药物合成合成路线

合集下载

(完整版)典型药物合成

(完整版)典型药物合成

作用部位
外周
中枢
作用靶点
环氧合酶
阿片受体
不能代替吗啡类使用
它只对慢性钝痛有良好的作用
牙痛、头痛、神经痛、肌肉痛、关节痛
无成瘾性
8
镇痛药
是对痛觉中枢有选择性抑制作用,使疼痛减轻或 消除的药物
不影响 意识 不干扰 神经冲动的传导 不影响 触觉及听觉等
吗啡 合成镇痛药 吗啡样镇痛作用的肽类物质
(R)-Epinephrine的合成:手性拆分
HO HO HO HO HO HO
HO POCl3,ClCH2COOH
O Cl CH3NH2,HCl
HO
O OH
H N
CH3 . HCl
H2/Pd-C
HO
HO
H N
CH3
HO d-(CHOHCOOH)2
OH
H
N CH3 . HCl
NH3
OH H N CH3
H3C OO
+
N
CHC3 H3
Br -
O
16
内源性拟交感胺的生物合成
O
O
HO
NH3+
(S)(-) -Tyrosine (L)
Aromatic
2
L-amino acid decarboxylase
HO
Tyrosine 1 hydroxylase
HO
HO
NH2
Dopamine 3 -hydroxylase
6、合成路线
+
Cl
Cl
NH2
Cu 150.C, pH5~6
Cl
O OH Ullmann
S, I2 170.C
Cl
S

化学合成药物的合成路线

化学合成药物的合成路线

化学合成药物的合成路线化学合成药物的研发和制造是现代医药领域最重要的一项工作。

合成药物的合成路线是指通过一系列化学反应,从原料出发逐步得到最终的活性药物。

本文将介绍化学合成药物的合成路线,并探讨几种常见药物的合成方法。

一、药物合成路线的概述药物合成路线可以分为若干个步骤,每个步骤都是通过合适的反应将原料转化为下一个需要的中间体,最终合成活性药物。

这些步骤可以包括反应选择、合成路径的建立和合成试验等。

在药物研发的早期,研究人员会根据已知的药物结构和化学原理来设计合成路线。

随着合成化学和分析技术的发展,合成路线的设计变得更加精确和高效。

现代合成药物的合成路线往往遵循以下几个基本原则:1. 原料选择:合成药物的原料通常是易得的化学品,可以通过商业或实验室供应商购买。

原料的质量和纯度对于药物的合成过程和最终质量有重要影响。

2. 反应选择:在每个步骤中,选择适当的反应条件和反应试剂,以实现所需的化学转化。

反应选择的关键是考虑反应的效率、产率和选择性。

3. 纯化和分离:在合成过程中,产生的化合物需要经过纯化和分离步骤。

这包括晶体化、吸附、萃取等技术,以获得纯净的化合物。

4. 分析和质量控制:在合成路线的每个阶段,都需要进行化合物的分析和质量控制。

常见的分析方法包括质谱、核磁共振、红外光谱等。

二、常见药物合成路线的案例分析1. 阿司匹林(Aspirin)的合成路线:步骤一:苯甲酸与乙酸酐在硫酸催化下酯化反应,生成苯乙酸乙酯。

步骤二:苯乙酸乙酯与氢氧化钠在乙醇中反应,生成苯乙酸钠。

步骤三:苯乙酸钠与硫酸在乙醚中反应,生成阿司匹林的中间体。

步骤四:中间体与酸反应,生成最终的阿司匹林产品。

2. 对乙酰氨基酚(Paracetamol)的合成路线:步骤一:对硝基苯酚与硫酸反应,生成对硝基苯酚硫酸酯。

步骤二:对硝基苯酚硫酸酯与亚硝酸钠反应,生成对硝基苯酚亚硝酸酯。

步骤三:对硝基苯酚亚硝酸酯与氨水反应,生成对乙酰氨基酚。

3. 青霉素(Penicillin)的合成路线:步骤一:苯甲酸与丙二酸酐在碱性条件下反应,生成头孢菌素G的中间体。

药物合成路线

药物合成路线

药物合成路线药物合成一直是药学领域中的重要研究内容之一。

通过研究药物的合成路线,可以为药物研发提供技术指导,提高合成效率和药物的质量。

本文将介绍药物合成路线的基本概念、步骤和相关实例。

一、药物合成路线的基本概念药物合成路线是指从原料药到最终产品的合成过程中,所涉及的一系列化学反应步骤和条件的总和。

它是药物合成过程的基础,对于合成药物的产率、纯度和安全性具有重要影响。

药物合成路线的设计需要充分考虑反应的可行性、操作的安全性以及原材料的供应情况等因素。

二、药物合成路线的步骤药物合成路线通常包含以下几个主要步骤:1. 原料选择:根据所需药物的活性和结构特点,选择适合的原料进行进一步的合成。

原料的选择直接影响到后续反应的进行和产物的质量。

2. 反应设计:根据所需合成的目标物质,设计反应步骤和条件。

反应设计需要考虑反应的选择性、产率、安全性以及实验室条件下的可行性。

3. 纯化和分离:合成反应后,通过纯化和分离步骤,将目标物质从反应混合物中分离出来。

这包括溶剂提取、结晶、渗透、萃取等操作,以获得纯度较高的产物。

4. 结构鉴定和分析:对所得产物进行结构鉴定和分析,确认其纯度和化学结构。

常用的鉴定手段包括质谱、核磁共振等。

5. 工艺优化:在合成路线中,根据实验结果和实际生产需求,对反应条件和步骤进行优化,提高产率和减少副反应产物的生成。

三、药物合成路线的实例以下是一种常见药物的合成路线示例,以展示药物合成路线的具体应用:某药物合成路线示例:步骤1:底物A和底物B进行反应,通过催化剂C催化得到中间体D。

步骤2:中间体D与底物E发生环化反应,生成中间体F。

步骤3:中间体F经过氧化反应,生成目标产物G。

步骤4:目标产物G经过结晶和纯化步骤,得到纯度较高的药物H。

这只是一个简单示例,实际的药物合成路线要更加复杂和多步骤。

在实际应用中,药物合成路线的设计需要充分考虑反应的可行性、操作的安全性以及合成成本等因素,并结合实验结果进行优化。

药物合成反应—重点药物的合成路线

药物合成反应—重点药物的合成路线

西咪替丁合成
OO
O SOCl2
OH O
O Cl
HCONH2/H2O
O
N
O
KBH4/AlCl3
THF
N
N H
N H
N
S
N H
HH NN
NN
CH3NH2 EtOH,H2O
N
S
N H
H NS
NN
(CH3S)2C=N-CN NaOH,EtOH
NH2
OH HS
N
S
HCl
. HCl
N
H
NH2
奥美拉唑合成
N HO
O
ON
O
NS
O
N H
SOCl2
m-Cl-C6H4-COOOH
N Cl
O
N
SH
N H
NaOCH3/MeOH
O
O
N NS
O
N H
阿司匹林合成
O
OH + OH
OO O
H2SO4 70~75℃
O OH
O O
布洛芬合成
CH2=CHCH3 Na-C
CH3COCl AlCl3
O
ClCH2COOC2H5 CH3CH2ONa
地西泮合成
N
Cl
O (CH3)2SO4 CH3C6H5 Cl
N+
_ O . CH3SO4
Fe, HCl
C2H5OH Cl
NH O
ClCH2COCl Cl C6H12
O N
O Cl (CH2)6N4 . HCl Cl CH3OH
O N
N
N
N N
RX
N

化学制药工艺学课件-药物合成工艺路线的设计和选择

化学制药工艺学课件-药物合成工艺路线的设计和选择

安全风险评估与控制
进行安全风险评估,制定相应的安全 措施和应急预案,确保生产安全。
03
药物合成工艺路线的发展趋势
绿色化学合成技术
绿色化学合成技术是一种旨在减少或消除化学品生产和使用 过程中对人类健康和环境影响的合成方法。它强调使用无毒 或低毒性的原料、催化剂和溶剂,并采用节能、减排和资源 化的工艺。
化学制药工艺学课件-药 物合成工艺路线的设计和 选择
• 药物合成工艺路线的设计 • 药物合成工艺路线的选择 • 药物合成工艺路线的发展趋势 • 药物合成工艺路线实例分析
01
药物合成工艺路线的设计
药物合成工艺路线的概念
01
药物合成工艺路线:指在化学制 药过程中,将原料转化为药物的 合成途径。
02
设备需求与投资
分析不同工艺路线所需的设备和投资,选择 适合企业实际情况的工艺。
药物合成工艺路线的实施与控制
工艺流程图与操作规程
制定详细的工艺流程图和操作规程, 确保生产过程规范可控。
设备选型与维护
根据工艺需求合理选择设备,并定期 进行设备维护和保养。
质量监控与检测
建立严格的质量监控体系,对生产过 程和产品进行实时检测和质量控制。
药物合成工艺路线是药物生产的 核心,涉及原料的来源、反应条 件、操作步骤、分离纯化等多个 方面。
药物合成工艺路线的设计原则
01
02
03
04
安全性
选择对人体无害或危害较小的 原料和试剂,避免使用有毒、
有害的物质。
有效性
确保合成工艺能够高效地生产 出目标药物,具有较高的收率
和纯度。
经济性
考虑原料成本、反应条件、能 源消耗等因素,降低生产成本
计算机辅助药物设计包括:分子动力学模拟、量子化学计算、药效团模型等技术 。这些技术能够预测化合物的性质和药效,为药物设计和优化提供重要的参考依 据。同时,计算机辅助药物设计还可以降低新药研发的成本和时间,提高研发效 率。

化学药物合成路线

化学药物合成路线

功能基的活化
四、追溯求源法(逆合成分析法)
从药物分子的最终化学结构出发, 将其化学合成过程一步一步逆向推 导进行寻源的思考方法称为追溯求 源法,又称倒推法或逆合成分析 (Retrosynthesis analysis)。
四、追溯求源法(逆合成分析法)
(1)一般在目标分子中有官能团的 地方进行切断;(2)在有支链的地 方进行切断;(3)切断后得到的“合 成子”应该是合理的(包括电荷合 理);(4)一个好的切断同时也要 满足:a. 有合适的反应机理,b. 最大 可能的简化,c. 能给出认可的原料。
功能基的定位
H C O
NHCOCHCl2
C H
CH2 O
HNO3,H2O
C H3C 26 CH3
O2N
H NHCOCHCl2
C
C H
CH2ONO2
ONO2
O2N
27
H NHCOCHCl2
CC H
CH2OH
OH
28:氯霉素
4
三、逐步综合法
(二)功能基的生成、保护与转化
功能基的活化
在化合物分子中引入一个基团,它能使化合物 活性大大增加,使反应得以进行或反应速度加 快、收率提高,并在反应之后能被设法除去, 这种基团被称为活化基团。
对于有明显类型结构特点以及官能团特点的化合物,可以 采用此法进行设计。
二、分子对称法
一、类型反应法
二、分子对称法
生物碱鹰爪豆碱(sparteine,16)的合成
2
二、分子对称法
抗麻风病药物克风敏(Clofazimine, 17)
三、逐步综合法
基本骨架的构成
功能基的生成、 保护与转化
理想的 工艺路线

药物化学合成路线整理

药物化学合成路线整理

药物化学合成路线整理引言药物化学合成是药物研发中的重要环节。

合成路线的设计和优化对于药物的研发和生产至关重要。

本文旨在整理一些常见的药物化学合成路线,并简要介绍每个步骤的关键反应和合成策略。

路线整理步骤1: 底物合成该步骤涉及合成底物,以便进行后续反应。

底物可以通过不同的合成路径来获得,取决于目标药物的结构和合成策略。

常见的底物合成方法包括:- 化学合成:根据目标结构设计合成路线,使用有机合成技术进行合成。

- 生物合成:利用微生物、酶或细胞来合成目标底物。

步骤2: 关键反应在该步骤中,合成底物经历一系列关键反应,逐步形成目标药物的骨架。

每个反应都具有其特定的条件和催化剂,以实现所需的转化。

常见的关键反应包括:- 取代反应:通过引入不同的官能团来改变底物的结构。

- 缩合反应:将两个或多个底物缩合成一个新的分子。

- 消除反应:通过去除分子中的某些官能团来实现化学转化。

步骤3: 保护基团和功能团的转化在药物合成中,为了控制特定反应的发生和选择性,有时需要在分子中引入保护基团。

保护基团可以暂时屏蔽某些官能团,以防止意外的反应发生。

该步骤需要选择适当的保护基团和转化方法,以确保所需的官能团转化顺利进行。

步骤4: 反应条件和催化剂在每个反应步骤中,使用适当的反应条件和催化剂是至关重要的。

可以使用不同的溶剂、温度和压力来控制反应的速率和选择性。

催化剂可以加速反应进程,并提高产率。

选择合适的反应条件和催化剂是化学合成路线设计的关键。

步骤5: 结构优化药物合成路线的最后一个步骤是对合成路线进行优化。

通过改变反应条件、催化剂或底物结构,可以改进合成路线的效率和产率。

结构优化旨在减少合成步骤的数量,提高产率并减少副反应的生成。

结论药物化学合成路线的整理是药物研发中不可或缺的一部分。

合理设计的合成路线可以提高药物的合成效率,并最终促使新药物的问世。

通过对常见药物化学合成路线的整理和总结,我们能更好地了解药物合成的基本原理和策略。

典型药物合成

典型药物合成

酒石酸拆分 HO R-(-)-Epinephrine
麻黄碱的制备
目前我国主要从麻黄中分离提取。还可用发酵法制取。
O H + Saccharose
啤酒酵母
CH3NH2
HO H N CH3
CH3
H2/Pd-C
HO H CH3
O
OH H N CH3
CH3
马来酸氯苯那敏的合成
氯化
缩合
Sandmeyer 反应
2、为什么青霉素G不能口服?而青霉素V却可以口 服? 为什么青霉素G的钠盐或钾盐必须做成粉针 剂型?
3、简述寻找耐酸、耐酶、广谱青霉素的研究方法。
51
4、 半合成青霉素的合成
得到6-APA后,再与相应的侧链酸进行缩合,方法有:
(1)酰氯法(2)酸酐法 (3)DCC法(4)固相酶法
52
小结
• 重点药物
保护胃黏膜
促进血小 板聚集
收缩血管
吲哚美辛合成
双氯灭痛的合成
布洛芬的合成
三、芳基烷酸类
萘普生的合成
吡罗昔康的代谢 吡罗昔康的合成
• 塞来西布合成
环磷酰胺的合成
•本品的无水物为油状物,在丙酮中和水反应生成 水合物而结晶析出
5-氟尿嘧啶的合成
[氟化]
[甲酰化]
[水解]
[缩合]
阿糖胞苷的合成
H3C OO
+
N
CHC3 H3
Br -
O
16
内源性拟交感胺的生物合成
O
O
HO
NH3+
(S)(-) -Tyrosine (L)
Aromatic
2
L-amino acid decarboxylase
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MeCOCH2Br
O
CH2=CHCOOR
-COOR
Organic Reactions for Drug Synthesis
d-合成子——负离子 ,亲核性
合成子 等价物
MeLi 1,2
官能团
Rd
d0
Me
-
MeS
MeSH R-CH=CH X / M
-SH
d
d
R-CH=CH -
1
C
N
KCN
_C
N
d
2
Organic Reactions for Drug Synthesis
反合成分析(Retrosynthetic Analysis )
OH Et CH3 OH Et CH3
转换
OH + CH3 O + CH3
Et -
反应
Et - MgBr
Organic Reactions for Drug Synthesis
H2C-CHO -
CH3-CHO
-CHO
d3பைடு நூலகம்
NH2
Li
NH2
-NH2
Organic Reactions for Drug Synthesis
合成子名称 r-合成子 (自由基)
合成子
(r) . (r) . O OH
等价物
COOEt COOEt
(e)
e-合成子 (分子)
+
(e)
COOMe (e) (e) COOMe
* *
*
CN N Co + N
*
*
* HN * N
Me
*
Me Me CONH2
CONH2
Me O -O
* Me
N N
*
P
*
*
N H O
O OH
O
CH2OH
* * * O *
Woodward将有机合成艺术最完美地展现在世人面前
Organic Reactions for Drug Synthesis
著名的化学家Woodward说



Organic Reactions for Drug Synthesis
反合成分析手段(一)

切割(Disconnection,简称 dis)
– 找出反合成子, 按相应规律进行切割 (主要依据单元反应)
O
O
O
N
OH O
dis
O OHC O
N H
OH
Mannich反应反合成子
Organic Reactions for Drug Synthesis
NMe2
NMe2
Br
O
NMe2
OH H
Organic Reactions for Drug Synthesis
合成艺术时期

1917年Robinson发明了托品酮合成法
合成反应与技术研究的突破
COOH
COOH NMe2 O COOH
托 品 三 步 合 成 法
CHO
+
CHO
NH2 Me
+
O COOH

1828 ~ 1917年经典合成时期 1917 ~ 1972年合成艺术时期 1972 以后进入科学设计时期
Organic Reactions for Drug Synthesis
经典合成时期

1828年Wohler偶然使氰铵酸转化成尿素
打破了“生命力”学说 开创了人工合成新纪元

1859年Kekule建立了化学结构理论 奠定了人工合成的理论基础
O
Me O O
O H N
MeO MeO
O
O
Me
O
Organic Reactions for Drug Synthesis
合成设计主要任务

探索合成路线设计的理论与策略


研究合成设计的技术手段
寻找化合物合成的最佳路线
Organic Reactions for Drug Synthesis
合成设计四大步骤
OH
rearr
Beckmann重排
Organic Reactions for Drug Synthesis
反合成分析手段(四)

官能团转换(FGI、FGA、FGR)
– 官能团转换三种方式
成 成 学 计 成 成
技 技 技 技 分 分
术 术 术 术 析 析
Organic Reactions for Drug Synthesis
1987年Kishi等合成出含64个手性碳的海葵毒素
OH H2N O O O OH OH O OH HO HO OH N O OH N OH Me Me OH O Me OH O OH HO OH Me HO OH OH OH OH OH OH OH Me OH Me HO OH O HO Me OH OH OH OH OH OH OH HO OH O OH OH HO OH O OH OH OH
CH 3
CH 3
Organic Reactions for Drug Synthesis
• Claisen反应的反合成子
O R2 H 3C R1 O OR'
O R2 CH 3 OR'
O
+
R1
OR'
• Dieckmann反应的反合成子
O COOEt
O
O
EtO
OEt
Organic Reactions for Drug Synthesis
第八章 合成设计
The Design of Drug Synthesis
Organic Reactions for Drug Synthesis
你知道如何合成下列两个化合物吗?
H O O O
N H
H
H
A
O O
H
HN
B
Organic Reactions for Drug Synthesis
药物合成设计 最富有挑战性与创新性
• 等价物(Equivalent):与合成子相对应的化合物
Organic Reactions for Drug Synthesis
合成子的分类
– 离子合成子:
a-合成子——正离子 d-合成子——负离子 – 自由基合成子: r - 合成子—— 自由基 – 周环反应合成子: e - 合成子 —— 分子
Organic Reactions for Drug Synthesis

1902年Willstatter合成天然产物托品醇 天然产物人工合成第一个里程碑
O I Br Br Br
托 品 经 典 合 成 法 ( 20 步 反 应 )
NMe2
Me2N
Br
NMe2 Br Br H NMe2 OH NMe2 Br
O
+
CH2OH
C2H5OCH=CH2
Organic Reactions for Drug Synthesis
反合成分析主要手段

切割(Disconnection,简称 dis) 连接(Connection,简称 con) 重排(Rearrangement,简称 rearr) 官能团转换(FGI、FGA、FGR)

目标分子(Target Molecule):合成目标物 合成子(Synthons): 反合成分析时, 目标分子切割成的片段(Piece)叫合成子
目标分子
OH Et CH3 OH Et CH3
合成子 转换
OH + CH3 O + CH3
合成子
Et -
反应 物
Et - MgBr

等价试剂
等价中间体
H NMe2 OH NMe2 O
Organic Reactions for Drug Synthesis
• 1951年Robinson设计合成了甾体多环分子
OH HO O OMe Me O OMe
Me OH AcO AcO
Me OH O Me Me Me O O O HO
Me OMe
Me Me O
Me
O Me Me COOMe H COOMe RO O H Me O Me COOMe
RO Me Me COOMe H COOH RO RO Me
Me
Organic Reactions for Drug Synthesis
• 1962年Woodward领导100多位化学家合成出VB12
H2 NOC Me H2 NOC Me H2 NOC Me Me CONH2
条件:连接键能够反应断裂逆转为原基团(必须条件) 连接后能生成一种理想的反合成子(优先选择)
CHO CHO
con.
Organic Reactions for Drug Synthesis
反合成分析手段(三)

重排(Rearrangement,简称 rearr) 找出分子中重排反应可生成的结构
N
O NH
第一步 目标分子考察:结构特征和理化性质
结构对称性、重复性、稳定性(战地侦察)
第二步 反合成分析:设计各种路线,寻找可得原料, 构建合成树(战略设计) 第三步 反应选择性控制:选择性活化与保护、 化学选择、立体选择、区域选择 (战术方案)
第四步 合成路线评价:确定最佳合成路线
路线短、产率高、原料易得、分离容易、 反应条件易控
OH
Organic Reactions for Drug Synthesis
Me O N H MeO O H Me O O O Me O O H
相关文档
最新文档