重庆市中考数学应用题附答案
重庆中考数学22题应用题练习

1.1.低碳生活的理念已逐步被人们接受低碳生活的理念已逐步被人们接受低碳生活的理念已逐步被人们接受..剧相关资料统计:一个人平均一年节约的用电,相当于减排二氧化碳约18kg 18kg;一个人平均一年少买;一个人平均一年少买的衣服,相当于减排二氧化碳约6kg.6kg.甲、乙两校分别对本校师生提出“节约用电”甲、乙两校分别对本校师生提出“节约用电”、“少买衣服”的倡议“少买衣服”的倡议.2010.2010年两校响应本校倡议的人数共60人,因此而减排二氧化碳总量为600kg.(1)2010年两校响应本校倡议的人数分别为多少人?(2)2010年到2012年,甲校响应本校倡议的人数每年增加相同的数量,乙校响应本校倡议的人数每年按相同的百分比增长.2011年乙校响应本校倡议的人数是甲校响应本校倡议人数的2倍,2012年两校响应本校倡议的总人数比2011年两校响应本校倡议的总人数多100人.求2012年两校响应本校倡议减排二氧化碳的总量年两校响应本校倡议减排二氧化碳的总量. .2.2.为了倡导节能低碳生活,某工厂对集体宿舍用电收费作了如下规定:一间宿舍一个月用电量不超过为了倡导节能低碳生活,某工厂对集体宿舍用电收费作了如下规定:一间宿舍一个月用电量不超过a 千瓦时,则一个月的电费为20元;若超过a 千瓦时,则除了交20元外,超过部分每千瓦时要交100a 元.某宿舍3月份用电80千瓦时,交电费35元;元;44月份用电45千瓦时,交电费20元.(1)求a 的值;的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?3.3.“六一”“六一”“六一”儿童节前,儿童节前,儿童节前,某玩具商店根据市场调查,某玩具商店根据市场调查,某玩具商店根据市场调查,用用2500元购进一批儿童玩具,元购进一批儿童玩具,上市后很快脱销,上市后很快脱销,上市后很快脱销,接着又用接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)第一批玩具每套的进价为多少元?(2)如果这两批玩具每套售价都相同,且全部售完后总利润不低于25%25%,那么每套售价至少是多少元?,那么每套售价至少是多少元?4.4.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,据某市交通部门统计,20102010年底该市汽车拥有量为75万辆,而截止到2012年底,该市的汽车拥有量已达到108万辆万辆. .(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2014年底全市汽车总量不超过125.48万辆;另据统计,从2013年初起,该市以后每年报废的汽车数量是上年底汽车拥有量的10%10%,假设每年新增汽车数量相同,请你估算出该市从,假设每年新增汽车数量相同,请你估算出该市从2013年出起每年新增汽车数量最多不超过多少万辆年出起每年新增汽车数量最多不超过多少万辆. .5.5.一家蔬菜公司收购到某种绿色蔬菜一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行吨,但两种加工不能同时进行..受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完这批蔬菜全部加工后销售完. .(1)如果要求12天刚好加工完140吨蔬菜,则公司应该安排几天精加工,几天粗加工?几天粗加工?(2)如果先进行精加工,然后进行粗加工)如果先进行精加工,然后进行粗加工. .① 试求出销售利润试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;之间的函数关系式;② 若要求在不超过若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?6.6.为创建和谐社会,为民办实事,市政府决定为创建和谐社会,为民办实事,市政府决定2012年投入10000万元用于改善医疗卫生服务,比2011年增加了2000万元万元..投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),2012年投入“需方”的资金将比2011年提高30%30%,投入“供方”的资金将,投入“供方”的资金将比2011年提高20%.(1)该市政府2011年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2012年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计2013年将有12500投入改善医疗卫生服务,若从2011~2013年每年的资金投入按相同的增长率递增,求2011~2013年的年增长率的年增长率. .7.7.随着经济的发展,小张所在的公司每年都在元月一次性的提高员工当年的月工资随着经济的发展,小张所在的公司每年都在元月一次性的提高员工当年的月工资.小张2010年的月工资为2000元,在2012年时他的月工资增加到2420元,他2013年的月工资按2010到2012年的月工资的平均增长率继续增长年的月工资的平均增长率继续增长. .(1)小张2013年的月工资为多少?年的月工资为多少?(2)小张看了甲、乙两种工具书的单价,认为用自己2013年6月份的工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着他选定的这些工具书去付款时,发现自己计算书款时把这两种工具书的单价弄兑换了,故实际付款比2013年6月份的月工资少了242元,于是他用着242元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给了山区的学校.请问,小张一共捐献了多少本工具书?具书?8.8.有一批图形计算器,原售价为每台有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售元,在甲、乙两家公司销售..甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.以此类推,以此类推,即每多买一台各台单价均再减即每多买一台各台单价均再减20元,元,但最低不能低于每台但最低不能低于每台440元;元;乙公司一律按原价的乙公司一律按原价的75%75%促销促销促销..某单位购买一批图形计算器.(1)若此单位需购买6台图形计算器,应去哪家公司购买化肥较少;(2)若此单位恰好花费7500元.在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少? 销售方式销售方式 粗加工后销售粗加工后销售 精加工后销售精加工后销售 每吨获利(元)每吨获利(元) 1000 2000。
重庆数学中考试题及答案

重庆数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 8答案:A3. 以下哪个表达式的结果不是整数?A. 3 * 4B. 5 / 2C. 7 - 2D. 8 ÷ 2答案:B4. 下列哪个是二次方程?A. x + 2 = 0B. x^2 + x + 1 = 0C. x^3 - 2x^2 + x = 0D. x^2 - 4 = 0答案:B5. 圆的周长公式是?A. C = πdB. C = 2πrC. A = πr^2D. A = πd^2答案:B6. 一个数的平方根是它自己,这个数是?A. 1B. -1C. 0D. 2答案:C7. 以下哪个是立方体的体积公式?A. V = a^2B. V = a^3C. V = 2aD. V = πa^3答案:B8. 一个数的倒数是1/5,这个数是?A. 5B. 4C. 3D. 2答案:A9. 以下哪个是正弦函数的图像?A. 直线B. 抛物线C. 正弦曲线D. 双曲线答案:C10. 如果一个角的正弦值是0.5,那么这个角的度数是?A. 30°B. 45°C. 60°D. 90°答案:B二、填空题(每题2分,共20分)11. 已知一个数的平方是25,这个数是________。
答案:±512. 一个圆的半径是7,那么它的直径是________。
答案:1413. 一个长方体的长、宽、高分别是2、3、4,它的体积是________。
答案:2414. 一个等腰三角形的两个底角相等,如果顶角是60°,那么底角是________。
答案:60°15. 一个数的立方是-27,这个数是________。
答案:-316. 一个直角三角形的两个直角边分别是6和8,那么斜边的长度是________。
2024重庆中考数学试题及答案b

2024重庆中考数学试题及答案b2024年重庆中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 1/32. 一个三角形的两边长分别为3和5,第三边长x满足的条件是:A. 2 < x < 8B. 1 < x < 8C. 2 < x < 7D. 3 < x < 83. 函数y=2x+3的图象经过点(1,5),则该函数的斜率k为:A. 2B. 3C. 5D. 74. 计算下列表达式的结果:A. (-2)^3 = -8B. (-2)^3 = 8C. (-2)^3 = 2D. (-2)^3 = -25. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π6. 已知a=2,b=-3,求代数式3a-2b的值:A. 12B. 6C. 0D. -67. 一个等腰三角形的底角为45°,那么它的顶角为:A. 45°B. 60°C. 90°D. 135°8. 计算下列二次根式的结果:A. √(9) = 3B. √(16) = 4C. √(25) = 5D. √(36) = 69. 一个数列的前三项为1,2,3,从第四项开始,每一项是前三项的和,那么第10项的值是:A. 55B. 89C. 144D. 23310. 一个长方体的长宽高分别为a,b,c,那么它的体积是:A. abcB. ab + bc + acC. a + b + cD. a^2 + b^2 + c^2二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是______。
12. 一个数的绝对值是8,那么这个数可以是______或______。
13. 一个直角三角形的两直角边长分别为6和8,那么它的斜边长为______。
14. 一个二次函数y=ax^2+bx+c的顶点坐标为(2,-3),那么a的值为______。
中考重庆数学试题卷及答案

中考重庆数学试题卷及答案重庆市中考数学试题卷一、选择题(每题3分,共36分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个长方体的长、宽、高分别为10cm、8cm和6cm,其体积是多少立方厘米?A. 240B. 480C. 360D. 6003. 下列哪个表达式的结果为偶数?A. 21 + 17B. 23 + 19C. 22 + 18D. 24 + 164. 如果一个数除以3的余数是2,那么这个数除以5的结果是什么?A. 无余数B. 余数1C. 余数2D. 余数35. 下列哪个选项的因数个数最多?A. 12B. 9C. 15D. 206. 一个数的60%加上它的40%等于这个数的多少?A. 100%B. 90%C. 80%D. 110%7. 一个班级有40名学生,其中2/5是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 368. 一个数的1/4加上它的3/4等于这个数的多少?A. 1/2B. 1C. 3/4D. 4/49. 下列哪个选项的数值是最小的?A. πB. √2C. 2.71828D. 110. 如果一个数的1/3与它的2/3相等,那么这个数是多少?A. 0B. 1C. 2D. 311. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 16B. 32C. 48D. 6412. 下列哪个选项的数值最接近于1000?A. 999B. 1000C. 1001D. 1002二、填空题(每题4分,共24分)13. 一个数的1.5倍是45,那么这个数是_________。
14. 一本书的价格是35元,打8折后的价格是_________元。
15. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是_________厘米。
16. 一个数的75%是30,那么这个数的50%是_________。
17. 一个班级有50名学生,其中3/4是优秀学生,那么这个班级有多少名非优秀学生?_________名。
2020年重庆市中考数学试题A卷(解析版)

重庆市2020年初中学业水平暨高中招生考试数学试题(A卷)一、选择题1.下列各数中,最小的数是()A. -3B. 0C. 1D. 2【答案】A【解析】【分析】有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.-<<<,【详解】∵3012∴最小的数是-3,故选:A.【点睛】本题考查有理数的大小比较,属于基础应用题,只需熟练掌握有理数的大小比较法则,即可完成.2.下列图形是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( )A. 32610⨯B. 32.610⨯C. 42.610⨯D. 50.2610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】42.62600010⨯=,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21【答案】B【解析】【分析】 根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1+2+3+4+……+n ,据此可得第⑤个图案中黑色三角形的个数.【详解】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B .【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n 个图案中黑色三角形的个数为1+2+3+4+……+n .5.如图,AB 是O 的切线,A 切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A. 40°B. 50°C. 60°D. 70° 【答案】D【解析】【分析】根据切线的性质可得90?OAB ∠=,再根据三角形内角和求出AOB ∠.【详解】∵AB 是O 的切线∴90?OAB ∠=∵20B ∠=︒∴18070AOB OAB B ∠=︒-∠-∠=︒故选D.【点睛】本题考查切线的性质,由切线得到直角是解题的关键.6.下列计算中,正确的是( ) A. 235= B. 2222+= C. 236= D. 2323=【答案】C【解析】【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:A 23B .22不是同类二次根式,不能合并,此选项计算错误;C 23236=⨯=D .32不是同类二次根式,不能合并,此选项错误;故选:C .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7.解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A. 3(1)12x x +=-B. 2(1)13x x +=-C. 2(1)63x x +=-D. 3(1)62x x +=-【答案】D【解析】【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质. 8.如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )5 B. 2 C. 4 D. 25【答案】D【解析】【分析】 把A 、C 的横纵坐标都乘以2得到D 、F 的坐标,然后利用两点间的距离公式计算线段DF 的长.【详解】解:∵以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,而A (1,2),C (3,1),∴D (2,4),F (6,2),∴DF =()()222642--+=25,故选:D .【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .9.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45m CD =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈)A. 76.9mB. 82.1mC. 94.8mD. 112.6m【答案】B【解析】【分析】 构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE 、EC 、BE 、DF 、AF ,进而求出AB .【详解】解:如图,由题意得,∠ADF =28°,CD =45,BC =60,在Rt DEC 中,∵山坡CD 的坡度i =1:0.75,∴DE EC =10.75=43, 设DE =4x ,则EC =3x ,由勾股定理可得CD =5x ,又CD =45,即5x =45,∴x =9,∴EC =3x =27,DE =4x =36=FB ,∴BE=BC+EC=60+27=87=DF,在Rt ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.【点睛】本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计算的前提.10.若关于x的一元一次不等式结3132xxx a-⎧≤+⎪⎨⎪≤⎩的解集为x a≤;且关于y的分式方程34122y a yy y--+=--有正整数解,则所有满足条件的整数a的值之积是()A. 7B. -14C. 28D. -56【答案】A【解析】【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【详解】解:解不等式3132xx-≤+,解得x≤7,∴不等式组整理的7 xx a≤⎧⎨≤⎩,由解集为x≤a,得到a≤7,分式方程去分母得:y−a+3y−4=y−2,即3y−2=a,解得:y=+23a,由y为正整数解且y≠2,得到a=1,7,1×7=7,故选:A.【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED ,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG 的面积为2,则点F 到BC 的距离为( )5 25 45 43 【答案】B【解析】【分析】 首先求出ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12•BD •h =12•BF •DF ,求出BD 即可解决问题. 【详解】解:∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4, 由翻折可知,ADB ≌ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°, ∴12•(AF +DF )•BF =4, ∴12•(3+DF )•2=4, ∴DF =1,∴DB 22BF DF +2212+5设点F 到BD 的距离为h , 则12•BD •h =12•BF •DF , ∴h 25, 故选:B .【点睛】本题考查翻折变换,三角形的面积,勾股定理二次根式的运算等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.12.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A. 6B. 12C. 18D. 24【答案】B【解析】【分析】 先证明OB ∥AE ,得出S △ABE =S △OAE =18,设A 的坐标为(a ,k a ),求出F 点的坐标和E 点的坐标,可得S △OAE =12×3a ×k a=18,求解即可. 【详解】解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,k a ), ∵AF=EF ,∴F 点的纵坐标为2k a, 代入反比例函数解析式可得F 点的坐标为(2a ,2k a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a ×k a=18, 解得k=12,故选:B .【点睛】本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出S △ABE =S △OAE =18是解题关键.二、填空题13.计算:0(1)|2|π-+-=__________.【答案】3【解析】【分析】根据零指数幂及绝对值计算即可.【详解】0(1)|2|1+2=3π-+-=;故答案为3.【点睛】本题比较简单,考查含零指数幂的简单实数混合运算,熟记公式0(01)x x =≠是关键. 14.若多边形的内角和是外角和的2倍,则该多边形是_____边形.【答案】六【解析】【分析】设这个多边形的边数为n ,根据内角和公式和外角和公式,列出等式求解即可.【详解】设这个多边形的边数为n ,∴()21802360n-⋅︒=⨯︒,解得:6n=,故答案为:六.【点睛】本题考查了多边形的内角和与外角和,是基础知识要熟练掌握内角和公式和外角和公式.15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.【答案】3 16【解析】【分析】画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=3 16.故答案为:3 16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.16.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)【答案】4π-【解析】【分析】根据图形可得S 2ABCD S S =-阴影扇形,由正方形的性质可求得扇形的半径,利用扇形面积公式求出扇形的面积,即可求出阴影部分面积. 【详解】由图可知,S 2ABCD S S =-阴影扇形,224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2, ∴=22AC , ∵点O 是AC 的中点, ∴OA=2, ∴290(2)3602S ππ︒==︒扇形,∴S 2=4-ABCD S S π=-阴影扇形, 故答案为:4π-.【点睛】本题考查了求阴影部分面积,扇形面积公式,正方形的性质,解题的关键是观察图形得出S 2ABCD S S =-阴影扇形.17.A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.【答案】()4,160 【解析】 【分析】先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案.【详解】设乙货车的行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇 点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地 则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯= 即点E 的坐标为(4,160) 故答案为:(4,160).【点睛】本题考查了一次函数的实际应用,读懂函数图象是解题关键.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________. 【答案】18【解析】 【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案. 【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k ,5k ,2k ,7月份总增加的营业额为m ,则7月份摆摊增加的营业额为25m ,设7月份外卖还需增加的营业额为x . ∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5, ∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7, ∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a ,5a ,7a ,由题意可知:3385552275k m x a k x am k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩ , 解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴512857208ax a a a a ==++, 故答案为:18. 【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.三、解答题19.计算:(1)2()(2)x y x x y ++-; (2)2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭. 【答案】(1)222x y +;(2)33m - 【解析】 【分析】(1)利用完全平方公式和整式乘法展开后合并同类型即可; (2)先把分子分母因式分解,然后按顺序计算即可; 【详解】(1)解:原式22222x xy y x xy =+++-222x y =+(2)解:原式23(3)3(3)(3)m m m m m m +-+=⋅++-23(3)3(3)(3)m m m m +=⋅++- 33m =-【点睛】本题考查整式的运算和分式的混合运算,熟记运算法则是解题的关键.20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息. 七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示: 年级 平均数 众数 中位数 8分及以上人数所占百分比七年级 7.5 a 7 45% 八年级 7.58bc八年级20名学生的测试成绩条形统计图如图:根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?【答案】(1)7a =,7.5b =,50%c =;(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)估计参加此次测试活动成绩合格的人数有1080人 【解析】 【分析】(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出a 的值,由条形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人数20人即可得出c 的值; (2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可得出结论; (3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分比,再乘以1200即可得出答案.【详解】解:(1)七年级20名学生的测试成绩的众数是:7, ∴7a =,由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:787.52+=, ∴7.5b =,八年级8分及以上人数有10人,所占百分比为:50% ∴50%c =,(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高; (3)七年级合格人数:18人, 八年级合格人数:18人,18181200100%108040+⨯⨯=人, 答:估计参加此次测试活动成绩合格的人数有1080人.【点睛】本题考查了平均数,众数,中位数,条形统计图等知识,熟练掌握平均数的求法,众数、中位数的概念是解决本题的关键.21.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠. (1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.【答案】(1)40ACB ∠=︒;(2)见解析 【解析】 【分析】(1)利用三角形内角和定理求出EAO ∠,利用角平分线的定义求出DAC ∠,再利用平行线的性质解决问题即可.(2)证明()AEO CFO AAS 可得结论.【详解】(1)解:AE BD ⊥,90AEO ∴∠=︒,50AOE , 40EAO,CA 平分DAE ∠,40DACEAO,四边形ABCD 是平行四边形,//AD BC ∴,40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥,90AEOCFO,AOE COF ∠=∠,()AEOCFO AAS ,AE CF ∴=.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握相关的知识点.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题. (1)请把下表补充..完整,并在图中补全..该函数图象;(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )②该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( ) (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).【答案】(1)95-,95;(2)①× ②√ ③√;(3)x <−1或−0.3<x <1.8.【解析】 【分析】(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可; (2)结合函数图象可从增减性及对称性进行判断; (3)根据图象求解即可. 【详解】解:(1)当x=-3时,2618911x y x -==++95=-, 当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形; 故答案为:×, ②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3; 故答案为:√ ,③观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<± 26211x x x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x =≈,30.3x ≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8.【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.【答案】(1)49不是“差一数”, 74是“差一数”,理由见解析;(2)314、329、344、359、374、389 【解析】 【分析】(1)直接根据“差一数”的定义计算即可;(2)根据“差一数”的定义可知被5除余4的数个位数字为4或9;被3除余2的数各位数字之和被3除余2,由此可求得大于300且小于400的所有“差一数”. 【详解】解:(1)∵49594÷=;493161÷=,∴49不是“差一数”, ∵745144÷=;743242÷=, ∴74是“差一数”;(2)∵“差一数”这个数除以5余数为4, ∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399, ∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.【点睛】此题主要考查了带余数的除法运算,本题用逐步增加条件的方法依此找到满足条件的所有数是解决本题的关键.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A 、B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元.(1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收人将增加20%9a ,求a 的值. 【答案】(1)A 品种去年平均亩产量是400、B 品种去年平均亩产量是500千克;(2)10. 【解析】 【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案; (2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩, 解得400500x y =⎧⎨=⎩.答:A .B 两个品种去年平均亩产量分别是400、500千克(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+⎪⎝⎭. 令a %=m ,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+⎪⎝⎭. 整理得10m 2-m =0,解得:m 1=0(不合题意,舍去),m 2=0.1 所以a %=0.1,所以a =10,答:a 的值为10.【点睛】本题考查的是二元一次方程组的应用,一元二次方程的应用,掌握列方程或方程组解应用题的方法与步骤是解题的关键.25.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()3,4A --,()0,1B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB △面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.【答案】(1)241y x x =+-;(2)PAB △面积最大值为278;(3)存在,1234(12)(346)(346),(13)E E E E ---+----,,,,,,【解析】 【分析】(1)将点A 、B 的坐标代入抛物线表达式,即可求解;(2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()2,41P a a a +-,则(,1)F a a -,1||2PABB A S PF x x ∆=⋅-23327228a ⎛⎫=-++ ⎪⎝⎭,即可求解; (3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可. 【详解】解:(1)∵抛物线过(3,4)A --,(0,1)B -∴9341b c c -+=-⎧⎨=-⎩∴41b c =⎧⎨=-⎩ ∴241y x x =+-(2)设AB y kx b =+,将点()3,4A --(0,1)B -代入AB y∴1AB y x =-过点P 作x 轴得垂线与直线AB 交于点F设点()2,41P a a a +-,则(,1)F a a - 由铅垂定理可得1||2PAB B A S PF x x ∆=⋅- ()231412a a a =---+ ()2332a a =-- 23327228a ⎛⎫=-++ ⎪⎝⎭ ∴PAB △面积最大值为278(3)(3)抛物线的表达式为:y =x 2+4x−1=(x +2)2−5,则平移后的抛物线表达式为:y =x 2−5,联立上述两式并解得:14x y -⎧⎨-⎩==,故点C (−1,−4);设点D (−2,m )、点E (s ,t ),而点B 、C 的坐标分别为(0,−1)、(−1,−4);①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即−2+1=s 且m +3=t ①或−2−1=s 且m−3=t ②,当点D 在E 的下方时,则BE =BC ,即s 2+(t +1)2=12+32③,当点D 在E 的上方时,则BD =BC ,即22+(m +1)2=12+32④,联立①③并解得:s =−1,t =2或−4(舍去−4),故点E (−1,2);联立②④并解得:s =-3,t =-4±6,故点E (-3,-46)或(-3,-6);②当BC 为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m +t ⑤,此时,BD =BE ,即22+(m +1)2=s 2+(t +1)2⑥,联立⑤⑥并解得:s =1,t =−3,故点E (1,−3),综上,点E 的坐标为:(−1,2)或(346)--,,或(346)--,或(1,−3). ∴存在,1234(12)(346)(346),(13)E E E E ---+----,,,,,, 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.26.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:22CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.【答案】(1)证明见解析;(2)32BC =;(3)33CE +=【解析】【分析】 (1)先证△BAD ≌△CAE ,可得∠ABD =∠ACE =45°,可求∠BCE =90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,推出454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,然后根据现有条件说明在Rt DCB △中,22225DE CD CE CD BD CD =++=,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC 中,推出222218254AG CG AC CD CD --=,即可得出答案; (3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,设PD 为a , 得出3BD a =,3AD BD a =,得出3a m a +=,解出a ,根据BD CE =即可得出答案.【详解】解:(1)证明如下:∵90BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠,∵AB AC =,AD AE =,∴在ABD △和ACE △中BAD CAE AB AC AD AE ∠=∠⎧⎪=⎨⎪=⎩,∴ABD ACE ∆≅∆,∴45ABD ACE ∠=∠=︒,∴90DCE ACB ACE ∠︒=∠+∠=,在Rt ADE 中,F 为DE 中点(同时AD AE =),45ADE AED ∠=∠=︒,∴AF DE ⊥,即Rt ADF 为等腰直角三角形, ∴22AF DF AD ==,∵CF DF =, ∴22CF AD =; (2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=, ∴454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,在Rt DCB △中,22225DE CD CE CD BD CD =+=+=,∵F 为DE 中点,∴152DE EF DE CD ===, 在四边形ADCE 中,有90CAG DCE ︒∠=∠=,180CZG DCE ︒∠+∠=,∴点A ,D ,C ,E 四点共圆,∵F 为DE 中点,∴F 为圆心,则CF AF =,在Rt AGC 中,∵CF AF =,∴F 为CG 中点,即CG 2CF 5CD ==,∴2222182542AG CG AC CD CD CD =-=-=, 即32BC AG =;(3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,∴60BPD ∠=︒,设PDa , ∴3BD a =,又3AD BD a =,∴3a m a +,=1)m aa=又BD CE∴CE.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,灵活运用所学知识是解本题的关键.。
2024年重庆市中考数学真题卷(A)及答案解析

重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1. 下列四个数中,最小的数是( )A 2- B. 0 C. 3D. 12-2. 下列四种化学仪器示意图中,是轴对称图形的是( )A. B.C. D.3. 已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A. 3- B. 3C. 6- D. 64. 如图,AB CD ∥,165∠=︒,则2∠的度数是( ).的A. 105︒B. 115︒C. 125︒D. 135︒5. 若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A. 1:3B. 1:4C. 1:6D. 1:96. 烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 267. 已知m =,则实数m 的范围是( )A. 23m << B. 34m << C. 45m << D. 56m <<8. 如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A. 328π-B. 4π-C. 324π- D. 8π-9. 如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )A.B.C.D.10. 已知整式1110:nn n n M a x a xa x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:011(3)()2π--+=_____.12. 如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.13. 重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.14. 随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.15. 如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.16. 若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为______.17. 如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.18. 我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()22x x y x y -++;(2)22111a a a a-⎛⎫+÷ ⎪+⎝⎭.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EFAC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想结论:④.22. 为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那的的么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?23. 如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)24. 如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港.1.41≈1.73≈2.45≈)(1)求A ,C 两港之间距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25. 如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.的(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.26. 在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CGAG的值.重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1. 下列四个数中,最小的数是( )A. 2- B. 0C. 3D. 12-【答案】A 【解析】【分析】本题考查了有理数比较大小,解题的关键是掌握比较大小的法则.根据正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵13022>>->-,∴最小的数是2-;故选:A .2. 下列四种化学仪器的示意图中,是轴对称图形的是( )A. B.C. D.【答案】C 【解析】【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A 、不是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项符合题意;D 、不是轴对称图形,故本选项不符合题意;故选:C .3. 已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A. 3- B. 3C. 6- D. 6【答案】C 【解析】【分析】本题考查了待定系数法求反比例解析式,把()3,2-代入()0ky k x=≠求解即可.【详解】解:把()3,2-代入()0ky k x=≠,得326k =-⨯=-.故选C .4. 如图,AB CD ∥,165∠=︒,则2∠的度数是( )A. 105︒B. 115︒C. 125︒D. 135︒【答案】B【解析】∠=∠=︒,由邻补角性质得【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.23180【详解】解:如图,∥,∵AB CD∠=∠=︒,∴3165∠+∠=︒,∵23180∠=︒,∴2115故选:B.5. 若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是()A. 1:3B. 1:4C. 1:6D. 1:9【答案】D【解析】【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D.6. 烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 26【答案】B【解析】【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7. 已知m =,则实数m 的范围是( )A. 23m << B. 34m << C. 45m << D. 56m <<【答案】B【解析】【分析】此题考查的是求无理数的取值范围,二次根式的加减运算,掌握求算术平方根的取值范围的方法是解决此题的关键.先求出m ==,即可求出m 的范围.【详解】解:∵m =-=-==,∵34<<,∴34m <<,故选:B .8. 如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A. 328π- B. 4π-C. 324π- D. 8π-【答案】D【解析】【分析】本题考查扇形面积的计算,勾股定理等知识.根据题意可得28AC AD ==,由勾股定理得出AB =,用矩形的面积减去2个扇形的面积即可得到结论.【详解】解:连接AC ,根据题意可得28AC AD ==,∵矩形ABCD ,∴4AD BC ==,90ABC ∠=︒,在Rt ABC △中,AB ==,∴图中阴影部分的面积2904428360ππ⨯=⨯-⨯=.故选:D .9. 如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FG C E的值为( )A.B. C. D.【答案】A【解析】【分析】过点F 作DC 延长线的垂线,垂足为点H ,则90H ∠=︒,证明ADE EHF ≌,则1AD EH ==,设DE HF x ==,得到HF CH x ==,则45HCF ∠=︒,故CF =,同理可求CG ==)1FG CG CF x =-=-,因此FGCE ==.【详解】解:过点F 作DC 延长线的垂线,垂足为点H ,则90H ∠=︒,由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA DC BC ==,设1DA DC BC ===,∴D H ∠=∠,∵12AEH AEF D ∠=∠+∠=∠+∠,∴12∠=∠,∴ADE EHF ≌,∴DE HF =,1AD EH ==,设DE HF x ==,则1CE DC DE x =-=-,∴()11CH EH EC x x =-=--=,∴HF CH x ==,而90H ∠=︒,∴45HCF ∠=︒,∴sin 45HFCF ==︒,∵DC AB ∥,∴45HCF G ∠=∠=︒,同理可求CG ==∴)1FG CG CF x =-==-,∴FG CE ==,故选:A .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解直角三角形,旋转的性质,正确添加辅助线,构造“一线三等角全等”是解题的关键.10. 已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:011(3)()2π--+=_____.【答案】3【解析】【分析】根据零指数幂和负指数幂的意义计算.【详解】解:011(3)(1232π--+=+=,故答案为:3.【点睛】本题考查了整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键.12. 如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.【答案】9【解析】【分析】本题考查了多边形的外角和定理,用外角和360︒除以40︒即可求解,掌握多边形的外角和等于360︒是解题的关键.【详解】解:360409︒÷︒=,∴这个多边形的边数是9,故答案为:9.13. 重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.【答案】19【解析】【分析】本题考查了画树状图法或列表法求概率,根据画树状图法求概率即可,熟练掌握画树状图法或列表法求概率是解题的关键.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点B 的情况有1种,∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14. 随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.【答案】10%【解析】【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15. 如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.【答案】3【解析】【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.【详解】解:∵CD CA =,过点D 作DE CB ∥,CD CA =,DE DC =,∴1FA CA FE CD==,CD CA DE ==,∴AF EF =,∴22DE CD AC CF ====,∴4AD AC CD =+=,∵DE CB ∥,∴CFA E ∠∠=,ACB D ∠∠=,∵CAB CFA ∠=∠,∴CAB E ∠∠=,∵CD CA =,DE CD =,∴CA DE =,∴CAB DEA ≌,∴4BC AD ==,∴3BF BC CF =-=,故答案为:3,【点睛】本题主要考查了平行线的性质,三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质,熟练掌握三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质是解题的关键.16. 若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为______.【答案】16【解析】【分析】本题考查了分式方程的解,以及解一元一次不等式组.先解不等式组,根据关于x 的一元一次不等式组至少有两个整数解,确定a 的取值范围8a ≤,再把分式方程去分母转化为整式方程,解得22a y -=,由分式方程的解为非负整数,确定a 的取值范围2a ≥且4a ≠,进而得到28a ≤≤且4a ≠,根据范围确定出a 的取值,相加即可得到答案.【详解】解:()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩①②,解①得:4x <,解②得:23a x -≥, 关于x 的一元一次不等式组至少有两个整数解,∴223a -≤,解得8a ≤,解方程13211a y y -=---,得22a y -=, 关于y 的分式方程的解为非负整数,∴202a -≥且212a -≠,2a -是偶数,解得2a ≥且4a ≠,a 是偶数,∴28a ≤≤且4a ≠,a 是偶数,则所有满足条件的整数a 的值之和是26816++=,故答案为:16.17. 如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.【答案】①. 8 ②. 【解析】【分析】连接DO 并延长,交O 于点H ,连接GH ,设CE 、AB 交于点M ,根据四边形ACDE 为平行四边形,得出∥D E A C ,8AC DE ==,证明AB DE ⊥,根据垂径定理得出142DF EF DE ===,根据勾股定理得出3OF ==,求出538AF OA OF =+=+=;证明EFM CAM ∽,得出EF FM AC AM =,求出83FM =,根据勾股定理得出EM ===,证明EFM HGD ∽,得出FM EM DG DH =,求出DG =.【详解】解:连接DO 并延长,交O 于点H ,连接GH ,设CE 、AB 交于点M ,如图所示:∵以AB 为直径的O 与AC 相切于点A ,∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,∴90BFD CAB ==︒∠∠,∴AB DE ⊥,∴142DF EF DE ===,∵10AB =,∴152DO BO AO AB ====,∴3OF ==,∴538AF OA OF =+=+=;∵∥D E A C ,∴EFM CAM ∽,∴EF FMAC AM =,∴48FMAF FM =-,即488FMFM =-,解得:83FM =,∴EM ===∵DH 为直径,∴90DGH ∠=︒,∴DGH EFM ∠=∠,∵ DG DG =,∴DEG DHG =∠∠,∴EFM HGD ∽,∴FMEMDG DH =,即83310DG =,解得:DG =.故答案为:8【点睛】本题主要考查了平行四边形的性质,垂径定理,圆周角定理,切线的性质,勾股定理,三角形相似的判定和性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.18. 我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.【答案】①. 82 ②. 4564【解析】【分析】本题考查了新定义,设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)根据最小的“方减数”可得10,18m n ==,代入,即可求解;根据B 除以19余数为1,且22m n k +=(k 为整数),得出34719a b ++为整数,308a b ++是完全平方数,在19a ≤≤,08b ≤≤,逐个检验计算,即可求解.【详解】①设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)由题意得:()()2210108m n a b a b -=+-+-,∵19a ≤≤,“方减数”最小,∴1a =,则10m b =+,18n b =-,∴()()2222101810020188221m n b b b b b b b -=+--=++-+=++,则当0b =时,2m n -最小,为82,故答案为:82;②设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)∴10001001081010998B a b a b a b =+++-=++∵B 除以19余数为1,∴1010997a b ++能被19整除∴134********B a b a b -++=++为整数,又22m n k +=(k 为整数)∴()210108308a b a b a b +++-=++是完全平方数,∵19a ≤≤,08b ≤≤∴308a b ++最小为49,最大为256即716k ≤≤设34719a b t ++=,t 为正整数,则13t ≤≤当1t =时,3412a b +=,则334b a =-,则330830384a b a a ++=+-+是完全平方数,又19a ≤≤,08b ≤≤,无整数解,当2t =时,3431a b +=,则3134a b -=,则3133083084a a b a -++=++是完全平方数,又19a ≤≤,08b ≤≤,无整数解,当3t =时,3450a b +=,则5034a b -=,则5033083084a ab a -++=++是完全平方数,经检验,当6,8a b ==时,3473648757193a b ++=⨯+⨯+==⨯,23068819614⨯++==,3,14t k ==,∴68,60m n ==,∴268604564A =-=故答案为:82,4564.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19 计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭.【答案】(1)222x y +;(2)11a a +-.【解析】【分析】(1)根据单项式乘以多项式和完全平方公式法则分别计算,然后合并同类项即可;(2)先将括号里的异分母分式相减化为同分母分式相减,再算分式的除法运算得以化简;本题考查了单项式乘以多项式,完全平方公式和分式的化简,熟练掌握运算法则是解题的关键.【小问1详解】解:原式22222x xy x xy y =-+++,222x y =+;【小问2详解】解:原式()()()1111a a a a a a +-+=÷+,()()()11·11a a a a a a ++=+-,11a a +=-.20. 为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:.66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【解析】【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【小问1详解】根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),C 组:6人,所占百分比为6100%30%20⨯=D 组:202468---=(人)所占百分比为%110%20%30%40%m =---=,则40m =,∴八年级的中位数为第1011、个同学竞赛成绩的平均数,即C 组第45、个同学竞赛成绩的平均数878887.52b +==,故答案为:86,87.5,40;【小问2详解】八年级学生竞赛成绩较好,理由:七、八年级的平均分均为85分,八年级的中位数高于七年级的中位数,整体上看八年级学生竞赛成绩较好;【小问3详解】640040%50032020⨯+⨯=(人),答:该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22. 为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条是。
中考数学专题 初中三角函数应用题10道-含答案
初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。
2022年重庆市中考数学试卷和答案解析(a卷)
2022年重庆市中考数学试卷和答案解析(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的相反数是()A.﹣5B.5C.﹣D.2.(4分)下列图形是轴对称图形的是()A.B.C.D.3.(4分)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°4.(4分)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m 5.(4分)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.166.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.417.(4分)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.(4分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2429.(4分)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°10.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC =3,则AB的长度是()A.3B.4C.3D.411.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是()A.﹣26B.﹣24C.﹣15D.﹣13 12.(4分)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z ﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:|﹣4|+(3﹣π)0=.14.(4分)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是.15.(4分)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)16.(4分)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.三、参考答案题:(本大题2个小题,每小题8分,共16分)参考答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将参考答案过程书写在答题卡中对应的位置上.17.(8分)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.18.(8分)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.四、参考答案题:(本大题7个小题,每小题10分,共70分)参考答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将参考答案过程书写在对应的位置上.19.(10分)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,参考答案下列问题:(1)填空:a=,b=,m=;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).20.(10分)已知一次函数y=kx+b(k≠0)的图象与反比例函数y =的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC 的面积.21.(10分)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.22.(10分)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)23.(10分)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=,P(M)=.当G(M),P(M)均是整数时,求出所有满足条件的M.24.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD 的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N 的坐标的其中一种情况的过程.Ⅷ25.(10分)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF 的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC 所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.参考答案与解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【参考答案】解:5的相反数是﹣5,故选:A.【解析】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【参考答案】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意.故选:D.【解析】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【参考答案】解:∵AB∥CD,∴∠1+∠C=180°,∴∠1=180°﹣∠C=180°﹣50°=130°.故选:C.【解析】本题考查了平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.4.【参考答案】解:观察图象,当t=3时,h=13,∴这只蝴蝶飞行的最高高度约为13m,故选:D.【解析】本题考查了函数的图象,掌握函数的图象的最高点对应的函数值即为这只蝴蝶飞行的最高高度是解题的关键.5.【参考答案】解:∵△ABC与△DEF位似,相似比为2:3.∴C△ABC:C△DEF=2:3,∵△ABC的周长为4,∴△DEF的周长是6,故选:B.【解析】本题考查位似变换,参考答案本题的关键是明确相似三角形的周长比等于相似比.6.【参考答案】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.【解析】本题主要考查图形的变化规律,根据图形的变化得出第n 个图形中有4n+1个正方形是解题的关键.7.【参考答案】解:原式=+=6+,∵9<15<16,∴3<<4,∴9<6+<10.故选:B.【解析】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.8.【参考答案】解:设该快递店揽件日平均增长率为x,根据题意,可列方程:200(1+x)2=242,故选:A.【解析】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.9.【参考答案】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.【解析】本题考查正方形的性质、全等三角形的判定与性质,参考答案本题的关键是求出∠ADF的度数.10.【参考答案】解:如图,连接OB,∵AB是⊙O的切线,B为切点,∴OB⊥AB,∴AB2=OA2﹣OB2,∵OB和OD是半径,∴∠D=∠OBD,∵∠A=∠D,∴∠A=∠D=∠OBD,∴△OBD∽△BAD,AB=BD,∴OD:BD=BD:AD,∴BD2=OD•AD,即OA2﹣OB2=OD•AD,设OD=x,∵AC=3,∴AD=2x+3,OB=x,OA=x+3,∴(x+3)2﹣x2=x(2x+3),解得x=3(负值舍去),∴OA=6,OB=3,∴AB2=OA2﹣OB2=27,∴AB=3,故选:C.【解析】本题主要考查圆的相关计算,涉及切线的定义,等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,得出△OBD∽△BAD是解题关键.11.【参考答案】解:解不等式组得:,∵不等式组的解集为x≤﹣2,∴>﹣2,∴a>﹣11,解分式方程=﹣2得:y=,∵y是负整数且y≠﹣1,∴是负整数且≠﹣1,∴a=﹣8或﹣5,∴所有满足条件的整数a的值之和是﹣8﹣5=﹣13,故选:D.【解析】本题考查了分式方程的解,解一元一次不等式组,正确求解分式方程和一元一次不等式组是解决问题的关键.12.【参考答案】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,∴2×2×2=8种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D.【解析】本题属于新定义问题,涉及整式的加减运算,加法原理与乘法原理的知识点和对加法原理的理解能力,利用原式中只有加减两种运算求解是解题关键.二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.【参考答案】解:原式=4+1=5.故答案为:5.【解析】本题考查实数的运算,熟练掌握实数的运算法则是解题关键.14.【参考答案】解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,所以抽取的两张卡片上的字母相同的概率为=,故答案为:.【解析】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.【参考答案】解:如图,连接BD交AC于点O,则AC⊥BD,∵四边形ABCD是菱形,∠BAD=60°,∴∠BAC=∠ACD=30°,AB=BC=CD=DA=2,在Rt△AOB中,AB=2,∠BAO=30°,∴BO=AB=1,AO=AB=,∴AC=2OA=2,BD=2BO=2,∴S菱形ABCD=AC•BD=2,∴S阴影部分=S菱形ABCD﹣2S扇形ADE=2﹣=,故答案为:.【解析】本题考查扇形面积的计算,菱形的性质,掌握扇形面积的计算方法以及菱形的性质是正确参考答案的前提.16.【参考答案】解:根据题意,如表格所设:香樟数量红枫数量总量甲4x5y﹣4x5y乙3x6y﹣3x6y丙9x7y﹣9x7y∵甲、乙两山需红枫数量之比为2:3,∴,∴y=2x,故数量可如下表:香樟数量红枫数量总量甲4x6x10x乙3x9x12x丙9x5x14x所以香樟的总量是16x,红枫的总量是20x,设香樟的预算单价为a,红枫的预算单价为b,由题意得,[16x•(1﹣6.25%)]•[a•(1﹣20%)]+20x•[b•(1+25%)]=16x•a+20x •b,∴12a+25b=16a+20b,∴4a=5b,设a=5k,b=4k,∴=,故答案为:.【解析】本题考查了用字母表示数,根据相等关系列方程进行化简等知识,解决问题的关键是设需要的量,列出关系式,进行数据处理.三、参考答案题:(本大题2个小题,每小题8分,共16分)参考答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将参考答案过程书写在答题卡中对应的位置上.17.【参考答案】解:(1)原式=x2+4x+4+x2﹣4x=2x2+4;(2)原式=(﹣)÷=•=.【解析】本题主要考查分式的混合运算和整式的混合运算,解题的关键是掌握完全平方公式和单项式乘多项式法则及分式的混合运算顺序和运算法则.18.【参考答案】解:根据题意作图如下:由题知,在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD,故答案为:①∠A=∠EFB,②∠AEB=∠FBE,③BE=EB,④△EDC≌△CFE(AAS).【解析】本题主要考查全等三角形的判定和性质,熟练掌握三角形的判定和性质是解题的关键.四、参考答案题:(本大题7个小题,每小题10分,共70分)参考答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将参考答案过程书写在对应的位置上.19.【参考答案】解:(1)在83,84,84,88,89,89,95,95,95,98中,出现次数最多的是95,∴众数a=95,10台B型扫地机器人中“良好”等级有5台,占50%,“优秀”等级所占百分比为30%,∴“合格”等级占1﹣50%﹣30%=20%,即m=20,把B型扫地机器人的除尘量从小到大排列后,第5个和第6个数都是90,∴b=90,故答案为:95,90,20;(2)该月B型扫地机器人“优秀”等级的台数3000×30%=900(台);(3)A型号的扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A型号的扫地机器人除尘量的众数>B型号的扫地机器人除尘量的众数(理由不唯一).【解析】本题考查数据的整理,涉及众数、中位数、平均数、方差等,解题的关键是掌握数据收集与整理的相关概念.20.【参考答案】解:(1)∵反比例函数y=的图象过点A(1,m),B(n,﹣2),∴,n=,解得m=4,n=﹣2,∴A(1,4),B(﹣2,﹣2),∵一次函数y=kx+b(k≠0)的图象过A点和B点,∴,解得,∴一次函数的表达式为y=2x+2,描点作图如下:(2)由(1)中的图象可得,不等式kx+b>的解集为:﹣2<x<0或x>1;(3)由题意作图如下:由图知△ABC中BC边上的高为6,BC=4,∴S△ABC==12.【解析】本题主要考查反比例函数和一次函数交点的问题,熟练掌握反比例函数的图象和性质,一次函数的图象和性质,三角形面积公式等知识是解题的关键.21.【参考答案】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.【解析】本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出分式方程.22.【参考答案】解:(1)过D作DF⊥AE于F,如图:由已知可得四边形ACDF是矩形,∴DF=AC=200米,∵点D在点E的北偏东45°,即∠DEF=45°,∴△DEF是等腰直角三角形,∴DE=DF=200≈283(米);(2)由(1)知△DEF是等腰直角三角形,DE=283米,∴EF=DF=200米,∵点B在点A的北偏东30°,即∠EAB=30°,∴∠ABC=30°,∵AC=200米,∴AB=2AC=400米,BC==200米,∵BD=100米,∴经过点B到达点D路程为AB+BD=400+100=500米,CD=BC+BD=(200+100)米,∴AF=CD=(200+100)米,∴AE=AF﹣EF=(200+100)﹣200=(200﹣100)米,∴经过点E到达点D路程为AE+DE=200﹣100+200≈529米,∵529>500,∴经过点B到达点D较近.【解析】本题考查解直角三角形﹣方向角问题,解题的关键是掌握含30°、45°角的直角三角形三边的关系.23.【参考答案】解:(1)∵22+22=8,8≠20,∴2022 不是“勾股和数”,∵52+52=50,∴5055 是“勾股和数”;(2)∵M为“勾股和数”,∴10a+b=c2+d2,∴0<c2+d2<100,∵G(M)为整数,为整数,∴c+d=9,∴P(M)==为整数,∴c2+d2=81﹣2cd为3的倍数,∴cd为3的倍数.∴①c=0,d=9或c=9,d=0,此时M=8109或8190;②c=3,d=6或c=6,d=3,此时M=4536或4563.【解析】本题以新定义为背景考查了因式分解的应用,考查了学生应用知识的能力,解题关键是要理解新定义,表示出“勾股和数”,能根据条件找出合适的“勾股和数”.24.【参考答案】解:(1)把A(0,﹣4),B(4,0)代入y=x2+bx+c 得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)设直线AB解析式为y=kx+t,把A(0,﹣4),B(4,0)代入得:,解得,∴直线AB解析式为y=x﹣4,设P(m,m2﹣m﹣4),则PD=﹣m2+m+4,在y=x﹣4中,令y=m2﹣m﹣4得x=m2﹣m,∴C(m2﹣m,m2﹣m﹣4),∴PC=m﹣(m2﹣m)=﹣m2+2m,∴PC+PD=﹣m2+2m﹣m2+m+4=﹣m2+3m+4=﹣(m﹣)2+,∵﹣1<0,∴当m=时,PC+PD取最大值,此时m2﹣m﹣4=×()2﹣﹣4=﹣,∴P(,﹣);答:PC+PD的最大值为,此时点P的坐标是(,﹣);(3)∵将抛物线y=x2﹣x﹣4向左平移5个单位得抛物线y=(x+5)2﹣(x+5)﹣4=x2+4x+,∴新抛物线对称轴是直线x=﹣=﹣4,在y=x2+4x+中,令x=0得y=,∴F(0,),将P(,﹣)向左平移5个单位得E(﹣,﹣),设M(﹣4,n),N(r,r2+4r+),①当EF、MN为对角线时,EF、MN的中点重合,∴,解得r=,∴r2+4r+=×()2+4×+=,∴N(,);②当FM、EN为对角线时,FM、EN的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);③当FN、EM为对角线时,FN、EM的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);综上所述,N的坐标为:(,)或(﹣,)或(﹣,).【解析】本题考查二次函数的综合应用,涉及待定系数法,二次函数、一次函数图象上点坐标的特征,平行四边形的性质及应用等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.25.【参考答案】解:(1)如图1中,在射线CD上取一点K,使得CK=BE,在△BCE和△CBK中,,∴△BCE≌△CBK(SAS),∴BK=CE,∠BEC=∠BKD,∵CE=BD,∴BD=BK,∴∠BKD=∠BDK=∠ADC=∠CEB,∵∠BEC+∠AEF=180°,∴∠ADF+∠AEF=180°,∴∠A+∠EFD=180°,∵∠A=60°,∴∠EFD=120°,∴∠CFE=180°﹣120°=60°;(2)结论:BF+CF=2CN.理由:如图2中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=CB,∠A=∠CBD=60°,∵AE=BD,∴△ABE≌△BCD(SAS),∴∠BCF=∠ABE,∴∠FBC+∠BCF=60°,∴∠BFC=120°,如图2﹣1中,延长CN到Q,使得NQ=CN,连接FQ,∵NM=NF,∠CNM=∠FNQ,CN=NQ,∴△CNM≌△QNF(SAS),∴FQ=CM=BC,延长CF到P,使得PF=BF,则△PBF是等边三角形,∴∠PBC+∠PCB=∠PCB+∠FCM=120°,∴∠PFQ=∠FCM=∠PBC,∵PB=PF,∴△PFQ≌△PBC(SAS),∴PQ=PC,∠CPB=∠QPF=60°,∴△PCQ是等边三角形,∴BF+CF=PC=QC=2CN.(3)由(2)可知∠BFC=120°,∴点F的运动轨迹为红色圆弧(如图3﹣1中),∴P,F,O三点共线时,PF的值最小,此时tan∠APK==,∴∠HPK>45°,∵QK⊥PF,∴∠PKH=∠QKH=45°,如图3﹣2中,过点H作HL⊥PK于点L,设PQ交KH题意点J,设HL=LK=2,PL=,PH=,KH=2,∵S△PHK=•PK•HL=•KH•PJ,∴PQ=2PJ=2×=2+∴==.【解析】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会利用面积法解决问题,属于中考压轴题.。
重庆数学中考试题及答案
重庆数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1D. x = 4答案:B2. 一个三角形的两边长分别为3和4,第三边长x满足三角形的三边关系,那么x的取值范围是?A. 1 < x < 7B. 2 < x < 5C. 3 < x < 7D. 1 < x < 5答案:C3. 一个数的平方根是4,那么这个数是?A. 16B. 8C. 6D. 4答案:A4. 一个圆的半径是5,那么它的面积是?A. 25πB. 50πC. 100πD. 200π答案:C5. 函数y = 2x + 3的图象与x轴的交点坐标是?A. (-3/2, 0)B. (3/2, 0)C. (-1, 0)D. (1, 0)答案:B6. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A7. 一个等腰三角形的底角是45度,那么它的顶角是?A. 90度B. 45度C. 60度D. 30度答案:A8. 一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C9. 一个等差数列的首项是2,公差是3,那么第5项是?A. 17B. 14C. 11D. 8答案:A10. 一个二次函数的顶点坐标是(2, -1),那么这个函数的对称轴是?A. x = 2B. x = -2C. x = 1D. x = 3答案:A二、填空题(每题3分,共30分)1. 一个数的立方根是2,那么这个数是______。
答案:82. 一个数的倒数是1/3,那么这个数是______。
答案:33. 一个数的平方是25,那么这个数是______。
答案:±54. 一个数除以3余1,除以5余2,那么这个数最小是______。
答案:115. 一个三角形的内角和是______。
重庆数学中考试题及答案
重庆数学中考试题及答案****一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -0.5**答案:C**2. 以下哪个选项是二次方程的解?A. x^2 - 4x + 4 = 0B. x^2 + 4x + 4 = 0C. x^2 - 4x - 4 = 0D. x^2 + 4x - 4 = 0**答案:A**3. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x^2 + 2C. y = 3x^3 - 2D. y = 1/x**答案:A**4. 以下哪个图形是轴对称图形?A. 圆B. 椭圆C. 抛物线D. 双曲线**答案:A**5. 以下哪个选项是等腰三角形?A. 三边长分别为3, 4, 5B. 三边长分别为2, 2, 3C. 三边长分别为1, 1, 2D. 三边长分别为4, 5, 6**答案:B**6. 下列哪个选项是锐角三角形?A. 三角形内角分别为30°, 60°, 90°B. 三角形内角分别为45°, 45°, 90°C. 三角形内角分别为60°, 60°, 60°D. 三角形内角分别为50°, 70°, 60° **答案:D**7. 以下哪个选项是不等式?A. 2x + 3 = 5B. 3x - 2 > 4C. 5y - 7 = 0D. 4z + 6 ≤ 10**答案:B**8. 以下哪个选项是反比例函数?A. y = 2xB. y = 1/xC. y = x^2D. y = 3x + 2**答案:B**9. 以下哪个选项是相似三角形?A. 三角形ABC和三角形DEF,AB/DE = AC/DF = BC/EFB. 三角形ABC和三角形DEF,AB/DE ≠ AC/DF = BC/EFC. 三角形ABC和三角形DEF,AB/DE = AC/DF ≠ BC/EFD. 三角形ABC和三角形DEF,AB/DE ≠ AC/DF ≠ BC/EF **答案:A**10. 以下哪个选项是圆的标准方程?A. (x - 2)^2 + (y - 3)^2 = 1B. x^2 + y^2 = 4C. (x - 1)^2 + (y + 1)^2 = 9D. x^2 + y^2 - 2x + 4y - 4 = 0**答案:B**二、填空题(每题3分,共30分)11. 一个数的相反数是-5,这个数是 _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考应用题解应用题的一般步骤:解应用题的一般步骤可以归结为:“审、设、列、解、验、答”.1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.4、“解”就是解方程,求出未知数的值.5、“验”就是验解,即检验方程的解能否保证实际问题有意义.6、“答”就是写出答案(包括单位名称).应用题类型:几种常见类型和等量关系如下:1、行程问题:s=.基本量之间的关系:路程=速度×时间,即:vt常见等量关系:(1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程.(2)追及问题(设甲速度快):①同时不同地:甲用的时间=乙用的时间;甲走的路程-乙走的路程=原来甲、乙相距的路程.②同地不同时:甲用的时间=乙用的时间-时间差;甲走的路程=乙走的路程.2、工程问题:基本量之间的关系:工作量=工作效率×工作时间.常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量.3、增长率问题:基本量之间的关系:现产量=原产量×(1+增长率).4、百分比浓度问题:基本量之间的关系:溶质=溶液×浓度.5、水中航行问题:基本量之间的关系:顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度.6、市场经济问题:基本量之间的关系:商品利润=售价-进价;商品利润率=利润÷进价;利息=本金×利率×期数;本息和=本金+本金×利率×期数.一元一次方程方程应用题归类分析1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?分析:等量关系为:()-⨯=.年月底有的人数年月日人数1366%9062000111解:设1990年6月底每10万人中约有x人具有小学文化程度-=x1366%)35701(.x≈37057答:略.2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。
例2. 用直径为90mm 的圆柱形玻璃杯(已装满水)向一个由底面积为1251252⨯mm 内高为81mm 的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm ?(结果保留整数π≈314.) 分析:等量关系为:圆柱形玻璃杯体积=长方体铁盒的体积下降的高度就是倒出水的高度解:设玻璃杯中的水高下降xmm π902125125812⎛⎝ ⎫⎭⎪=⨯⨯·x ππx x ==≈6256251993. 劳力调配问题:例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?解:设分别安排x 名、()85-x 名工人加工大、小齿轮31621085()[()]x x =- 4817002068170025x xx x =-==∴-=8560x 人4. 比例分配问题:这类问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
例4. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?解:设一份为x ,则三个数分别为x ,2x ,4x分析:等量关系:三个数的和是84x x x x ++==248412 5. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示。
例5. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数解:设十位上的数字X ,则个位上的数是2x ,10×2x+x=(10x+2x )+36解得x=4,2x=8.答:略.6. 工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。
例6. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
解:设乙还需x 天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x 12=1, 解这个方程,15+14+x 12=1 12+15+5x=60 5x=33 ∴ x=335=635答:略.7. 行程问题:(1)行程问题中的三个基本量及其关系: 路程=速度×时间。
(2)基本类型有① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例7. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
(1)分析:相遇问题,画图表示为:甲 乙等量关系是:慢车走的路程+快车走的路程=480公里。
解:设快车开出x 小时后两车相遇,由题意得,140x+90(x+1)=480解这个方程,230x=390∴ x=11623 答:略. 分析:相背而行,画图表示为:600甲 乙等量关系是:两车所走的路程和+480公里=600公里。
解:设x 小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120∴ x=1223答:略.(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。
解:设x 小时后两车相距600公里,由题意得,(140-90)x+480=600 50x=120 ∴ x=2.4答:略.分析:追及问题,画图表示为:甲 乙等量关系为:快车的路程=慢车走的路程+480公里。
解:设x 小时后快车追上慢车。
由题意得,140x=90x+480解这个方程,50x=480 ∴ x=9.6答:略.分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。
解:设快车开出x 小时后追上慢车。
由题意得,140x=90(x+1)+48050x=570 解得, x=11.4答:略. 8. 利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率例8. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?解:设进价为X 元,80%X (1+40%)—X=15,X=125答:略.9. 储蓄问题⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税⑵ 利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)例9. 某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)分析:等量关系:本息和=本金×(1+利率)解:设半年期的实际利率为x ,250(1+x )=252.7,x=0.0108所以年利率为0.0108×2=0.0216二元一次方程组1.“今有鸡、兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.题目大意:在现有鸡、兔在同一个笼子里,上边数有35个头,下边数有94只脚,求鸡、兔各有多少只.解:设有x 只鸡,y 只兔子,由题意得35,23,2494,12.x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得2.《希腊文集》中有一些用童话形式写成的数学题.比如驴和骡子驮货物这道题,就曾经被大数学家欧拉改编过,题目是这样的:驴和骡子驮着货物并排走在路上,驴不住地埋怨自己驮的货物太重,压得受不了.骡子对驴说:“你发什么牢骚啊!我驮的货物比你重,假若你的货物给我一口袋,我驮上的货就比你驮的重一倍,而我若给你一口袋,咱俩驮的才一样多.”那么驴和骡子各驮几口袋货物?你能用方程组来解这个问题吗?解:设驴子驮x袋,骡子驮y袋,根据题意,得12(1),5,1 1.7. y x xy x y+=-=⎧⎧⎨⎨-=+=⎩⎩解得◆中考真题实战6.(吉林)随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某地区2003年和2004年小学入学儿童人数之比为8:7,且2003•年入学人数的2倍比2004年入学人数的3倍少1 500•人,•某人估计2005•年入学儿童人数将超过2300人,请你通过计算,判断他的估计是否符合当前的变化趋势.解:设2003年入学儿童人数为x人,2004年入学儿童人数为y人,则可列78,2400, 231500,2100.x y xx y y==⎧⎧⎨⎨=-=⎩⎩解得∵2 300>2 100,∴他的估计不符合当前入学儿童逐渐减少的趋势一元一次不等式组及其应用1.(2004,湖北省)如图所示,一筐橘子分给若干个儿童,如果每人分4个,•则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,•分了多少个橘子?.1.设共有x个儿童,则共有(4x+9)个橘子,依题意,得0≤4x+9-6(x-1)<3解这个不等式组,得6<x≤7.5.因为x为整数,所以x取7.所以4x+9=4×7+9=37.故共有7个儿童,分了37个橘子.2.(2005,江苏省)七(2)班有50名学生,老师安排每人制作一件A型和B型的陶艺品,学校现有甲种制作材料36kg,乙种制作材料29kg,制作A,B两种型号的陶艺品用料情况如下表:(1)设制作B型陶艺品x件,求x的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A型和B型陶艺品的件数.2.(1)由题意得0.9(50)0.40.3(50)29x x x x -+≤⎧⎨-+≤⎩ 由①得x ≥18所以x 的取值范围是18≤x ≤20(x 为正整数).(2)制作A 型和B 型陶艺品的件数为①制作A 型陶艺品32件,制作B 型陶艺品18件;②制作A 型陶艺品31件,制作B 型陶艺品19件;③制作A 型陶艺品30件,制作B 型陶艺品20件.3.(2008,青岛)2008年8月,北京奥运会帆船比赛在青岛国际帆船中心举行,•观看帆船比赛的船票分为两种:A 种船票600/张,B 种船票120/张.•某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半,若设购买A 种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?3.(1)由题意知B 种票有(15-x )张.根据题意得15,2600120(15)5000,x x x x -⎧≥⎪⎨⎪+-≤⎩ 解得5≤x ≤203. ∵x 为正整数, ∴满足条件的x 为5或6. ∴共有两种购票方案:方案一:A 种票5张,B 种票10张; 方案二:A 种票6张,B 种票9张.(2)方案一购票费用为 600×5元+120×10元=4200元;方案二购票费用为600×6元+120×9元=4680(元).∵4200元<4680元,∴方案一更省钱.4.(2006,青岛)“五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60•座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),•而且要比单独租用一种车辆节省租金.请你帮助学校选择一种最节省的租车方案.4.(1)385÷42≈9.2 ∴单独租用42座客车需10辆,租金为320×10=3200元.385÷60≈6.4, ∴单独租用60座客车需7辆,租金为460×7=3220元.(2)设租用42座客车x 辆,则60座客车(8-x )辆,由题意得:4260(8)385,320460(8)3200.x x x x +-≥⎧⎨+-≤⎩解之得337≤x ≤5518. ∵x 取整数,∴x=4或5.当x=4时,租金为320×4+460×(8-4)=3120元; 当x=5时,租金为320×5+460×(8-5)=2980元.答:租用42座客车5辆,60座客车3辆时,租金最少.说明:若学生列第二个不等式时将“≤”号写成“<”号,也对.分式应用题1.(2009年桂林市、百色市)(本题满分8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?关键词】分式方程【答案】解:(1)设乙队单独完成需x 天根据题意,得11120()2416060x ⨯++⨯= 解这个方程,得x =90 经检验,x =90是原方程的解 ∴乙队单独完成需90天 (2)设甲、乙合作完成需y 天,则有11()16090y += 解得36y =(天) 甲单独完成需付工程款为60×3.5=210(万元) 乙单独完成超过计划天数不符题意(若不写此行不扣分).甲、乙合作完成需付工程款为36(3.5+2)=198(万元)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.2.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?【关键词】分式方程、一次函数与一元一次不等式(组)【答案】解:(1)设今年三月份甲种电脑每台售价x 元xx 800001000100000=+ 解得: 4000=x经检验: 4000=x 是原方程的根,所以甲种电脑今年三月份每台售价4000元.(2)设购进甲种电脑x 台, 50000)15(3000350048000≤-+≤x x解得 106≤≤x 因为x 的正整数解为6,7,8,9,10, 所以共有5种进货方案(3) 设总获利为W 元,ax a x a x W 1512000)300()15)(30003800()35004000(-+-=---+-= 当300=a 时, (2)中所有方案获利相同.此时, 购买甲种电脑6台,乙种电脑9台时对公司更有利.3.(2009年山东青岛市)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本) 【关键词】分式方程及增根、不等式(组)的简单应用【答案】解:(1)设商场第一次购进x 套运动服,由题意得: 6800032000102x x-=,解这个方程,得200x =.经检验,200x =是所列方程的根. 22200200600x x +=⨯+=. 所以商场两次共购进这种运动服600套.(2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y --+≥, 解这个不等式,得200y ≥,所以每套运动服的售价至少是200元.4.(2009年哈尔滨)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【答案】(1)可列分式方程求解,但要注意检验,否则扣分;(2)依据题意列出不等式组,注意不等号中是否有等于,根据未知数都为整数,再结合不等式组的解集,确定未知数的具体数值,有几个值,即有几种方案.解:(1)设每个乙种零件进价为x 元,则每个甲种零件进价为(2)x -元.由题意得801002x x=-, 解得10x =.检验:当10x =时,(2)0x x -≠, ∴10x =是原分式方程的解.1028-=(元)答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y 个,则购进甲种零件(35)y -个由题意得3595(128)(35)(1510)371y y y y -+⎧⎨--+->⎩≤,解得2325y <≤. y 为整数,24y ∴=或25.∴共有2种方案.分别是: 方案一:购进甲种零件67个,乙种零件24个; 方案二:购进甲种零件70个,乙种零件25个.解得10x = 经检验10x =是原分式方程的解 220x ∴=.答:冰箱、电视机分别购买20台、10台 10分练习8.(2010年厦门湖里模拟)某果品基地用汽车装运A 、B 、C 三种不同品牌的水果到外地销售,按规定每辆汽车只能装同种水果,且必须装满,其中A 、B 、C 三种水果的重量及利润按下表提供信息:(1)若用7辆汽车装运A 、C 两种水果共15吨到甲地销售,如何安排汽车装运A 、C 两种水果?(2)计划用20辆汽车装运A 、B 、C 三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润.解:(1)设安排x 辆汽车装运A 种水果,则安排(7-x )辆汽车装运C 种水果.根据题意得,2.2x +2(7-x )=15解得,x=5,∴7-x=2答:安排5辆汽车装运A 种水果,安排2辆汽车装运C 种水果。