予以加强,如满足最小配箍率和最小配筋率等。

本工程项目中仅16#和17#楼高度超限,应报本地超限高层建筑工程抗震设防专项审查。

风荷载取值,考虑到以后城市建设的不断发展,位移计算时取0.45kn/m2,强度计算时取0.5 kn/m2。

4、优化设计措施
4.1剪力墙的延性设计[4]:弱化剪力墙和连梁刚度,控制墙肢长度:墙厚=10∶1左右,把长剪力墙开洞(结构洞或门窗洞)成联肢墙,洞顶设置跨高比≥5的弱连梁,结构洞及窗台用砌块填砌。

弱化后的剪力墙和连梁具有较轻的自重、更大的延性和抗震耗能能力,钢筋用量也较小。

根据多年设计经验,建筑物高度80m以下时剪力墙面积占标准层面积的3.5% ~7%时较合理,让最大层间位移角接近规范
限制,太大或者太小时,或者是剪力墙布置不合理,或者工程造价太高。

随着建筑物高度增加,该比值相应增大。

剪力墙布置合理时,各剪力墙轴压比相差不大,且都小于规范要求,剪力墙一般是构造配筋,一般采用12或14直径钢筋即可满足要求,可明显减少剪力墙用钢量。

4.2为进一步减少工程造价,采取减轻填充墙荷载,用新三级钢筋,板采用分离式配筋,选用直径较小的通长筋及减少次要构件钢筋用量等优化设计措施。

5、结构计算结果分析
通过相同户型不同高度计算分析,在满足相应规范的前提下,得出了竖向构件面积占标准层面积的比值,见表1,其中7#、8#楼该比值偏大,剪力墙一般需要300mm和350mm才可以满足规范的基本计算要求。

经过比较,7#、8#楼户型最不经济合理,4#、5#楼户型次之,16#、17#户型最经济合理,分析原因,主要是7#、8#楼户型高宽比太大,远远超过了规范的数值,经过与业主协商,7#、8#楼决定另选户型。

由于户型的需要,塔楼的高宽比一般都较大,通过对本项目中
4#、5#楼不同高宽比的计算分析,在竖向构件面积占标准层面积合适的比值范围内,高宽比在8左右时,竖向构件在200mm或者240mm 宽度就基本可以满足计算要求。

经与业主协商调整后确定户型和塔楼高度,结构平面图见图4~
图6,周围梁高为240mm×470mm,内部梁高200(240)mm×400mm, 4#、5#楼未注明板厚均为120mm,7#、8#、9#楼未注明板厚为100mm。

应业主要求,主卧内卫生间120mm厚墙下做暗梁处理,标准层剪力墙均为240mm厚。

经优化各塔楼用钢量在60~65kg/m2和混凝土量,具体见表2。

表2各塔楼的用钢量与混凝土量
6、结语
通过对上述工程实例的分析,获得以下体会:
(1)建筑户型的选择非常重要,户型尽量简单规则,户型的选择
直接关系到结构体系的复杂程度,和工程造价存在着直接的关系。

(2)概念设计对于高层和超高层结构方案的合理、经济即有效选取非常重要,不能仅仅考虑结构设计的合理性,而且还能考虑到建
筑的适用功能、进而满足建筑的安全性、适用性和耐久性的要求。

(3)超高层住宅一般采用框架剪力墙结构体系和纯剪力墙结构
体系,剪力墙应遵循对称、均匀、周边、拐角等原则进行合理布置。

剪力墙和连梁应进行优化设计,剪力墙尽量不要采用短肢剪力墙,
剪力墙的墙肢长度与墙厚之比大于8,当墙肢长度过大时,应中间开洞,设置为弱连梁(跨高比不小于5的连梁)。

延性剪力墙结构体系具有更轻的自重、更好的延性和更强的抗震耗能能力;剪力墙布置要合理,高度80m左右的高层,竖向构件面积占标准层面积的最佳比例为5.0%左右,高度100m左右超高层住宅的最佳比例为6% ~8%,随
着高度不断增加的最佳延性设计较短肢墙有更好的经济效益。

(4)结构设计中,对不规则部位,特别是结构的薄弱部位,应通过计算、分析进行准确判定,并加以可靠的加强措施。

(5)优化设计应重视与业主、建筑及其它专业(设备、装修等专业)配合,如剪力墙的布置位置、框架梁柱的结构布置,是否采用轻质墙体材料等。

参考文献
[1]jgj-2002,高层建筑结构混凝土技术规程[s].
[2]gb50011-2010,建筑抗震设计规范[s].
[3]超限高层建筑工程抗震设防专项审查技术要点[s].2006.
[4]高立人,方鄂华,钱稼茹.高层建筑结构概念设计[m].北京:中国计划出版社, 2005.
注:文章内所有公式及图表请以pdf形式查看。

相关文档
最新文档