光子晶体

合集下载

光子晶体及其在激光电磁学中的应用

光子晶体及其在激光电磁学中的应用

光子晶体及其在激光电磁学中的应用光子晶体是一种具有周期性结构的材料,其晶格常数比可见光波长要小得多,所以具有对光的完美控制特性,其光学性质优于普通的材料。

因此,光子晶体在激光电磁学中有着广泛的应用。

一、光子晶体的构造及其特性光子晶体是一种由周期性结构单元构成的材料,其周期性结构单元必须满足材料中的光子能够在其中传播的条件,也就是说,其周期应该与波长相当。

光子晶体可以用于在某些特定波段和极化状态下完美地反射和透射光线,其光学特性与普通材料不同。

光子晶体的物理特性随着结构和材料的变化而发生变化。

通过调整其内部的构造和成分,可以实现对光场的高度定制,可以控制光的传播方向、速度、损耗等性质。

光子晶体还具有非线性光学性质,可以产生与普通材料不同的非线性光学效应。

二、光子晶体在激光电磁学中的应用光子晶体是一种典型的光学材料,其在激光电磁学中有着很多的应用。

1. 光子晶体光纤光子晶体光纤是一种由光子晶体材料制成的光纤,受到物理尺寸和波长限制的传统光纤无法彻底解决多模干扰问题,导致光纤通信中的数据传输质量下降。

与传统光纤相比,光子晶体光纤的中心井宽和周期性结构单元的数量可以调整,改变传播模式,可实现单模传输,光传输带宽更大,并且混合模式可以避免在传输中的失真。

因此,光子晶体光纤可以用于长距离通讯、高速通讯、卫星通讯等领域。

2. 光子晶体激光器光子晶体激光器是一种基于光子晶体材料制成的激光器,可以用于光通信、光信息存储等领域。

光子晶体激光器利用光子晶体中的光子能带结构,实现了高效的光增强效应,它的光学特性比传统的激光器具有更好的稳定性和更高的高功率输出。

光子晶体激光器也可以实现波长调制,可以在大范围内实现波长调整,具有优良的单模性、高精度和低成本等优点。

这种波长可调激光器可以用于激光雷达、气体探测、医学诊断等领域。

3. 光子晶体光学振荡器光子晶体光学振荡器是一种基于光子晶体材料制成的光学器件,有着极高的透过率和较低的损耗率。

光子晶体的原理与应用

光子晶体的原理与应用

光子晶体的原理与应用概述光子晶体是一种由周期性改变介电常数分布而形成的结构,具有能带结构类似于电子在晶格中的运动。

光子晶体能够控制光的传播和波长选择性,因此在光学领域具有广泛的应用前景。

光子晶体的原理光子晶体的原理基于周期性调制介电常数分布。

通过改变材料的周期性结构,可以实现光子晶体的禁带带隙效应,即在一定频率范围内,光的传播被完全阻止。

光子晶体的禁带带隙可以通过调节结构的周期、材料的折射率以及填充材料来实现。

光子晶体的禁带带隙效应是由几何光学效应和电磁场的相互作用相结合而产生的。

在光子晶体中,光通过周期性结构时,会出现在特定频率范围内的相干散射。

这种相干散射会导致光的传播被阻挡,从而形成禁带。

禁带带隙的宽度取决于周期性结构的参数,包括晶格常数、材料折射率以及填充材料等。

光子晶体的应用光子晶体的光学波导光子晶体可以实现光的传输和波导效应。

在光子晶体中,通过调节光子晶体的周期性结构,可以实现光的导向和控制。

光子晶体光波导可以用于构建高效的光耦合器、分束器、滤波器、光放大器等光学元件。

光子晶体光波导具有低损耗、高效率等特点,被广泛应用于光通信、光子芯片等领域。

光子晶体的传感器光子晶体由于其禁带带隙效应,可以实现光的滤波和波长选择性。

这使得光子晶体成为理想的传感器材料。

通过改变光子晶体的结构和填充材料,可以实现对不同化学和生物分子的敏感度。

光子晶体传感器可以用于检测环境中的气体、液体、生物分子等,具有高灵敏度、高选择性和实时监测等特点。

光子晶体的光学器件光子晶体的禁带带隙效应还可以用于设计和制造光学器件。

通过选择合适的晶格参数和材料,可以实现对特定波长和频率的光的调控。

光子晶体光学器件包括滤光器、反射镜、全反射镜、衍射光栅等。

这些光学器件具有高效率、高分辨率和高准确性的特点,并在光学测量、光通信等领域得到广泛应用。

光子晶体的激光器利用光子晶体的禁带带隙效应,可以实现低阈值、窄带宽的激光器。

光子晶体激光器在光通信、光信息处理等领域具有重要应用前景。

光子晶体

光子晶体

光子晶体光纤(PCF)的特性 :
(1)无截止单模( Endlessly Single Mode)
(2)不同寻常的色度色散 (3)极好的非线性效应 (4)优良的双折射效应
此外,光子晶体还可用于制造各种性能优 良的光通讯器件,如光子晶体激光器。
利用光子晶体的带隙特点,可以制造了出理 想带阻滤波器,获得优良的光波滤波性能。
' r

2
c
2
r ~ E , 即平均介电常数相当于能量本征值
光子晶体中的光子能带不同于半导 体中的电子能带
光子的能量 E p kc 因此其色散关 系的特点是E p 和k呈线性关系
三、光子晶体的应用 --光子晶体光纤(PCF)
分类:实心光纤和空心光纤
实心光纤是将石英玻璃毛细管以周期性规律 排列在石英玻璃棒周围的光纤 空心光纤是将石英玻璃毛细管以周期性规律 排列在石英玻璃管周围的光纤



2 2 r rr r 2 ' c2 r E r c2 r E )的定态波动方程, 可以看出两式得相似之处:
c 一个周期势场;


2
2
r r ~ V r , 即周期变化的介电常数相当于
一、光子晶体简介 二、光子晶体中的量子理论 三、光子晶体的应用-光子晶体光纤 四、光子晶体的发展前景
一、光子晶体简介
光子晶体(photonic crystal) 是一种介电常数随空间周期性变化的新 型光学微结构材料。 从晶体结构来说,晶体内部的原子是周 期性有序排列的,正是这种周期势场的存 在,使得运动的电子受到周期势场的布拉 格散射,从而形成能带结构,带与带之间 可能存在带隙。
优点: (一)光子晶体波导具有优良的弯曲效应。

光子晶体颜色变化的原理

光子晶体颜色变化的原理

光子晶体颜色变化的原理
光子晶体的颜色变化原理基于光的干涉与衍射现象。

光子晶体是一种由有序排列的微米尺度周期性结构组成的材料,其结构和物理性质具有光学禁带结构。

当入射光与光子晶体的周期结构相互作用时,会发生两种重要的现象:干涉和衍射。

干涉是指光的波峰与波谷相互叠加形成明暗条纹的现象。

光子晶体的周期性结构可以形成光的干涉效应,使得入射光以不同的角度和波长被反射、透射或吸收。

当光子晶体的周期与入射光的波长或角度匹配时,就会发生干涉现象。

干涉现象会使得特定波长的光被反射、透射或吸收,其他波长的光被晶体表面散射。

衍射是光波在穿过狭缝或障碍物后绕过其边缘产生扩散现象。

光子晶体的周期性结构会限制光波的传播方向和传播范围,使得不同波长的光在光子晶体中发生衍射,进而产生不同的波长分量,从而表现出不同的颜色。

由于光子晶体的周期性结构具有宽禁带结构,可以选择性地反射、透射或吸收特定波长的光,因此光子晶体在不同入射角度和观察方向下对光的反射、透射和散射的颜色也会发生变化。

这就是光子晶体颜色变化的原理。

光子晶体

光子晶体

光子晶体光子晶体(Photonic Crystal)指能对光作出反应的特殊晶格。

光子晶体是指能够影响光子运动的规则光学结构,这种影响类似于半导体晶体对于电子行为的影响。

光子晶体以各种形式存在于自然界中,科学界对它的研究已经长达一百年。

原理光子晶体是在1987年由S.John和E.Yablonovitch分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。

由于介电常数存在空间上的周期性,引起空间折射率的周期变化,当介电系数的变化足够大且变化周期与光波长相当时,光波的色散关系出现带状结构,此即光子能带结构(Photonic Band structures)。

这些被禁止的频率区间称为“光子频率带隙”(Photonic Band Gap,PBG),频率落在禁带中的光或电磁波是被严格禁止传播的。

我们将具有“光子频率带隙”的周期性介电结构称作为光子晶体。

特别需要指出的是,介电常数周期性排列的方向并不等同于带隙出现的方向,在一维光子晶体和二维光子晶体中,也有可能出现全方位的三维带隙结构。

应用光子晶体体积非常小,在新的纳米技术中、光计算机、芯片等领域有广泛的应用前景。

使用光子晶体制造的光子晶体光纤,也有比传统光纤更好的传输特性,可以进而应用到通信、生物等诸多前沿和交叉领域。

2005年美国的研究人员成功地使用两种新式二维光子晶体,将光的群速度降低了超过一百倍。

这项装置未来可望被应用于各种光学系统及元件中,其中包括高功率、低阈值的光子晶体激光。

光子晶体也可以将拉曼光讯号放大一百万倍。

英国的Mesophotonics宣称,该公司于2005年的Photonics West会议中发表这种结合光子晶体与表面增强拉曼光谱术(surface enhanced Raman spectroscopy, SERS)的产品,由于灵敏度超高,未来可望应用在医疗诊断、药物输送,以至于环境监控上。

光子晶体光纤光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。

光子晶体技术

光子晶体技术

光子晶体技术光子晶体是一种具有周期性介电常数或介电导率分布的材料结构。

由于其特殊的光学性质,光子晶体技术已经成为光学、光电子学和纳米科技领域的研究热点。

本文将探讨光子晶体技术的原理、应用以及未来发展方向。

一、光子晶体技术的原理光子晶体技术的实现是通过制备周期性的结构,使得材料对特定波长的光具有反射、传播、干涉等特殊性质。

光子晶体的周期性结构通常是由两种或多种材料交替排列组成,其中每种材料的折射率或导电性质不同。

二、光子晶体技术的应用光子晶体技术在光学和光电子领域有着广泛的应用。

一方面,光子晶体技术可用于设计和制备各种光学器件,例如光波导、光滤波器、光传感器等。

另一方面,光子晶体技术也可应用于光子集成电路、光子计算和光子通信等领域。

1. 光子晶体传感器光子晶体传感器利用光子晶体对特定波长光的敏感性,可以实现高灵敏度和高选择性的传感器。

通过调控光子晶体的结构参数,可以实现对特定物质的浓度、温度、压力等参数的检测。

2. 光子晶体光波导光子晶体光波导是一种基于光子晶体的光传输手段,其具有低损耗、高传输效率的特点。

通过调节光子晶体的结构参数,可以实现对特定波长的光进行引导和控制,从而实现光信号的调制和耦合。

3. 光子晶体滤波器光子晶体滤波器是一种具有特定波长选择性的光学器件。

通过调整光子晶体的结构参数,可以实现对特定波长的光进行滤波,从而实现光的频率选择和光谱分析。

三、光子晶体技术的发展趋势光子晶体技术凭借其独特的光学性质和广泛的应用前景,受到了越来越多的研究关注。

未来,光子晶体技术有望在下述方面有进一步的发展和应用。

1. 多功能光子晶体材料的设计与合成当前的光子晶体材料多局限于某一特定波长范围内应用。

未来,研究人员将致力于开发具有更宽波长范围响应的多功能光子晶体材料,并探索更灵活的调节机制,以满足不同应用场景的需求。

2. 新型光子晶体器件的研发与应用随着光子晶体技术的发展,越来越多的新型光子晶体器件被提出和实现。

光子晶体

光子晶体

光子晶体绪论光子晶体是一种在微米亚微米等光波长的量级上折射率呈现周期性变化的介质材料,按照其折射率变化的周期性,可以分为一维、二维和三维光子晶体。

光子晶体的概念首先在1987年被E.Yablonovitch提出[1]。

1991年,由E. Yablonovitch制成了第一个微波波段的光子晶体后,随着各种工艺的发展,多种多样的晶体结构陆续的被制备出来,许多理论预测得到了验证。

光子晶体的原理光子晶体的原理是从类比晶体开始的。

晶体中原子的周期性的排列使晶体中产生了周期性的势场,当电子在这种周期性势场中运动时会受到布拉格散射,从而形成能带结构。

带与带之间可能存在带隙,电子波的能量如果落在带隙中,就无法继续传播。

不论电磁波还是其它波(如光波),只要受到周期性调制,都有能带结构,也都可能出现带隙,而能量落在带隙中的波一样也不能传播。

光子晶体是在高折射率材料的某些位置周期性地出现低折射率(如人工造成的气泡)的材料,高低折射率的材料交替排列形成周期性结构就可以产生光子晶体带隙,从而由光带隙结构控制着光在光子晶体中的运动[2~5]。

自然界中存在一些有着光子晶体结构的物质,例如用来装饰的蛋白石( Opal),还有一种深海老鼠身上的毛以及一种特殊的蝴蝶翅膀上的粉,它们在不同的角度反射不同波长的光。

通过研究发现它们都是由大小均匀的微米、亚微米量级的结构密堆积而成的[6~7]。

参见图1~5。

但是,这些都是粗糙的光子晶体,因为它们没有形成完全的禁带的形成与大小同两种材料的折射率的差、填充比以及排列方式有着密切的联系。

一般说来,两种材料的折射率差值越大,就越有可能形成光子禁带,当两种材料的折射率差大于2的情况,可以形成完全禁带。

在自然界尚未曾发现此类的晶体。

因实验研究使用的光子晶体必须经过人工制备。

常见的光子晶体的制备方法有自然生长法,机械制备法,光刻法,光学方法,化学刻蚀方法,薄膜生长法,胶体自组织密堆积方法,反蛋白石光子晶体合成方法等[8~13]。

光子晶体设计

光子晶体设计

光子晶体设计光子晶体是一种具有周期性光学性质的材料, 通过改变其周期性结构以控制光的传播和特性, 广泛应用于光学器件、传感器、光学通信等领域。

在光子晶体的设计过程中,选择合适的材料和优化结构是关键的步骤。

本文将介绍光子晶体设计的基本原理、常用方法和一些应用案例。

一、光子晶体设计原理光子晶体的设计原理基于布拉格衍射和能带理论。

通过在材料中引入周期性的折射率变化,产生布拉格衍射,使特定波长的光在晶体中发生反射和传播。

这种周期性结构的形成会引起光子禁带的产生,即某一范围内的光无法在晶体中传播。

二、光子晶体设计方法1. 自下而上设计方法自下而上的设计方法是通过改变结构参数和材料属性来实现对光子晶体光学性质的调控。

其中一种常用的方法是利用微纳加工技术,如电子束曝光、光刻技术等,在二维或三维材料中制造特定的结构,从而实现光子晶体的设计。

2. 自上而下设计方法自上而下的设计方法是基于计算机模拟和优化算法。

通过选择材料的折射率和结构的周期,采用计算工具如有限元方法、傅里叶光学等进行模拟计算,最终得到满足特定光学性质需求的光子晶体结构。

三、光子晶体应用案例1. 光子晶体波导光子晶体波导是一种在光子晶体中实现光的传播的结构。

由于光子晶体波导的禁带导致传播模式的束缚,使其具有较大的带宽和高的传输效率。

光子晶体波导在微波通信、光通信和集成光学领域有着重要的应用。

2. 光子晶体传感器光子晶体结构对光的敏感性使其成为理想的传感器平台。

通过对光子晶体纳米孔洞或微球的设计,可以实现对不同物质的检测和监测。

光子晶体传感器在生物医学、环境监测和食品安全等方面有广泛的应用。

3. 光子晶体滤波器光子晶体滤波器是利用光子晶体的光学特性实现对特定波长光的选择性传输。

通过调整光子晶体的结构参数和材料折射率,可以实现对光的波长选择性滤波。

光子晶体滤波器在光通信、光谱分析和光学传感等领域中起到重要的作用。

结论光子晶体设计作为一种关键的光学器件设计方法,具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 1.2% Compressively Strained InGaAsP QWs Slab thichness: 10nm QWs separated by 23nm barriers Lattice constant: = 550nm, Radius of the holes: d=215nm Central defect cavity: 19 holes
Core diameter: 10.5m
PCF 制备工艺
带隙宽度可调PCF
Holes filled with air: TIR n589nm=1.80 2000-1 band gap
Holes filled with high n liquid : PBG 3dB band width for gaps=1400nm
PCF 制备工艺
单模有机聚合物光子晶体光纤
PCF 特性
1. 宽带低损单模传输
Near-field pattern
Interstitial holes
Nearfield pattern
528 nm
458 nm
Far-field pattern
633 nm 528 nm 458 nm
The relative intensities of the six lobes was varied and nearly equal. No other mode field patterns are observed confined to defect region. No confined mode could be observed at 633nn.
(c )(d) Patterned photonic crystals with high aspect ratios
应用研究
量子信息处理
光电子学的未来


control =1551nm, prob =1530-1580nm
PCF 应用研究进展
电调 PCF 衰减器
LPG:
PCF 应用研究进展
电调 PCF 衰减器
PCF 应用研究进展
电调PCF衰减器
Dynamic range: 30dB, Insertion loss:<0.8dB, PDL:0.5dB, :1sec
应用:多信道光传输 /光纤传感, 光控光耦合器件
PCF 特性
6. 空气芯光纤
无损耗 ! 无材料色散 !! 无光学非线性 !!!
应用:通信/传感
PCF 应用研究进展
PCF 拉曼放大器
LHF = 75m rcore = 1.6 m Aeff =2. 85m
LB =0.4mm pump =1536nm signal =1650nm0
1998-2000年光子晶体光纤研究热 2000年第一家光子晶体光纤公司成立 2001.10. Photonics Nanostructure Materials and Devices 国际会议在 San Diego召开 OFC 情况
论文: 2001 :6 , 2002:15
国家: 2001 :4 , 2002: 8
n = 1.83(633nm) ,1.80(1.53m), = 0.7dB/m (633nm) , 0.3dB/m(1.53m) n2=4.110-19m2/W (比纯SiO2大20倍),Ts= 519oC (softening temprature)
=1.6 mm
=125 m
PCF 制备工艺
- 空心波导(无介质损耗、无色散、无光学非线性〕 应用:- 实现超高速、超长距离光通信
光子晶体的发展进程
1987年提出光子带隙(PBG)概念 1990年PBG计算机论证
1991年微波PBG实验论证
1993年制造出第一块半导体三维光子晶体 1996年第一根TIR光子晶体光纤
1997年第一根PBG光子晶体光纤
(e)
b
y z
a
Si / SiO2 = 1.5 m gap= 14 % 0,center
制备工艺
溶胶-凝胶(Sol-gel)法 - SiO2 - Opals ( 模板 ) 制备
h
65oC
Si
Substrate
Substrate
微球尺度 855nm1.3%
80oC
T
制备工艺
溶胶-凝胶(Sol-gel)法
-Si - inverted opals 制备
LPCVD
550oC
Substrate
Substrate
Substrate
制备工艺
2层
4层
16层
空气球大小: (a, b): 1mm, (c, e): 670nm a. 透射谱:— 理论 — 实验
(111) surface
b. 理论计算的光子能带
制备工艺
Fig. 2: Photonic crystal hole size after lithography and etch for different triangular lattice designs.
SOI photonic crystals for 1550nm :periods : 400-500nm
高光学非线性PCF
Single mode transmission at 633nm and 1550nm = 550W-1km-1(1550nm)( 比SMF大500倍,比普通PCF大15倍)
PCF 制备工艺
溶胶-凝胶(Sol-gel〕法
Hole diameter: 2.3m
Hole spacing: 4.3m
- 带隙限制微腔自发辐射态密度增强(Purcell效应)
应用:- 实现接近零阈值的激光辐射 - 实现对量子态(量子比特)的操作
Electron quantum boxes
Optical microcavities
光子晶体特性
3.PBG限制“微腔”间的耦合作用
- “微腔”间通过消逝场直接耦合或跳跃式耦合-微腔波导 应用:- 高速度、高选择性、高集成度的动态调控(如滤波 衰减、开关、分插/复用等) - 微腔波导激光器
微腔耦合波导激光器
( CALTECH )
( MIT )
PCS 应用研究进展
光子晶体微腔激光器
PMMA—Electron-beam lithography Cr-Cu layer—Ar+ ion beam etch SiN2 layer—CF4 reactive ion etch InGaAsP QWs region—ECR etch InP Substrate --HCL:H2O=4:1 wet chemical etch
玻璃毛细管聚束熔垃法
20 mm 20 mm 1 mm
30 mm
16 mm
0.8 mm
Solid rod
Hollow tube
1 mm
1 mm
0.03 mm
PCF 制备工艺
玻璃毛细管聚束熔垃法
PCF 制备工艺
玻片-芯组装模压法
=2n2/(Aeff):n2 , Aeff SF57 Schott glass:
光子晶体
概念-光子能带 光子晶体特性
光子晶体(PC)
光子能带
结构参量: 孔径 -d 周期 - 芯径 -
Diamond
一维
二维

三维
d

Defect state
介电常数周期分布的介质形成光子能带,禁止 带隙 (PBG) 频率的光传播 缺陷能级在包层带隙中,缺陷态的光受带隙限制
光子晶体光纤是带缺陷 (纤芯)的二维光子晶体
PCF 应用研究进展
电调 PCF 滤波器
PCF 应用研究进展
PCF 耦合器
PCF 应用研究进展
PCF 宽带波长/模选择耦合器
SMF
HOF
二维光子晶体
(光子晶体平板-PCF )
PCS 制备工艺
微电子工艺
PCS 制备工艺
248nm DUV lithography on SOI
Fig. 1: Photonic crystal waveguide in SOI. Pitch is 460nm, hole-size is 290nm.
大的平坦负色散 = 3.2 m = 047 D = -100 ps/nm/km
应用:色散补偿/色散管理/光孤子技术等
PCF 特性
4.场致折变
实例:可调光纤光栅(热光效应〕
电光效应 ? 声光效应 ? 磁光效应 ? 光折变效应 ? 应用:动态光控制器件
PCF 特性
5. 单纤多芯传输 / 耦合
G=42.8dB NF<6dB
PCF 应用研究进展
PCF波长转换
XPM+narrowband filtering (data rate of 10 Gbit/s) LHF = 5.8m, rcore = 2.0 m, Aeff =2.93(+/-0.3)μm2
=50dB/km, D=+100 ps/nm-km (1550), =31W-1· km-1
hole sizes:160- 300nm.
PCS 特性
PBG限制波导
PCS 特性
PBG限制波导-微腔耦合
PCS 应用研究进展
PC微腔复用/解复用器
PCS 应用研究进展
PC滤波器
PCS 应用研究进展
共面PC谐振腔
1563 nm
1609 nm
Lcavity=6m, Q=400
PCS 应用研究进展
空气球大小: (d, f) : 855mm
(100) surface
c. 理论计算的光子能带
相关文档
最新文档