模拟电子技术基础(第四版)期末复习资料

合集下载

模拟电子技术基础第四版(童诗白)课后答案解析

模拟电子技术基础第四版(童诗白)课后答案解析

WORD 文档下载可编辑模拟电子技术基础第1章 常用半导体器件1.1选择合适答案填入空内。

(l)在本征半导体中加入( A )元素可形成N 型半导体,加入( C )元素可形成P 型半导体。

A.五价 B. 四价 C. 三价 (2)当温度升高时,二极管的反向饱和电流将(A) 。

A.增大 B.不变 C.减小(3)工作在放大区的某三极管,如果当I B 从12 uA 增大到22 uA 时,I C 从l mA 变为2mA ,那么它的β约为( C ) 。

A.83B.91C.100(4)当场效应管的漏极直流电流I D 从2mA 变为4mA 时,它的低频跨导g m 将( A ) 。

A.增大;B.不变;C.减小 1.2电路如图P1.2 所示,已知10sin i u t ω=(V ),试画出i u 与o u 的波形。

设二极管导通电压可忽略不计。

图P1.2 解图P1.2解:i u 与o u 的波形如解图Pl.2所示。

1.3电路如图P1.3所示,已知t u i ωsin 5=(V ),二极管导通电压U D=0.7V 。

试画出i u 与ou 的波形图,并标出幅值。

图P1.3 解图P1.31.4电路如图P1.4所示, 二极管导通电压U D =0.7V ,常温下mV U T 26≈,电容C 对交流信号可视为短路;i u 为正弦波,有效值为10mV 。

试问二极管中流过的交流电流的有效值为多少?解:二极管的直流电流 ()/ 2.6DD I V U R mA =-=其动态电阻:/10D T D r U I ≈=Ω 图P1.4故动态电流的有效值:/1di D I U r mA =≈1.5现有两只稳压管,稳压值分别是6V 和8V ,正向导通电压为0.7V 。

试问: (1)若将它们串联相接,则可得到几种稳压值?各为多少? (2)若将它们并联相接,则又可得到几种稳压值?各为多少?解:(1)串联相接可得4种:1.4V ;14V ;6.7V ;8.7V 。

《模拟电子技术》期末考试复习题(含答案)

《模拟电子技术》期末考试复习题(含答案)

《模拟电子技术》期末考试复习题班级:学号:姓名:成绩:一、填空题1.硅二极管导通时的正向管压降约为____ V,锗二极管导通时的管压降约为____ V。

二极管的两端加正向电压时,有一段死区电压,锗管约为____V,硅管约为____V。

0.70.30.20.52.半导体具有____特性、____特性和____的特性。

掺杂热敏光敏3.电路中流过二极管的正向电流过大,二极管将会____;如果施加在二极管两端的反向电压过高,二极管将会____。

烧坏(开路)击穿(短路)4.使用二极管时,应考虑的主要参数是________和________。

最大整流电流(额定电流)最高反向工作电压(耐压)5.理想二极管的特点是正向导通时管压降为____,反向截止时反向电流为____。

0V0A6.用万用表测量二极管的正反向电阻时,若正、反向电阻均接近于零,则表明该二极管已____;若正、反向电阻均接近于无穷大,则表明二极管已____。

击穿烧坏7.在晶体管中,I E与I B、I C的关系为_________。

I E=I B+I C8.示波器是电子技术中常用的测量仪器,用于观察被测信号的____及测量被测信号的_________、_________和_________。

波形频率大小相位9.硅晶体管发射结的死区电压约为_____V,锗晶体管发射结的死区电压约为____V。

晶体管处在正常放大状态时,硅管发射结的导通电压约为_____V,锗管发射结的导通电压约为____V。

0.50.20.70.310.某晶体管的U CE不变,基极电流I B =30μA时,集电极电流I C =1. 2mA,则发射极电流I E =____ mA,若基极电流I B增大到50μA时,I C增大到2mA,则发射极电流I E =_____mA,晶体管的电流放大系数β=_____。

1.23mA2.05mA4011.用万用表测量晶体管时,应将万用表置于_____挡,并进行_____。

模拟电子技术期末总复习

模拟电子技术期末总复习

4、 作图:vi→iB→iC、vCE→vo 5、求放大倍数:
AV

vo vi
e j
Vom Vim
20
假设uBE有一微小的变化
iB IB uA
45 35 25 15
t
iC
Q
0.68 0.7 0.72
UV BE ui
直流负载线
IC
mA
3.3 2.7 2.1
1.5
0.9
交流负载线
55 ib
45
h参数等效电路:
Ii
Ib
Ic
Ui R'B rbe
Ib RL
U o
动态:
AV
rbe
R' L (1 )RE1
Ri RB1 // RB2 //[rbe (1 )RE1]
RE1 RC
Ro RC
RB C1
ui
RE
+VCC
C2
RL uo
静态:
IB
VCC VBE
放大器的性能指标:
电压放大倍数、输入电阻ri 、输出电阻ro 、通频带
17
(二)放大器的分析方法
A、图解法分析法:
1、静态工作点的图解分析:
(1)近似估算Q点: +
ΔVI
RB
T
-
VBB
I BQ
=
VBB-
V BE
RB
ICQ I BQ
VCEQ VCC ICQ RC
C+
RC
ΔVO
VCC
-
18
22
电路参数对Q点的影响:
Rb:
iC
Rb↗
IBQ↘

最齐全的模拟电子技术基础参考

最齐全的模拟电子技术基础参考

PN 结形成 的过程可参阅 图01.06。
图01.06 PN结的形成过程 (动画1-3)
1.2.2 PN结的单向导电性
PN结具有单向导电性,若外加电压使电流 从 P 区流到 N 区, PN结呈低阻性,所以电流 大;反之是高阻性,电流小。
如果外加电压使PN结中:P区的电位高于 N 区的电位,称为加正向电压,简称正偏;
模拟电子技术基础
绪论
1.电子技术的现状与发展趋势
2.电子技术的应用范围 3.本课程与其它专业课的关系 4.电子技术基础学习特点
参考书:
1. 《模拟电子技术基础》(第四版): 清华大学童诗白、华成英主编
2. 《电子技术基础》(模拟部分第四版): 华中理工大学康华光主编
第一章 晶体二极管
1.1 半导体的基本知识 1.2 PN结 1.3 半导体二
(2) PN结加反向电压时的导电情况
PN结加反向电压时的导电情况如图01.08所示。 外加的反向电压有一部分降落在PN结区,方向与
图01.03 空穴在晶格中的移动
(动画1-2)
1.1.2 杂质半导体
(1) N型半导体 (2) P型半导体
在本征半导体中掺入某些微量元素作为杂 质,可使半导体的导电性发生显著变化。掺入 的杂质主要是三价或五价元素。掺入杂质后的 本征半导体称为杂质半导体。
(1)N型半导体
在本征半导体中掺入五价杂质元素,例如磷,可 形成 N型半导体,也称电子型半导体。
P 区的电位低于 N 区的电位,称为加反向电 压,简称反偏。
(1) PN结加正向电压时的导电情况
PN结加正向电压时的导电情况如图01.07
外加的正向电压有一部 分降落在 PN 结区,方向与 PN结内电场方向相反,削弱 了内电场。内电场对多子扩 散运动的阻碍减弱,扩散电 流加大。扩散电流远大于漂 移电流,可忽略漂移电流的 影响, PN 结呈现低阻性。

模拟电子技术基础-总复习最终版

模拟电子技术基础-总复习最终版

R1 R2 R3
Rf
ui3 i2 R3 i3
N
_
+ +
uo
uo
Rf
ui1 R1
ui2 R2
ui3 R3
R4
实际应用时, 可适当增加或减少输入端的个数, 以适应不同的需要。
2.同相求和运算
节点P的电流方程: i1 i2 i3 i4
Rf
ui1 uP ui2 uP ui3 uP uP
R1
解:(1)× (2)√ (3)× (4)× (5)√ (6)×
2.共发射极放大电路中,由于电路参数不同,在信号源电压 为正弦波时,测得输出波形如图所示,试说明电路分别产生 了什么失真,如何消除。
3.试分析图示各电路是否能够放大正弦交流信号,简述理由。 设图中所有电容对交流信号均可视为短路。
4.画出图示各电路的直流通路和交流通路。设所有电容对交 流信号均可视为短路。
虚短路
u-= u+= ui
虚开路
uo ui ui
Rf
R
uo
(1
Rf R
)ui
Au
uo ui
1
Rf R
反馈方式: 电压串联负反馈。输入电阻高。
一、求和运算电路 ui1 R1
1.反相求和运算
uN uP 0
ui2 i1 R2
iF Rf
i1 i2 i3 iF
ui1 ui2 ui3 uo
(c)
第二章 基本放大电路
知识点: 1、 放大的概念和放大电路的主要性能指标 2、静态工作点的定义及设置合适的静态工作点
的必要性。 3、常见电路的静态工作点的估算。 4、放大电路的直流通路和交流通路。 5、能画出基本放大电路的交流等效电路,并计

《模拟电子技术基础》复习资料及答案.doc

《模拟电子技术基础》复习资料及答案.doc

《模拟电子技术》复习资料答案一、填空题1.半导体不同于导体利绝缘体的三大独特件质为掺杂性、热敏性、光敏性;其电阻率分別受佳质、温度、光照的增加而下降。

2.用于制造半导体器件的材料通常是_硅、错和帥化稼。

3.当外界温度、光照等变化时,半导体材料的导电能力会发生很大的变化。

4.纯净的、不含杂质的半导体,称为本征半导体。

5.在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。

6.本征半导体中掺入III族元素,例如B、A1 ,得到P型半导体。

7.木征硅中若掺入五价元素的原了,则多数载流了应是一电子,掺杂越多,则其数量一定越一多,而少数载流子应是—空穴,掺杂越多,则其数量一定越一少。

8.半导体中存在着两种载流子:带正电的空穴和带负电的.电子。

9.N型半导体小的多数载流子是_电子,少数载流子是一空穴。

10.杂质半导体分N型(电子)和P型(空穴)两大类。

11.N型半导体多数载流了是一电了,少数载流了是_空穴。

P型半导体多数载流了是一空穴,少数载流子是_电子。

12.朵质半导体中,多数载流子浓度主要取决于掺杂浓度,而少数载流子则与温度有很大关系。

13.PN结的主要特性是一单向导电性。

14.PN结是多数载流子的扩散运动和少数载流子的漂移运动处于动态平衡而形成的,有时又把它称为空间电荷区(势垒区)或耗尽区(阻挡层)。

15.PN结加正向电压时,空间电荷区变窄;PN结加反向电压时,空间电荷区变宽。

16.PN结在无光照、无外加电压吋,结电流为零°17.PN结两端电压变化时,会引起PN结内电荷的变化,这说明PN结存在电容效应。

18.二极管是由—个PN结构成,因而它同样具有PN结的单向导电特件。

19.二极管的伏安特性可川数学式和Illi线來描述,其数学式是上去屋佟LL,其曲线又口J分三部分:1I-:向特性、反向特性、击穿特性。

20.品体二极管的正向电阻比其反向电阻小,稳压二极管的反向击穿电压通常比一般二极管的止,击穿区的交流电阻乂比正向区的小o21.有两个晶体三极管A管的[3二200, /CEO=200M A; B管的卩二50, /CEO=10M A,其他参数人致相同,相比之下旦管的性能较好。

童诗白《模拟电子技术基础》(第4版)笔记和课后习题(含考研真题)详波形的发生器和信号的转换)【圣才出

童诗白《模拟电子技术基础》(第4版)笔记和课后习题(含考研真题)详波形的发生器和信号的转换)【圣才出

第8章 波形的发生器和信号的转换8.1 复习笔记一、正弦波振荡电路1.产生正弦波振荡的条件(1)振幅平衡条件:(2)相位平衡条件:(3)起振条件:2.正弦波振荡电路的组成(1)放大电路:保证电路有从起振到动态平衡的过程,使电路获得一定幅值的输出量,实现能量的控制。

(2)选频网络:确定电路的振荡频率,使电路产生单一频率的振荡,即保证电路产生正弦波振荡。

(3)正反馈网络:引入正反馈,使放大电路的输入信号等于反馈信号。

(4)稳幅环节:也是非线性环节,使输出信号幅值稳定。

在不少实用电路中,常将选频网络和正反馈网络“合二而一”,且对于分立元件放大电路,也不再另加稳幅环节,而依靠晶体管特性的非线性来起到稳幅作用。

3.判断电路能否震荡的方法(1)观察电路是否包含了放大电路、选频网络、正反馈网络和稳幅环节四个组成部分。

(2)判断电路是否有合适的静态工作点且动态信号是否能够输入、输出和放大。

(3)判断电路是否满足振荡的相位条件、幅值条件。

3.RC 正弦波振荡电路(1)振荡条件:反馈系数,电压放大倍数。

(2)起振条件:,即。

12f R R (3)振荡频率:。

(4)典型的RC 正弦波振荡电路:文氏电桥正弦波振荡电路,如图8.1所示。

图8.1 RC 文氏电桥正弦波振荡电路4.LC正弦波振荡电路(1)谐振时,回路等效阻抗为纯阻性,阻值最大,值为:其中,为品质因数;为谐振频率。

(2)如图8.2所示,LC并联谐振回路等效阻抗为:图8.2 LC 并联网络(3)变压器反馈式振荡电路的振荡频率为:(4)三点式LC 正弦波振荡器(1MHz 以上频率),典型电路如图8.3所示。

(a)电感三点式振荡器(b)电容三点式振荡器图8.3 典型三点式LC正弦波振荡器①组成原则:与晶体管发射极相联的电抗是相反性质的,不与发射极相联的另一电抗是相同性质的。

②振荡频率:计算振荡频率时,只需分离出LC总回路求谐振频率即可。

电容式:电感式:5.石英晶体振荡器(1)石英晶体等效电路:R、C、L串联后与Co并联,如图8.4所示。

《模拟电子技术》期末总复习PPT课件

《模拟电子技术》期末总复习PPT课件

{ 硅管: IsnA级
•反向饱和电流Is 锗管: IsA级
•电压当量(室温下): UT 26mV
半导体器件基础
3.2二极管的等效电阻 • 等效电阻为非线性电阻,与工作点有关。

直流电阻:
RD
UQ IQ
交流电阻:
rD
26mV IQ
半导体器件基础
3.3 二极管的主要参数 • 最大正向平均电IF; • 最大反向工作电压URM; • 反向电流IR; • 最高工作频率fM。 3.4 稳压二极管(利用电击穿特性) • 稳压条件: • 反向运用, • Iz,min<Iz<Iz,max,(或偏压大于稳压电压) • 加限流电阻R
形成漂移电流。
半导体器件基础
2.1PN结 • 形成过程:扩散扩散、漂移扩散=漂移
•导通电压 硅(Si): U 0.6 ~ 0.8V
锗(Ge): U 0.2 ~ 0.3V 2.2 PN结伏安特性
(1)加正向电压:扩散>漂移,(耗尽层变窄)
正向电流
I
I eU D /UT s
(2)加反向电压:扩散<漂移, (耗尽层变宽 )
《模拟电子技术》 期末总复习
总要求: 抓住基本概念基本知识和基本分析 方法; 注重知识的综合应用。
半导体器件基础
1.1半导体特性 • 掺杂可改变和控制半导体的电阻率 • 温度可改变和控制半导体的电阻率 • 光照可改变和控制半导体的电阻1.2 本征
半导体 • 排列整齐、纯净的半导体称为本征半导体。 • 两种载流子(电子、空穴),成对出现。 • 在电场作用下,载流子作定向运动形成漂
'
(RL ' RC / /RL )(需看射极是否有偏置电阻及旁路电容)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

该复习资料,不一定适用于本校,但有比没有要好。

第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管,锗管。

*开启电压------硅管,锗管。

分析方法------ ----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路或压降;若 V阳 <V阴( 反偏 ),二极管截止(开路)。

三、稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

第二章三极管及其基本放大电路一. 三极管的结构、类型及特点1.类型---分为NPN和PNP两种。

2.特点---基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触面积较小;集电区掺杂浓度较高,与基区接触面积较大。

二. 三极管的工作原理1. 三极管的三种基本组态2. 三极管内各极电流的分配* 共发射极电流放大系数 (表明三极管是电流控制器件)CBO CEO B CBC)(1I I i iIIβββ+=∆∆==其中I CEO是穿透电流(越小越好),I CBO是集电极反向电流。

3. 共射电路的特性曲线*输入特性曲线---同二极管。

* 输出特性曲线(饱和管压降,用U CES表示)放大区---发射结正偏,集电结反偏。

饱和区---发射结正偏,集电结正偏截止区---发射结反偏,集电结反偏。

根据电位如何判断管子是否处于放大状态:对NPN管而言,放大时VC > VB > VE对PNP管而言,放大时VC < VB <VE4. 温度影响温度升高,输入特性曲线向左移动。

温度升高I CBO、I CEO、I C以及β均增加。

5.三极管的极限参数ICM最大集电极电流PCM最大的集电极耗散功率U (BR )CEO C-E 间的击穿电压三. 低频小信号等效模型h ie ---输出端交流短路时的输入电阻,常用r be 表示;h fe ---输出端交流短路时的正向电流传输比,常用β表示;微变等效模型用于分析晶体管在小信号输入时的 动态情况,不能用于静态分析。

四. 基本放大电路组成及其原则 1. VT 、 V CC 、 R b 、 R c 、C 1、C 2的作用。

2.组成原则----能放大、不失真、能传输。

五. 放大电路的图解分析法 1. 直流通路与静态分析*概念---直流电流通的回路。

*画法---电容视为开路。

*作用---确定静态工作点*直流负载线---由确定的直线。

*电路参数对静态工作点的影响1)改变R c :Q 点在I BQ 所在的那条输出特性曲线上移动。

c C CC CE R i V u -=交流负载线2)改变V CC:直流负载线平移,Q点发生移动。

2. 交流通路与动态分析*概念---交流电流流通的回路*画法---电容视为短路,理想直流电压源视为短路。

*作用---分析信号被放大的过程。

*交流负载线--- 连接Q点和V CC’点V CC’= U CEQ+I CQ R L’的直线。

3. 静态工作点与非线性失真(1)截止失真*产生原因---Q点设置过低*失真现象---NPN管削顶,PNP管削底。

*消除方法---提高Q。

(2)饱和失真*产生原因---Q点设置过高*失真现象---NPN管削底,PNP管削顶。

*消除方法---增大R b、减小R c、增大V CC ,降低Q点。

六. 阻容耦合共射放大电路的等效电路法1.静态分析2.放大电路的动态分析* 放大倍数* 输入电阻* 输出电阻七. 稳定工作点共射放大电路的等效电路法 1.静态分析2.动态分析 *有旁路电容* 无旁路电容c o R R =beb i r R R ∥=八. 共集电极基本放大电路1.静态分析2.动态分析3. 电路特点* 电压放大倍数为正,且略小于1,称为射极跟随器。

* 输入电阻高,输出电阻低(带载能力强)。

* 有电流放大能力。

八. 共基电极基本放大电路(高频特性好,展宽频带)九.复合管的判定:不同类型的管子复合后,其类型取决于第一个管子。

eEQCCCEQBQEQebBEQBBBQ)1()1(RIVUIIRRUVI-=+=++-=ββββββ++=+++=++++=1)//)(1()1()1(bebeoLebebiebeberRRRRRrRRRrRRAu∥第三章场效应管及其基本放大电路一. 结型场效应管( JFET)1.结构示意图和电路符号2. 输出特性曲线(可变电阻区、放大区、截止区、击穿区)二. 绝缘栅型场效应管(MOSFET)分为增强型(EMOS)和耗尽型(DMOS)两种。

结构示意图和电路符号2. 特性曲线*N-EMOS的输出特性曲线* N-EMOS的转移特性曲线式中,I DO是U GS=2U T时所对应的i D值。

三. 场效应管的主要参数1.漏极饱和电流I DSS2.夹断电压U p3.开启电压U T4.直流输入电阻R GS5.低频跨导g m (表明场效应管是电压控制器件)四. 场效应管的低频小信号等效模型五. 共源基本放大电路 分压式偏置放大电路 * 动态分析第四章多级放大电路一. 级间耦合方式1. 阻容耦合----各级静态工作点彼此独立;能有效地传输交流信号;体积小,成本低。

但不便213i R R R R ∥+=4O R R =于集成,低频特性差。

2. 变压器耦合 ---各级静态工作点彼此独立,可以实现阻抗变换。

体积大,成本高,无法采用集成工艺;不利于传输低频和高频信号。

3. 直接耦合----低频特性好,便于集成。

各级静态工作点不独立,互相有影响。

存在“零点漂移”现象。

*零点漂移----当温度变化或电源电压改变时,静态工作点也随之变化,致使u o 偏离初始值“零点”而作随机变动。

二. 多级放大电路的动态分析1. 电压放大倍数2. 输入电阻3. 输出电阻三. 长尾差放电路(抑制直接耦合电路中的温漂)的原理与特点 1.静态分析2. 动态分析eBEQEE EQ 2R U V I -≈BEQc CQ CC EQ CQ CEQ U R I V U U U +-≈-=β+=1EQ BQ I I ∏==⋅⋅⋅⋅⋅⋅⋅==n j uj n u A U U U U U U U U A 1i o i2o2i o1io i1i R R =nR R o o =eEQ BEQ BQ EE 2R I U R I V b ++=通常,R b 较小,且I BQ 很小,co CMR c beb Lc d 2 0 )2(R R K A r R R R A =∞==+=∥双端输出:βco be b ebe b CMR ebe b L c c be b L c d )(2)1(2 )1(2)( )(2)(R R r R R r R K R r R R R A r R R R A =++++=+++=+=ββββ∥∥单端输出:四. 共模信号与差模信号的计算 共模信号:两输入信号的平均值 差模信号:两输入信号的差五.差分放大电路的改进2)1(Wbe b cd R r R R A ββ+++-=Wbe b i )1()(2R r R R β+++=Ic c Id d Ou A u A u ⋅+⋅=第五章集成运算放大电路一. 集成运放电路的基本组成1.输入级----采用差放电路,以减小零漂。

2.中间级----多采用共射(或共源)放大电路,以提高放大倍数。

3.输出级----多采用互补对称电路以提高带负载能力。

4.偏置电路----多采用电流源电路,为各级提供合适的静态电流。

二. 集成运放的电压传输特性当u I在+U im与-U im之间,运放工作在线性区域:三.理想集成运放的参数及分析方法1. 理想集成运放的参数特征* 开环电压放大倍数A od→∞;* 差模输入电阻R id→∞;* 输出电阻R o→0;* 共模抑制比K CMR→∞;2. 理想集成运放的分析方法1) 运放工作在线性区:* 电路特征——引入负反馈* 电路特点——“虚短”和“虚断”:“虚短”---“虚断” ---2) 运放工作在非线性区* 电路特征——开环或引入正反馈* 电路特点——输出电压的两种饱和状态:当u+>u-时,u o=+U om当u+<u-时,u o=-U om四.集成运放的读图第六章放大电路中的反馈一.反馈概念的建立*开环放大倍数---A*闭环放大倍数---Af*反馈深度---1+AF*环路增益---AF:1.当AF>0时,Af下降,这种反馈称为负反馈。

2.当AF=0时,表明反馈效果为零。

3.当AF<0时,Af升高,这种反馈称为正反馈。

4.当AF=-1时,Af→∞。

放大器处于“自激振荡”状态。

二.反馈的形式和判断1. 反馈的范围----局部或级间。

2.有无反馈的判断---看输出回路与输入回路是否有联系,有则有反馈,无则没有反馈。

3. 反馈的性质----交流、直流或交直流。

直流通路中存在反馈则为直流反馈,交流通路中存 在反馈则为交流反馈,交、直流通路中都存在反馈 则为交、直流反馈。

4.反馈的类型----正反馈:反馈的结果使输出量的变化增大的反馈;负反馈:反馈的结果使输出量的变化减小的反馈。

对于单个集成运放,若反馈线引至同相端,则为正反馈;反之为负反馈。

反馈极性-----瞬时极性法:(1)假定某输入信号在某瞬时的极性为正(用+表示)。

(2)根据该极性,逐级推断出放大电路中各相关点的瞬时极性。

(3)确定反馈信号的极性。

(4)根据X i 与X f 的极性,确定净输入信号的大小。

X id 减小为负反馈;X id 增大为正反馈。

5. 反馈的取样----电压反馈:反馈量取样于输出电压;具有稳定输出电压的作用。

(输出短路时反馈消失)电流反馈:反馈量取样于输出电流。

具有稳定输出电流的作用。

(输出短路时反馈不消失)6. 反馈的方式-----并联反馈:反馈量与原输入量在输入电路中以电流形式相叠加。

相关文档
最新文档