初中数学重难点归纳:二次函数的图象与性质
九年级数学下册知识讲义-30二次函数的图像与性质2(附练习及答案)-冀教版

初中数学二次函数的图象与性质2学习目标一、考点突破1. 理解并掌握系数a、b、c与函数图象的关系。
2. 掌握图象与坐标轴交点坐标、对称轴的计算方法。
二、重难点提示重点:系数a、b、c与函数图象的关系。
难点:应用系数与函数图象的关系解决问题。
考点精讲二次函数图象的开口方向,对称轴,与y轴的交点的决定因素(以为例)1.决定了抛物线开口的大小和方向的正负决定开口方向,的大小决定开口的大小。
2. b与a同时决定对称轴位置同号时,对称轴位置在y轴左侧;异号时,对称轴位置在y轴右侧。
总结:“左同右异”【综合拓展】关于对称轴:①;②当图象过(a,b)(c,b)时,则对称轴为。
3.决定了抛物线与轴交点的位置①当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;②当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;③当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负。
典例精讲例题1(绵阳)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若-1<m<n<1,则m+n<-;④3|a|+|c|<2|b|,其中正确的结论(写出你认为正确的所有结论序号)。
思路分析:分别根据二次函数开口方向以及对称轴位置和图象与y轴交点得出a,b,c 的符号,再利用特殊值法分析得出各选项。
答案:解:∵抛物线开口向下,∴a<0,∴2a<0,对称轴x =->1,-b <2a ,∴2a +b >0,故选项①正确;∵-b <2a ,∴b >-2a >0>a ,令抛物线解析式为y =-x 2+bx -,此时a =c ,要使抛物线与x 轴交点的横坐标分别为和2, 则2221+=-)21(2-⨯b ,解得:b =,∴抛物线y =-x 2+x -,符合“开口向下,与x 轴的一个交点的横坐标在0与1之间,对称轴在直线x =1右侧”的特点,而此时a =c ,(其实a >c ,a <c ,a =c 都有可能),故②选项错误;∵-1<m <n <1,-2<m +n <2,∴抛物线对称轴为:x =->1,>2,m +n <,故选项③正确;当x =1时,a +b +c >0,2a +b >0,3a +2b +c >0,∴3a +c >-2b ,∴-3a -c <2b , ∵a <0,b >0,c <0(图象与y 轴交于负半轴),∴3|a|+|c|=-3a -c <2b =2|b|,故④选项正确,故答案为①③④。
考点11 二次函数的图象性质及相关考点【无答案】

考点11 二次函数的图象性质及其相关考点二次函数作为初中三大函数中考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点。
而对于二次函数图象和性质的考察,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
出题形式虽然多是选择、填空题,但解答题中也时有出现,且题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
一、二次函数的表达式二、二次函数的图象特征与最值三、二次函数图象与系数的关系四、二次函数与方程、不等式(组)五、二次函数图象上点的坐标特征考向一、二次函数的表达式2.二次函数平移的方法:①转化成顶点式(已经是顶点式的此步忽略),②“左加右减(x),上加下减(y)”;1.把y=(2﹣3x)(6+x)变成y=ax2+bx+c的形式,二次项,一次项系数为,常数项为.2.用配方法将二次函数y=x2﹣2x﹣4化为y=a(x﹣h)2+k的形式为()A.y=(x﹣2)2﹣4B.y=(x﹣1)2﹣3C .y =(x ﹣2)2﹣5D .y =(x ﹣2)2﹣63.在平面直角坐标系中,若将抛物线y =2x 2+1先向左平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的解析式是( ) A .y =2(x ﹣3)2+3 B .y =2(x +3)2+3 C .y =2(x ﹣3)2+1D .y =2(x +3)2+24.抛物线y =2x 2向下平移3个单位长度后所得新抛物线的顶点坐标为( ) A .(﹣3,0)B .(3,0)C .(0,﹣3)D .(0,3)5.如图,在平面直角坐标系中,点A 的坐标为(0,3),点B 的坐标为(6,3).若抛物线y =mx 2+2mx +m +3(m 为常数,m ≠0)向右平移a (a >0)个单位长度,平移后的抛物线的顶点在线段AB 上,则a 的取值范围为 .考向二、二次函数的图象特征与最值1. 对于二次函数y =ax 2+bx +c (a ≠0):对称轴:直线a bx 2-=;顶点坐标:)442(2a b ac a b --,; 开口向上 a > 二次函数有最小值ab ac 442-;开口向下 a < 二次函数有最大值ab ac 442-;2. 图象的增减性问题:抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须附加一定的自变量x 取值范围;1.已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是平面直角坐标系内两图象的存在性问题,一般先假设简单函数图象成立,再验证复杂函数是否成立, 利用排除法,得到最后答案。
新人教版初中数学——二次函数-知识点归纳及典型题解析

新人教版初中数学——二次函数知识点归纳及典型题解析一、二次函数的概念一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).(2)顶点式:y=a(x–h)2+k(a,h,k为常数,a≠0),顶点坐标是(h,k).(3)交点式:y=a(x–x1)(x–x2),其中x1,x2是二次函数与x轴的交点的横坐标,a≠0.三、二次函数的图象及性质1.二次函数的图象与性质开口向上开口向下2.二次函数图象的特征与a,b,c的关系四、抛物线的平移1.将抛物线解析式化成顶点式y=a(x–h)2+k,顶点坐标为(h,k).2.保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.五、二次函数与一元二次方程的关系1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0).2.ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.3.(1)b2–4ac>0⇔方程有两个不相等的实数根,抛物线与x轴有两个交点;(2)b2–4ac=0⇔方程有两个相等的实数根,抛物线与x轴有且只有一个交点;(3)b2–4ac<0⇔方程没有实数根,抛物线与x轴没有交点.六、二次函数的综合1、函数存在性问题解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;然后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.2、函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.考向一二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.典例1如果y=(m–2)x2m m-是关于x的二次函数,则m=A.–1 B.2 C.–1或2 D.m不存在【答案】A【解析】依题意²220m mm-=⎧⎨-≠⎩,解得m=–1,故选A.【名师点睛】此题主要考察二次函数的定义,需要注意a0≠.典例2 下列函数是二次函数的是( ) A .y =2x +2 B .y =﹣2x C .y =x 2+2 D .y =x ﹣2【答案】C【解析】直接根据二次函数的定义判定即可. A 、y =2x +2,是一次函数,故此选项错误; B 、y =﹣2x ,是正比例函数,故此选项错误; C 、y =x 2+2是二次函数,故此选项正确; D 、y =x ﹣2,是一次函数,故此选项错误. 故选C .1.二次函数223y x =-+()的图像的顶点坐标是A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)2.将一元二次方程2316x x +=化为一般形式后,常数项为1,二次项系数和一次项系数分别为 A .3,–6 B .3,6C .3,1D .2 3x ,6x -考向二 二次函数的图象二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.典例3 函数y =ax 2+bx +a +b (a ≠0)的图象可能是A .B .C .D .【答案】C【解析】A,由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y轴交点为(0,a+b)在y轴正半轴,与a+b<0矛盾,故此选项错误;B,由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y轴交点为(0,1)在y轴正半轴,可知a+b=1与a+b<0矛盾,故此选项错误;C,由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,a+b=1可能成立,故此选项正确;D,由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于正半轴,则a+b>0,而图象与x轴的交点为(1,0),则a+b+a+b=0,显然a+b=0与a+b>0矛盾,故此选项错误.故选C.典例4如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列不等式成立的是A.a>0 B.b<0C.ac<0 D.bc<03.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是A.B.C.D.4.已知函数y=ax+b的大致图象如图所示,那么二次函数y=ax2+bx+1的图象可能是A.B.C.D.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是A.a<0 B.c>0C.a+b+c>0 D.b2–4ac<0考向三二次函数的性质二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.典例5由二次函数y=3(x﹣4)2﹣2可知A.其图象的开口向下B.其图象的对称轴为直线x=4C.其顶点坐标为(4,2)D.当x>3时,y随x的增大而增大【答案】B 【解析】23(4)2y x =--,∴a =3>0,抛物线开口向上,故A 不正确;对称轴为4x =,故B 正确; 顶点坐标为(4,–2),故C 不正确;当4x >时,y 随x 的增大而增大,故D 不正确; 故选B .【名师点睛】本题主要考查二次函数的性质,掌握抛物线的顶点式是解题的关键,即在2()y a x h k =-+中,顶点坐标为(,)h k ,对称轴x h =.a 决定了开口方向.典例6 在函数2(1)3y x =-+中,当y 随x 的增大而减小时,则x 的取值范围是A .1x ≥B .0x >C .3x <D .1x ≤【答案】D【解析】二次函数2(1)3y x =-+的对称轴为直线1x =, ∵0a >,∴1x ≤时,y 随x 的增大而减小.故选D.【名师点睛】本题考查了二次函数的单调性.二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0),当a >0时,在对称轴左侧y 随x 的增大而减小,在对称轴右侧y 随x 的增大而增大;当a <0时,在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小6.关于下列说法:(1)反比例函数13y mx =,在每个象限内y 随x 的增大而减小;(2)函数13y x =-,y 随x 的增大减小;(3)函数213y x =-,当0x >时,y 随x 的增大而减小,其中正确的有A .0个B .1个C .2个D .3个7.若二次函数2y a x bx c =++的图象经过A (m ,n )、B (0,y 1)、C (3–m ,n )、D ,y 2)、E (2,y 3),则y 1、y 2、y 3的大小关系是 A .231y y y << B .132y y y << C .321y y y <<D .123y y y <<考向四二次函数的平移1.抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关.2.涉及抛物线的平移时,首先将表达式转化为顶点式y=a(x–h)2+k的形式.3.抛物线的移动主要看顶点的移动,y=ax2的顶点是(0,0),y=a(x–h)2的顶点是(h,0),y=a (x–h)2+k的顶点是(h,k).4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.典例7如果将抛物线y=–x2–2向右平移3个单位长度,那么所得到的新抛物线的表达式是A.y=–x2–5 B.y=–x2+1C.y=–(x–3)2–2 D.y=–(x+3)2–2A.y=(x2B.y=(x+2)2+2C.y=(x–2D.y=(x–2)2+2【答案】D9.把抛物线y=12x2–1先向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式为A.y=12(x+1)2–3 B.y=12(x–1)2–3C.y=12(x+1)2+1 D.y=12(x–1)2+1考向五二次函数与一元二次方程、不等式的综合抛物线y=ax2+bx+c(a≠0)与x轴的交点个数及相应的一元二次方程根的情况都由Δ=b2–4ac决定. 1.当Δ>0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x轴有一个交点(即顶点)时,方程ax2+bx+c=0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x轴无交点时,方程ax2+bx+c=0无实数根,此时抛物线在x轴的上方(a>0时)或在x轴的下方(a<0时).典例9二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表,则方程ax2+bx+c=0的A.–0.03<x<–0.01 B.–0.01<x<0.02C.6.18<x<6.19 D.6.17<x<6.18【答案】C【解析】由表格中的数据看出–0.01和0.02更接近于0,故x应取对应的范围为:6.18<x<6.19,故选C.典例10如图是二次函数y=a(x+1)2+2图象的一部分,则关于x的不等式a(x+1)2+2>0的解集是A.x<2 B.x>–3C.–3<x<1 D.x<–3或x>1【答案】C【解析】二次函数y=a(x+1)2+2的对称轴为x=–1,∵二次函数y=a(x+1)2+2与x轴的一个交点是(–3,0),∴二次函数y=a(x+1)2+2与x轴的另一个交点是(1,0),∴由图象可知关于x的不等式a(x+1)2+2>0的解集是–3<x<1.故选C.10.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是A.–1<x<5 B.x>5C.x<–1 D.x<–1或x>511.抛物线y=2x2–4x+m的部分图象如图所示,则关于x的一元二次方程2x2–4x+m=0的解是__________.考向六二次函数的实际应用在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.典例11飞机着陆后滑行的距离y(单位:m)关于滑行时间以(单位:)的函数解析式是y=6t﹣3 2t2.在飞机着陆滑行中,滑行最后的150m所用的时间是s.A.10 B.20 C.30 D.10或30 【答案】A【解析】当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当y=600﹣150=450时,即60t﹣32t2=450,解得:t=10,t=30(不合题意舍去),∴滑行最后的150m所用的时间是20﹣10=10,故选A.【名师点睛】本题考查二次函数与一元二次方程综合运用,关键在于解一元二次方程.典例12如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此变换进行下去,若点P(17,m)在这种连续变换的图象上,则m的值为A.2 B.﹣2C.﹣3 D.3【答案】D【解析】∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4......,∴OA1=A1A2=A2A3=A3A4 (4)∵点P(17,m)在这种连续变换的图象上,17÷4=4……1,∴点P(17,m)在C5上,∴x=17和x=1时的函数值相等,∴m=﹣1×(1﹣4)=﹣1×(﹣3)=3,故选D.【名师点睛】本题考查二次函数的性质及旋转的性质,得出x=17和x=1时的函数值相等是解题关键.12.如图所示的是跳水运动员10m跳台跳水的运动轨迹,运动员从10m高A处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M离墙1m,离水面403m,则运动员落水点B离墙的距离OB是A .2mB .3mC .4mD .5m13.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.求:(1)铅球在行进中的最大高度; (2)该男生将铅球推出的距离是多少m ?考向七 存在性问题与动点问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数表达式,最后根据函数表达式判别图象的变化.典例13 综合与探究: 已知二次函数213222y x x =-++的图象与x 轴交于,A B 两点(点B 在点A 的左侧),与y 轴交于点C .(1)求点 A B C ,,的坐标; (2)求证:ABC 为直角三角形;(3)如图,动点 E F ,同时从点A 出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒姨5个单位长度的速度沿射线AC 方向运动.当点F 停止运动时,点E 随之停止运动.设运动时间为t 秒,连结EF ,将AEF 沿EF 翻折,使点A 落在点D 处,得到DEF .当点F 在AC 上时,是否存在某一时刻t ,使得DCO BCO ≌?(点D 不与点B 重合)若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4,01,00,2A B C (),(-),();(2)证明见解析;(3)存在;3t 4=【解析】(1)当0y =时,2132022x x -++= 解得:121,4x x ==∴点A 的坐标为()4,0,点B 的坐标为()1,0-当0x =时,2y =∴点C 的坐标为()0,224,01,00,2A B C ()(),(-),(),41 2.OA OB OC ∴===,,5AB AC BC ∴=====,=22225AC BC AB ∴+==ABC ∴为直角三角形()3由()2可知ABC 为直角三角形.且90ACB ∠=︒2AE t AF t ==,,AF AB AE AC ∴==又EAF CAB ∠=∠,AEF ACB ∴∽,90.AEF ACB ∴∠=∠=︒AEF ∴沿EF 翻折后,点A 落在x 轴上点D 处,由翻折知,DE AE =,24AD AE t ∴==, 当DCO BCO ≌时,BO OD =, 441OD t BO =-=,,441t ∴-=,解得:t =34,即:当t =34秒时,.DCO BCO ≌【名师点睛】本题考查二次函数解析式与坐标轴的交点,勾股定理的逆定理,相似三角形的判定和性质,全等三角形的判定及性质,综合性较强,掌握相关知识并灵活应用是本题的解题关键.14.抛物线y =ax 2+bx +c 与x 轴交于A ,B 两点(点A 在点B 的左侧),且A (﹣1,0),B (4,0),与y 轴交于点C ,C 点的坐标为(0,﹣2),连接BC ,以BC 为边,点O 为对称中心作菱形BDE C .点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线交抛物线于点Q ,交BD 于点M .(1)求抛物线的解析式.(2)x 轴上是否存在一点P ,使三角形PBC 为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.(3)当点P 在线段OB 上运动时,试探究m 为何值时,四边形CQMD 是平行四边形?请说明理由.1.抛物线2(2)(6)y x x =-+的对称轴是 A .3x =B .3x =-C .2x =D .2x =-2.将抛物线22y x =向右平移4个单位长度,再向下平移1个单位长度,所得抛物线为 A .22(4)1y x =+-B .22(4)1y x =++C .22(4)1y x =-+D .22(4)1y x =--3.若b <0,则二次函数y =x 2+2bx ﹣1的图象的顶点在 A .第一象限B .第二象限C .第三象限D .第四象限4.如图是二次函数2 23y x x =--+的图象,使0y ≥成立的x 的取值范围是A .31x ≤≤-B .1x ≥C .31x x <->或D .31x x ≤-≥或5.直线y =ax +b 和抛物线y =ax 2+bx +c 在同一坐标系中的图象可能是A .B .C .D .6.若函数y =mx 2+2x +1的图像与x 轴只有一个公共点,则常数m 的值为 A .m =1B .m =1或m =2C .m =0D .m =1或m =07.如图,边长为2的正ABC ∆的边BC 在直线l 上,两条距离为1的平行直线a 和b 垂直于直线l ,a 和b 同时向右移动(a 的起始位置在B 点),速度均为每秒1个单位,运动时间为t (秒),直到b 到达C 点停止,在a 和b 向右移动的过程中,记ABC ∆夹在a 和b 间的部分的面积为S ,则S 关于t 的函数图象大致为A .B .C .D .8.如图,已知抛物线y 1=﹣x 2+1,直线y 2=﹣x +1,当x 任取一值时,x 对应的函数值分别为y 1,y 2.若y 1≠y 2,取y 1,y 2中的较小值记为M ;若y 1=y 2,记M =y 1=y 2.例如:当x =2时,y 1=﹣3,y 2=﹣1,y 1<y 2,此时M =﹣3.下列判断中:①当x <0时,M =y 1;②当x >0时,M 随x 的增大而增大;③使得M 大于1的x 值不存在;④使得M =12的值是﹣2或12,其中正确的个数有A .1B .2C .3D .49.抛物线y =(x –2)(x +3)与y 轴的交点坐标是__________.10.若A (–3.5,y 1)、B (–1,y 2)、C (1,y 3)为二次函数y =–x 2–4x +5的图象上三点,则y 1,y 2,y 3的大小关系是__________.(用>连接)11.二次函数y =x (x –6)的图象的对称轴是__________.12.已知一个二次函数的图象经过A (1,6)、B (–3,6)、C (0,3)三点,求这个二次函数的解析式,并指出它的开口方向.13.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25 m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40 m的栅栏围住(如图).设绿化带的BC边长为x m,绿化带的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围.(2)当x为何值时,满足条件的绿化带的面积最大?14.已知二次函数y=–12x2–x+72.(1)用配方法把这个二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出这个二次函数图象的开口方向、顶点坐标和对称轴;(3)将二次函数y=–12x2的图象如何平移能得到二次函数y=–12x2–x+72的图象,请写出平移方法.15.如图,抛物线()20y ax bx c a =++≠的顶点坐标为()21,-,并且与y 轴交于点()03,C ,与x 轴交于A 、B 两点. (1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似.若存在,求出点E 的坐标;若不存在,请说明理由.16.如图,二次函数22y ax bx =++的图象与x 轴交于点A (10)-,、B (40),,与y 轴交于点C .(1)a =__________;b =__________;(2)点P 为该函数在第一象限内的图象上的一点,过点P 作PQ BC ⊥于点Q ,连接PC , ①求线段PQ 的最大值;②若以P 、C 、Q 为顶点的三角形与△ABC 相似,求点P 的坐标.1.抛物线2362y x x =-++的对称轴是 A .直线2x = B .直线2x =- C .直线1x =D .直线1x =-2.抛物线244y x x =-+-与坐标轴的交点个数为 A .0 B .1 C .2D .33.已知点()()()()1,,1,,2,0A m B m C m n n -->在同一个函数的图象上,这个函数可能是A .y x =B .2y x=-C .2y x =D .2y x =﹣4.已知反比例函数y =abx的图象如图所示,则二次函数y =ax 2-2x 和一次函数y =bx +a 在同一平面直角坐标系中的图象可能是A .B .C .D .5.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为 A .22(2)3y x =++ B .22(2)3y x =-+ C .22(2)3y x =--D .22(2)3y x =+-6.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =7.在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是 A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D .它的图象可以由2yx 的图象向右平移2个单位长度,再向上平移1个单位长度得到8.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是 A .c <-3 B .c <-2 C .c <14D .c <19.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是 A .2a < B .1a >- C .12a -<≤D .12a -≤<10.如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有A .1个B .2个C .3个D .4个11.如图是王阿姨晚饭后步行的路程s (单位:m )与时间t (单位:min )的函数图象,其中曲线段AB 是以B 为顶点的抛物线一部分,下列说法不正确的是A .25 min~50 min ,王阿姨步行的路程为800 mB .线段CD 的函数解析式为324002550s t t =+≤≤()C .5 min~20 min ,王阿姨步行速度由慢到快D .曲线段AB 的函数解析式为23(20)1200(520)s t t =--+≤≤12.小飞研究二次函数y =–(x –m )2–m +1(m 为常数)性质时如下结论:①这个函数图象的顶点始终在直线y =–x +1上;②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2m ,则y 1<y 2;④当–1<x <2时,y 随x 的增大而增大,则m 的取值范围为m ≥2其中错误结论的序号是 A .① B .② C .③D .④13.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为A .y =26675x 2B .y =-26675x 2C .y =131350x 2D .y =-131350x 214.二次函数y =-(x -6)2+8的最大值是__________.15.在平面直角坐标系中,垂直于x 轴的直线l 分别与函数y =x -a +1和y =x 2-2ax 的图象相交于P ,Q 两点.若平移直线l ,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是__________. 16.当03x ≤≤时,直线y a =与抛物线2(1)3y x =--有交点,则a 的取值范围是_________. 17.如图,抛物线2y ax c =+与直线y mx n =+交于A (-1,P ),B (3,q )两点,则不等式2ax mx c n ++>的解集是__________.18.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为__________米.19.已知二次函数2y x x a =++的图象与x 轴交于12(0)(0)A x B x ,、,两点,且2212111x x +=,求a 的值.20.已知抛物线224y x x c =-+与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线224y x x c =-+经过点()2,A m 和点()3,B n ,试比较m 与n 的大小,并说明理由.21.在画二次函数()20y ax bx c a =++≠的图象时,甲写错了一次项的系数,列表如下:乙写错了常数项,列表如下:通过上述信息,解决以下问题:(1)求原二次函数()20y ax bx c a =++≠的表达式;(2)对于二次函数()20y ax bx c a =++≠,当x __________时,y 的值随x 的值增大而增大;(3)若关于x 的方程()20ax bx c k a ++=≠有两个不相等的实数根,求k 的取值范围.22.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件. (1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少?23.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计)24.在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售,笔记本一律按原价销售,学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元?25.我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x元/件(x≥6,且x是按0.5元的倍数上涨),当天销售利润为y元.(1)求y与x的函数关系式(不要求写出自变量的取值范围);(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.26.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.27.随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=12x+12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?28.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600 注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是__________元/件;当售价是__________元/件时,周销售利润最大,最大利润是__________元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.1.【答案】A【解析】∵223y x =-+(),∴二次函数223y x =-+()的图象的顶点坐标是(2,3),故选A.【名师点睛】此题考查二次函数的性质,解题关键在于掌握其顶点式一般形式的特点. 2.【答案】A【解析】一元二次方程3x 2+1=6x 化为一般形式是3x 2–6x +1=0,各项的系数分别是:3,–6.故选A【名师点睛】本题考查了一元二次方程的解,解答本题要通过移项,转化为一般形式,注意移项时符号的变化. 相交,D 选项符合.故选D . 4.【答案】D【解析】根据一次函数的图象可得a >0,b <0.则二次函数开口向上,对称轴在y 轴的右侧. 故选D . 5.【答案】C【解析】∵由图象知,开口向上,∴a >0,故A 错误;由图象知,与y 轴的交点在负半轴,∴c <0,故B 错误;令x =1,则a +b +c >0,故C 正确;∵抛物线与x 轴有两个交点,∴Δ= b 2–4ac >0,故D 错误.故选C . 6.【答案】C【解析】(1)反比例函数113=3m y mx x=,当m >0时,图象在第一、三象限,在每个象限内y 随x 的增大而减小,当m <0时,图象在第二、四象限,在每个象限内y 随x 的增大而增大,故(1)的说法错误;(2)函数13y x =-中k =103-<,y 随x 的增大减小,故(2)的说法正确; (3)函数213y x =-中a =103-<,函数图象开口向下,对称轴为直线x =0,所以当0x >时,y随x 的增大而减小,故(3)的说法正确.故选C.【名师点睛】此题主要考查了反比例函数、正比例函数和二次函数的图象与性质,熟练掌握它们的性质是解决此题的关键. 7.【答案】A【解析】∵经过A (m ,n )、C (3–m ,n ),∴二次函数的对称轴x =32,∵B (0,y 1)、D ,y 2)、E (2,y 3)与对称轴的距离B 最远,D 最近, ∵|a |>0,∴y 1>y 3>y 2;故选A .【名师点睛】此题考查二次函数的图象及性质;熟练掌握函数图象上点的特征是解题的关键. 8.【答案】B【解析】∵抛物线C :y =x 2+2x –3=(x +1)2–4,∴抛物线对称轴为直线x =–1.∴抛物线与y 轴的交点为A (0,–3).则与A 点关于直线x =–1对称的点是B (–2,–3).若将抛物线C 平移到C ′,并且C ,C ′关于直线x =1对称,就是要将B 点平移后以对称轴x =1与A 点对称,则B 点平移后坐标应为(4,–3).因此将抛物线C 向右平移4个单位长度.故选B . 9.【答案】B【解析】∵把抛物线y =12x 2–1先向右平移1个单位,再向下平移2个单位,∴得到的抛物线的解析式为y =12(x –1)2–3,故选B . 10.【答案】A【解析】由图可知,对称轴为直线x =2,∵抛物线与x 轴的一个交点坐标为(5,0),∴抛物线与x 轴的另一个交点坐标为(–1,0),又∵抛物线开口向下,∴不等式ax 2+bx +c >0的解集是–1<x <5.故选A . 11.【答案】x 1=–1,x 2=3【解析】观察图象可知,抛物线y =2x 2–4x +m 与x 轴的一个交点为(–1,0),对称轴为x =1,∴抛物线与x 轴的另一交点坐标为(3,0),∴一元二次方程2x 2–4x +m =0的解为x 1=–1,x 2=3.故答案为:x 1=–1,x 2=3.。
《二次函数的图像和性质》PPT课件 人教版九年级数学

y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
重难点 二次函数中的线段、周长与面积的最值问题及定值问题(解析版)--2024年中考数学

重难点二次函数中的线段、周长与面积的最值问题及定值问题目录题型01利用二次函数解决单线段的最值问题题型02利用二次函数解决两条线段之和的最值问题题型03利用二次函数解决两条线段之差的最值问题题型04利用二次函数解决三条线段之和的最值问题题型05利用二次函数解决三角形周长的最值问题题型06利用二次函数解决四边形周长的最值问题题型07利用二次函数解决图形面积的最值问题类型一利用割补、拼接法解决面积最值问题类型二利用用铅垂定理巧求斜三角形面积最值问题类型三构建平行线,利用同底等高解决面积最值问题题型08利用二次函数解决定值问题题型01利用二次函数解决单线段的最值问题【解题思路】抛物线中的线段最值问题有三种形式:1.平行于坐标轴的线段的最值问题:常通过线段两端点的坐标差表示线段长的函数关系式,运用二次函数性质求解.求最值时应注意:①当线段平行于y轴时,用上端点的纵坐标减去下端点的纵坐标;②当线段平行于x轴时,用右端点的横坐标减去左端点的横坐标.在确定最值时,函数自变量的取值范围应确定正确.1(2022·辽宁朝阳·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,-3),连接BC.(1)求抛物线的解析式及点B 的坐标.(2)如图,点P 为线段BC 上的一个动点(点P 不与点B ,C 重合),过点P 作y 轴的平行线交抛物线于点Q ,求线段PQ 长度的最大值.(3)动点P 以每秒2个单位长度的速度在线段BC 上由点C 向点B 运动,同时动点M 以每秒1个单位长度的速度在线段BO 上由点B 向点O 运动,在平面内是否存在点N ,使得以点P ,M ,B ,N 为顶点的四边形是菱形?若存在,请直接写出符合条件的点N 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3,(-3,0)(2)94(3)-3,-32或(-2,1)或0,3-32【分析】(1)将A ,C 两点坐标代入抛物线的解析式求得a ,c 的值,进而得出解析式,当y =0时,求出方程的解,进而求得B 点坐标;(2)由B ,C 两点求出BC 的解析式,进而设出点P 和点Q 坐标,表示出PQ 的长,进一步得出结果;(3)要使以点P ,M ,B ,N 为顶点的四边形是菱形,只需△PMB 是等腰三角形,所以分为PM =BM ,PM =PB 和BP =BM ,结合图象,进一步得出结果.【详解】(1)解:把点A (1,0),C (0,-3)代入y =ax 2+2x +c 得:c =-3a +2×1+c =0 ,解得:c =-3a =1 ,∴抛物线解析式为y =x 2+2x -3;令y =0,则x 2+2x -3=0,解得:x 1=1,x 2=-3,∴点B 的坐标为(-3,0);(2)解:设直线BC 的解析式为y =kx +b k ≠0 ,把点B (-3,0),C (0,-3)代入得:b =-3-3k +b =0 ,解得:k =-1b =-3 ,∴直线BC 的解析式为y =-x -3,设点P m ,-m +3 ,则Q m ,m 2+2m -3 ,∴PQ =-m -3 -m 2+2m -3 =-m 2-3m =-m +322+94,∴当m =-32时,PQ 最大,最大值为94;(3)解:存在,根据题意得:PC =2t ,BM =t ,则PB =32-2t ,如图,当BM =PM 时,∵B (-3,0),C (0,-3),∴OB =OC =3,∴∠OCB =∠OBC =45°,延长NP 交y 轴于点D ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ∥x 轴,BN ∥PM ,即DN ⊥y 轴,∴△CDP 为等腰直角三角形,∴CD =PD =PC ⋅sin ∠OCB =2t ×22=t ,∵BM =PM ,∴∠MPB =∠OBC =45°,∴∠PMO =∠PDO =∠MOD =90°,∴四边形OMPD 是矩形,∴OM =PD =t ,MP ⊥x 轴,∴BN ⊥x 轴,∵BM +OM =OB ,∴t +t =3,解得t =32,∴P -32,-32,∴N -3,-32;如图,当PM =PB 时,作PD ⊥y 轴于D ,连接PN ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ⊥BM ,NE =PE ,∴BM =2BE ,∴∠OEP =∠DOE =∠ODP =90°,∴四边形PDOE 是矩形,∴OE =PD =t ,∴BE =3-t ,∴t =2(3-t ),解得:t =2,∴P (-2,-1),∴N (-2,1);如图,当PB =MB 时,32-2t =t ,解得:t =6-32,∴PN =BP =BM =6-32,过点P 作PE ⊥x 轴于点E ,∴PE ⊥PM ,∴∠EON =∠OEP =∠EPN =90°,∴四边形OEPN 为矩形,∴PN =OE ,PN ⊥y 轴,∵∠OBC =45°,∴BE =PE =PB ⋅sin ∠OBC =6-32 ×22=32-3,∴OE =OB -BE =3-32-3 =6-32,∴点N 在y 轴上,∴N 0,3-32 ,综上所述,点N 的坐标为-3,-32或(-2,1)或0,3-32 .【点睛】本题考查了二次函数及其图象的性质,用待定系数法求一次函数的解析式,等腰三角形的分类和等腰三角形的性质,菱形的性质等知识,解决问题的关键是正确分类,画出符合条件的图形.2(2021·西藏·统考中考真题)在平面直角坐标系中,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点.与y 轴交于点C .且点A 的坐标为(-1,0),点C 的坐标为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P 是第一象限内抛物线上的一动点.当点P 到直线BC 的距离最大时,求点P 的坐标;(3)图(乙)中,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2+4x +5;(2)P 52,354;(3)存在,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【分析】(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c ,即可得抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,由y =-x 2+4x +5可得B (5,0),故OB =OC ,△BOC 是等腰直角三角形,可证明△PHQ 是等腰直角三角形,即知PH =PQ2,当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),PQ =-m -52 2+254,故当m =52时,PH 最大,即点P 到直线BC的距离最大,此时P 52,354 ;(3)抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,可列方程组s +22=5+02-s 2+4s +5+t 2=0+52,即可解得M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,同理可得s +52=2+02-s 2+4s +4+02=t +52,解得M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,则s +02=2+52-s 2+4s +5+52=t +02,解得M (7,-16).【详解】解:(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c 得:0=-1-b +c 5=c ,解得b =4c =5 ,∴抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,如图:在y =-x 2+4x +5中,令y =0得-x 2+4x +5=0,解得x =5或x =-1,∴B (5,0),∴OB =OC ,△BOC 是等腰直角三角形,∴∠CBO =45°,∵PD ⊥x 轴,∴∠BQD =45°=∠PQH ,∴△PHQ 是等腰直角三角形,∴PH =PQ2,∴当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得0=5k +5,∴k =-1,∴直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),∴PQ =(-m 2+4m +5)-(-m +5)=-m 2+5m =-m -52 2+254,∵a =-1<0,∴当m =52时,PQ 最大为254,∴m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P 52,354;(3)存在,理由如下:抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,如图:∴s +22=5+02-s 2+4s +5+t2=0+52,解得s =3t =-3 ,∴M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,如图:∴s +52=2+02-s 2+4s +4+02=t +52,解得s=-3t =-21 ,∴M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,如图:s +02=2+52-s 2+4s +5+52=t +02,解得s =7t =-11 ,∴M (7,-16);综上所述,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、等腰直角三角形、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.3(2021·山东泰安·统考中考真题)二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (-4,0),B (1,0),与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式;(3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.【答案】(1)y =-x 2-3x +4;(2)y =-158x +158;(3)PQ QB有最大值为45,P 点坐标为(-2,6)【分析】(1)将A (-4,0),B (1,0)代入y =ax 2+bx +4(a ≠0)中,列出关于a 、b 的二元一次方程组,求出a 、b 的值即可;(2)设BP 与y 轴交于点E ,根据PD ⎳y 轴可知,∠DPB =∠OEB ,当∠DPB =2∠BCO ,即∠OEB =2∠BCO ,由此推断△OEB 为等腰三角形,设OE =a ,则CE =4-a ,所以BE =4-a ,由勾股定理得BE 2=OE 2+OB 2,解出点E 的坐标,用待定系数法确定出BP 的函数解析式即可;(3)设PD 与AC 交于点N ,过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标可得AC 所在直线表达式,求得M 点坐标,则BM =5,由BM ⎳PN ,可得△PNQ ∽△BMQ ,PQ QB=PN BM =PN5,设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)PQ QB =-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,根据二次函数性质求解即可.【详解】解:(1)由题意可得:a ⋅(-4)2+b ⋅(-4)+4=0a +b +4=0解得:a =-1b =-3 ,∴二次函数的表达式为y =-x 2-3x +4;(2)设BP 与y 轴交于点E ,∵PD ⎳y 轴,∴∠DPB =∠OEB ,∵∠DPB =2∠BCO ,∴∠OEB =2∠BCO ,∴∠ECB =∠EBC ,∴BE =CE ,设OE =a ,则CE =4-a ,∴BE =4-a ,在Rt △BOE 中,由勾股定理得BE 2=OE 2+OB 2,∴(4-a )2=a 2+12解得a =158,∴E 0,158,设BE 所在直线表达式为y =kx +e (k ≠0)∴k ⋅0+e =158,k ⋅1+e =0.解得k =-158,e =158. ∴直线BP 的表达式为y =-158x +158.(3)设PD 与AC 交于点N .过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标分别为(-4,0),(0,4)可得AC 所在直线表达式为y =x +4∴M 点坐标为(1,5),BM =5由BM ⎳PN ,可得△PNQ ∽△BMQ ,∴PQ QB=PN BM =PN 5设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)∴PQ QB=-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,∴当a 0=-2时,PQQB 有最大值0.8,此时P 点坐标为(-2,6).【点睛】本题主要考查二次函数以及一次函数解析式的确定,函数图像的性质,相似三角形,勾股定理等知识点,熟练运用待定系数法求函数解析式是解题关键,本题综合性强,涉及知识面广,难度较大,属于中考压轴题.4(2020·辽宁阜新·中考真题)如图,二次函数y =x 2+bx +c 的图象交x 轴于点A -3,0 ,B 1,0 ,交y 轴于点C .点P m ,0 是x 轴上的一动点,PM ⊥x 轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式;(2)①若点P 仅在线段AO 上运动,如图1.求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3;(2)①94,②存在,Q 1(0,-32-1),Q 2(0,32-1)【分析】(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中求出b ,c 的值即可;(2)①由点P m ,0 得M (m ,-m -3),N m ,m 2+2m -3 ,从而得MN =(-m -3)-m 2+2m -3 ,整理,化为顶点式即可得到结论;②分MN =MC 和MC =2MN 两种情况,根据菱形的性质得到关于m 的方程,求解即可.【详解】解:(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中,得0=9-3b +c ,0=1+x +c .解得b =2,c =-3. ∴y =x 2+2x -3.(2)设直线AC 的表达式为y =kx +b ,把A (-3,0),C (0,-3)代入y =kx +b .得,0=-3k +b ,-3=b . 解这个方程组,得k =-1,b =-3. ∴y =-x -3.∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m=-m +32 2+94.∵a =-1<0,∴此函数有最大值.又∵点P 在线段OA 上运动,且-3<-32<0∴当m =-32时,MN 有最大值94. ②∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m(i )当以M ,N ,C ,Q 为顶点的四边形为菱形,则有MN =MC ,如图,∵C (0,-3)∴MC =(m -0)2+(-m -3+3)2=2m 2∴-m 2-3m =2m 2整理得,m 4+6m 3+7m 2=0∵m 2≠0,∴m 2+6m +7=0,解得,m 1=-3+2,m 2=-3-2∴当m =-3+2时,CQ =MN =32-2,∴OQ =-3-(32-2)=-32-1∴Q (0,-32-1);当m =-3-2时,CQ =MN =-32-2,∴OQ =-3-(-32-2)=32-1∴Q (0,32-1);(ii )若MC =2MN ,如图,则有-m 2-3m =22×2m 2整理得,m 2+4m =0解得,m 1=-4,m 2=0(均不符合实际,舍去)综上所述,点Q 的坐标为Q 1(0,-32-1),Q 2(0,32-1)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m 的方程,要分类讨论,以防遗漏.5(2020·天津·中考真题)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(1)当a =1,m =-3时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =22.①当点E 落在抛物线上(不与点C 重合),且AE =EF 时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是22?【答案】(1)抛物线的顶点坐标为(-1,-4);(2)①点F 的坐标为(0,-2-7)或(0,-2+7);②当m 的值为-32或-12时,MN 的最小值是22.【分析】(1)根据a =1,m =-3,则抛物线的解析式为y =x 2+bx -3,再将点A (1,0)代入y =x 2+bx -3,求出b 的值,从而得到抛物线的解析式,进一步可求出抛物线的顶点坐标;(2)①首先用含有m 的代数式表示出抛物线的解析式,求出C (0,m ),点E (m +1,m ).过点A 作AH ⊥l 于点H ,在Rt △EAH 中,利用勾股定理求出AE 的值,再根据AE =EF ,EF =22,可求出m 的值,进一步求出F 的坐标;②首先用含m 的代数式表示出MC 的长,然后分情况讨论MN 什么时候有最值.【详解】解:(1)当a =1,m =-3时,抛物线的解析式为y =x 2+bx -3.∵抛物线经过点A (1,0),∴0=1+b-3.解得b=2.∴抛物线的解析式为y=x2+2x-3.∵y=x2+2x-3=(x+1)2-4,∴抛物线的顶点坐标为(-1,-4).(2)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=-m-1.∴抛物线的解析式为y=x2-(m+1)x+m.根据题意,得点C(0,m),点E(m+1,m).过点A作AH⊥l于点H.由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1-(m+1)=-m,HA=0-m=-m,∴AE=EH2+HA2=-2m.∵AE=EF=22,∴-2m=22.解得m=-2.此时,点E(-1,-2),点C(0,-2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF=EF2-EC2=7.∴点F的坐标为(0,-2-7)或(0,-2+7).②由N是EF的中点,得CN=12EF=2.根据题意,点N在以点C为圆心、2为半径的圆上.由点M(m,0),点C(0,m),得MO=-m,CO=-m.∴在Rt△MCO中,MC=MO2+CO2=-2m.当MC≥2,即m≤-1时,满足条件的点N落在线段MC上,MN的最小值为MC-NC=-2m-2=22,解得m=-3 2;当MC<2,-1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC-MC=2-(-2m)=22,解得m=-1 2.∴当m的值为-32或-12时,MN的最小值是22.【点睛】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型..6(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD ⊥AC 于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的△QEF 是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)y =14x 2+14x -3(2)PD 取得最大值为45,P -2,-52 (3)Q 点的坐标为92,-1 或92,5 或92,74.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为y =-34x -3,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,则PD =45PQ ,进而根据二次函数的性质即可求解;(3)根据平移的性质得出y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ,F 0,2 ,勾股定理分别表示出EF 2,QE 2,QF 2,进而分类讨论即可求解.【详解】(1)解:将点B 3,0 ,C 0,-3 .代入y =14x 2+bx +c 得,14×32+3b +c =0c =-3解得:b =14c =-3 ,∴抛物线解析式为:y =14x 2+14x -3,(2)∵y =14x 2+14x -3与x 轴交于点A ,B ,当y =0时,14x 2+14x -3=0解得:x 1=-4,x 2=3,∴A -4,0 ,∵C 0,-3 .设直线AC 的解析式为y =kx -3,∴-4k -3=0解得:k =-34∴直线AC 的解析式为y =-34x -3,如图所示,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,∴PQ =-34t -3-14t 2+14t -3 =-14t 2-t ,∵∠AQE =∠PQD ,∠AEQ =∠QDP =90°,∴∠OAC =∠QPD ,∵OA =4,OC =3,∴AC =5,∴cos ∠QPD =PD PQ =cos ∠OAC =AO AC=45,∴PD =45PQ =45-14t 2-t =-15t 2-45t =-15t +2 2+45,∴当t =-2时,PD 取得最大值为45,14t 2+14t -3=14×-2 2+14×-2 -3=-52,∴P -2,-52 ;(3)∵抛物线y =14x 2+14x -3=14x +12 2-4916将该抛物线向右平移5个单位,得到y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ∵平移后的抛物线与y 轴交于点F ,令x =0,则y =14×92 2-4916=2,∴F 0,2 ,∴EF 2=32+2+52 2=1174∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设Q 92,m ,∴QE 2=92-3 2+m +52 2,QF 2=92 2+m -2 2,当QF =EF 时,92 2+m -2 2=1174,解得:m =-1或m =5,当QE =QF 时,92-3 2+m +522=92 2+m -2 2,解得:m =74综上所述,Q 点的坐标为92,-1 或92,5 或92,74.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.题型02利用二次函数解决两条线段之和的最值问题【解题思路】抛物线中的线段最值问题有三种形式:2. 两条线段和的最值问题:解决这类问题最基本的定理就是“两点之间线段最短”,解决这类问题的方法是:作其中一个定点关于已知直线的对称点,连接对称点与另一个定点,它们与已知直线的交点即为所求的点. 其变形问题有三角形周长最小或四边形周长最小等.【常见模型一】(两点在河的异侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,连接AB,与直线L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
中考难点二次函数知识点及例题最强解析

中考难点二次函数例题解析二次函数可谓是初中数学考试中的常客,月考,期中考试,期末考试,模拟考试都会有它的身影,中考每年都会有一道关于二次函数的压轴题。
中考二次函数主要以综合题的形式考察,通过对近几年中考二次函数考察情况的分析,二次函数综合题得分率不高,难度系数在0.45-0.55之间,属于中考压轴题之一。
所以掌握二次函数的考点至关重要。
下面我们通过习题,引出知识点总结归纳,二次函数将不再茫然!基础知识一、基本概念:1.二次函数的概念:一般地,形如2a≠)的函数,叫做二次函数。
y ax bx c=++(a b c,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
2. 2=+的性质:(上加下减)y ax c3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y有最【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型第二部分 考察重点1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
九年级数学上册《二次函数的图象和性质》知识点整理-教育文档

九年级数学上册《二次函数的图象和性质》知识点整理查字典数学网为大家整理了二次函数的图象和性质知识点整理,供大家参考和学习,希望对大家的学习和成绩的提高有所帮助。
二次函数图像及性质知识总结二次函数概念一般地,形如y?ax2?bx?c(a,b,c是常数,a?0)的函数,叫做二次函数。
定义域是全体实数,图像是抛物线解析式b﹑c为0时y?ax2向上.向下y轴b为0时y?ax2?c向上向下y轴b﹑c不为0时y?ax2?bx?c向上向下a?0开口a?0开口对称轴顶点坐标图x??b2a?0,0?X=0.时y最小值等于0?0,c?X=0,时Y最小值等于c?b4ac?b2????4a??2ab4ac?b2当x??时。
y有最小值.2a4aa?0时y有最小值像a?0时y有最大值的性质a?0时开口向上a?0时开口向下X=0.时X=0,时b4ac?b2当x??时,y有最大值.y最大值等于0Y最大值等于c2a4ax?0时,y随x的增大而增大;x?0时,b当x??时,y随x的增大而减小;y随x的增大而减小;x?0时,y有最小值0.2a当x??b时,y随x的增大而增大2ab时,y随x的增大而增大;2ab时,y随x的增大而减小2ax?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0当x??当x??图像画法利用配方法将二次函数y?ax2?bx?c化为顶点式y?a(x?h)2?k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点?0,c?、以及?0,c?关于对称轴对称的点?2h,c?、与x轴的交点?x1,0?,?x2,0?(若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.解析式的表示及图像平移1.一般式:y?ax2?bx?c2.顶点式:y?a(x?h)2?k3.两根式:y?a(x?x1)(x?x2)2.平移⑴将抛物线解析式转化成顶点式y?a?x?h??k,确定其顶点坐标?h,k?;在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”①y?ax?bx?c沿y轴平移:向上(下)平移m个单位,y?ax?bx?c变成222y?ax2?bx?c?m(或y?ax2?bx?c?m)②y?ax?bx?c沿轴平移:向左(右)平移m个单位,y?ax?bx?c 变成22y?a(x?m)2?b(x?m)?c(或y?a(x?m)2?b(x?m)?c)二次函数y=ax2及其图象看了上文为大家整理的二次函数的图象和性质知识点整理是不是感觉轻松了许多呢?一起与同学们分享吧.。
专题07二次函数的图象与性质(2)(4个知识点2种题型1个易错点)原卷版-初中数学北师大版9年级上册

专题07二次函数的图象与性质(2)(4个知识点2种题型1个易错点)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.二次函数)0(2≠++=a c bx ax y 的图象及性质(重点难点)【方法二】实例探索法题型1.由抛物线的顶点坐标、对称轴及最值求字母或代数式的取值范围题型2.二次函数的增减性问题题型3.抛物线的对称性题型4.根据条件确定参数的取值范围题型5.二次函数与其他函数相结合的双图象问题题型6.二次函数图象与图形的综合【方法三】差异对比法易错点:不能根据二次函数的各项系数确定二次函数的大致图象【方法四】成果评定法【学习目标】1.掌握二函数)0(2≠++=a c bx ax y 图象的画法及性质。
2.会计算二次函数图象)0(2≠++=a c bx ax y 的顶点坐标,图象的开口方向,图象的对称轴。
3.会用二次函数的图象与性质解决相关的计算题。
4.重点:二次函数)0(2≠++=a c bx ax y 的图象及性质。
5.难点:二次函数)0(2≠++=a c bx ax y 性质的应用。
【倍速学习四种方法】【方法一】脉络梳理法知识点1.二次函数)0(2≠++=a c bx ax y 的图象及性质(重点难点)二次函数2y ax bx c =++的图像称为抛物线2y ax bx c =++,这个函数的解析式就是这条抛物线的表达式.任意一个二次函数2y ax bx c =++(其中a 、b 、c 是常数,且0a ≠)都可以运用配方法,把它的解析式化为()2y a x m k =++的形式.对2y ax bx c =++配方得:22424b ac b y a x a a -⎛⎫=++⎪⎝⎭.由此可知:抛物线2y ax bx c =++(其中a 、b 、c 是常数,且0a ≠)的对称轴是直线2b x a =-,顶点坐标是(2ba-,244ac b a-).当0a >时,抛物线2y ax bx c =++开口向上,顶点是抛物线的最低点,抛物线在对称轴(即直线2b x a=-)左侧的部分是下降的,在对称轴右侧的部分是上升的;当0a <时,抛物线2y ax bx c =++开口向下,顶点是抛物线的最高点,抛物线在对称轴(即直线2bx a =-)左侧的部分是上升的,在对称轴右侧的部分是下降的.【例1】对于二次函数2288y x x =-+-:(1)求出图像的开口方向、对称轴、顶点坐标,这个函数有最大值还是最小值?这个值是多少?(2)求出此抛物线与x 、y 轴的交点坐标;(3)当x 取何值时,y 随着x 的增大而减小.【变式1】.已知二次函数2y ax bx c =++,若0a <,0b <,0c >,那么它的图像大致是()A .B .C .D .xy xy xy xy【变式2】二次函数2y ax bx c =++中,0a >,0b <,0c =,则其图像的顶点在第____象限.【方法二】实例探索法题型1.由抛物线的顶点坐标、对称轴及最值求字母或代数式的取值范围1.(2022秋·安徽合肥·九年级校考阶段练习)二次函数2(0)y ax bx c a =++≠的部分图像如图所示,对称轴为12x =,且经过点(2,0),下列说法:①<0abc ;②20b c -+=;③420a b c ++<;④若11,2y ⎛⎫- ⎪⎝⎭、25,2y ⎛⎫ ⎪⎝⎭是抛物线上的两点,则12y y =;⑤1()4b m am b >+(其中12m ≠),正确的结论有()A .②③④B .①②⑤C .①③⑤D .①②④⑤题型2.二次函数的增减性问题2.已知抛物线()21y x =--,当x >1时,y 随着x 的增大而______;当x <1时,y 随着x 的增大而______.3.请选择一组a 、b 、c 的值,使二次函数2y ax bx c =++(0a ≠)的图像同时满足下列条件:当2x ≤时,y 随x 的增大而增大;当2x >时,y 随x 的增大而减小.这样的二次函数的解析式可以是___________________.题型3.抛物线的对称性4.已知二次函数23(1)y x k =-+的图像上有A 2,y 1)、B (2,y 2)、C (5-,y 3)三个点,则y 1、y 2、y 3的大小关系为()A .123y y y >>B .213y y y >>C .312y y y >>D .321y y y >>5.已知抛物线2y x mx n =-+-的对称轴为3x =-,且过点(0,4),求m 、n 的值.题型4.根据条件确定参数的取值范围6.(2023·安徽合肥·校考一模)已知抛物线245y ax ax =--,其中a 为常数,且0a >.(1)设此抛物线与y 轴的交点为A ,过点A 作y 轴的垂线交抛物线于另一点B ,求点B 的坐标;(2)若抛物线2y ax =先向右平移h 个单位长度,再向下平移3h 个单位长度后,可得抛物线245y ax ax =--,求a 的值;(3)已知点()1,M m y 、()25,N y 均在此抛物线上,且12y y <,求m 的取值范围.题型5.二次函数与其他函数相结合的双图象问题7.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图像可能是()A .B .C .D .xyxyxyxy8.如图,已知二次函数()2y a x m =+与一次函数y ax m =+,它们在同一直角坐标系中的图像大致是()xy OxyOxy Oxy OA .B .C .D .题型6.二次函数图象与图形的综合9.将抛物线244y x x =-+沿y 轴向下平移后,所得抛物线与x 轴交于点A 、B ,顶点为C .如果ABC ∆是等腰直角三角形,求顶点C 的坐标.10.(2023秋·安徽合肥·九年级合肥市五十中学西校校考阶段练习)已知k 为任意实数,随着k 的变化,抛物线222(1)3y x k x k =--+-的顶点随之运动,则顶点运动时经过的路径与两条坐标轴围成图形的面积是___________.【方法三】差异对比法易错点:不能根据二次函数的各项系数确定二次函数的大致图象11.已知二次函数2y ax bx c =++,若0a <,0b <,0c >,那么它的图像大致是()A .B .C .D .xyxyxyxy【方法四】成果评定法一.选择题(共10小题)1.(2023秋•绿园区期末)若抛物线2y x bx c =++的对称轴为y 轴,且点(2,6)P 在该抛物线上,则c 的值为()A .2-B .0C .2D .42.(2022秋•孝义市期末)将抛物线244y x x =+-向下平移3个单位,再向左平移2个单位,得到抛物线的表达式为()A .2(4)11y x =+-B .2(4)5y x =+-C .211y x =-D .25y x =-3.(2023秋•庐阳区校级月考)已知二次函数2y ax bx c =++中的y 与x 的部分对应值如下表:x⋯1-012⋯y⋯5-131⋯则下列判断正确的是()A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当1x >时,y 随x 的增大而减小D .方程20ax bx c ++=的正根在3与4之间4.(2022秋•姜堰区期末)将关于x 的函数2(0)y ax bx c a =++≠的图象向下平移两个单位,以下说法错误的是()A .开口方向不变B .对称轴不变C .与y 轴的交点不变D .自变量x 的取值范围不变5.(2022秋•丹江口市期末)把二次函数211322y x x =---的图象向上平移3个单位,再向左平移4个单位,则两次平移后的图象解析式是()A .21(7)72y x =-++B .21(3)42y x =-++C .21(1)72y x =--+D .21(1)12y x =--+6.(2023秋•克东县期末)点11(2,)P y -,22(2,)P y ,33(4,)P y 均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是()A .231y y y >>B .213y y y >=C .132y y y =>D .123y y y =>7.(2022秋•东明县期末)如图是二次函数2y ax bx c =++的图象,其对称轴为1x =,下列结论:①0abc >;②20a b +=;③420a b c ++>;④30a c +=,其中正确结论的个数是()A .1个B .2个C .3个D .4个8.(2023秋•明光市期中)如图,抛物线与x 轴,y 轴分别交于A ,B 两点.若OA =OB ,则下列结论成立的是()A .4b ﹣c =1B .b +4c =1C .4b ﹣c =4D .4b +c =49.(2022秋•桥西区期末)题目:“如图,抛物线2y x mx =+与直线y x b =-+相交于点(2,0)A 和点B .点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标M x 的取值范围.”对于其答案,甲答:3M x =.乙答:12M x -<,丙答:12M x -<,丁答:12M x -,则正确的是()A .只有甲答的对B .甲、乙答案合在一起才完整C .甲、丙答案合在一起才完整D .甲、丁答案合在一起才完整10.(2022秋•安新县期末)在平面直角坐标系中,如图是二次函数2(0)y ax bx c a =++≠的图象的一部分,给出下列命题:①50a b c ++=;②2b a >;③方程20ax bx c ++=的两根分别为3-和1;④240b ac ->,其中正确的命题有()A .1个B .2个C .3个D .4个二.填空题(共8小题)11.(2023秋•铁西区期末)二次函数269y x x =++的最小值是.12.(2023秋•闵行区月考)已知点1(1,)A y 和2(2,)B y 在二次函数22(0)y ax ax c a =++<图象上,则12y y -0.(填“>”、“<”或“=”)13.(2023秋•雁塔区校级月考)若1231(,),(1,),(2,)2A yB yC y -三点都在二次函数24(0)y ax ax c a =-+>的图象上,则1y ,2y ,3y 的大小关系为.(用“<”连接)14.(2023秋•普陀区期末)已知二次函数232y x x m =++-的图象与y 轴的交点在正半轴上,那么m 的取值范围是.15.(2023秋•浑江区期末)开口向下的抛物线22(2)21y m x mx =-++的对称轴经过点(1,2)-,则m =.16.(2022秋•潢川县期末)二次函数y =x 2﹣4x +3的图象与直线y =﹣1的交点坐标是.17.(2022秋•姜堰区期末)已知关于x 的二次函数2y x c =-+的图象不经过第一、二象限,请写出一个合适的常数c 的值为.18.(2023秋•吉林期中)若二次函数y =△2(1)6x +-有最大值,则“△”中可填的数字是.三.解答题(共6小题)19.(2022秋•广陵区校级期末)如图,已知抛物线23y x mx =-++经过点(2,3)M -.(1)求m 的值,并求出此抛物线的顶点坐标;(2)当30x -时,直接写出y 的取值范围.20.(2022秋•郸城县期末)已知二次函数2243y x x =-++.(1)求开口方向、对称轴及顶点坐标;(2)当x 为何值时,y 随x 增大而减小,当x 为何值时,y 随x 增大而增大.21.(2023秋•黄山期中)定义:关于x 轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:2(1)2y x =--的“同轴对称抛物线”为2(1)2y x =--+.(1)抛物线213(1)22y x =--+的顶点坐标为,它的“同轴对称抛物线”为;(2)如图,在平面直角坐标系中,第四象限的点B 是抛物线241y ax ax =-+上一点,点B 的横坐标为1,过点B 作x 轴的垂线,交抛物线241y ax ax =-+的“同轴对称抛物线”于点C ,分别作点B 、C 关于抛物线241y ax ax =-+的对称轴对称的点B '、C ',连接BC 、CC '、C B ''、B B '.当四边形BCC B ''为正方形时,求a 的值.22.(2023秋•芜湖期中)已知二次函数223y x x =+-的图象顶点为M .(1)请直接写出点M 的坐标;(2)请通过列表描点,画出该二次函数的大致图象;(3)当22x -<<时,则y 的取值范围是.(直接写出结果)23.(2023•海曙区一模)对于抛物线243(0)y ax x a =-+>.(1)若抛物线过点(4,3).①求顶点坐标;②当06x 时,直接写出y 的取值范围为;(2)已知当0x m 时,19y ,求a 和m 的值.24.(2023秋•上思县期中)二次函数2(0)y ax bx c a =++≠中的x ,y 满足如表.x ⋯1-0123⋯y ⋯03-4-3-0⋯(1)该抛物线的顶点坐标为;(2)当5x=时,求对应的函数值;(3)当1x>时,函数y的值随x的增大而(填“增大”或“减小”).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学重难点归纳:二次函数的图象与性质
考点一、二次函数解析式的确定
在确定二次函数的解析式时,设哪种解析式形式要根据题中的已知条件来确定,若题目给出的是图象上点的坐标,设一般式,若给出对称轴和图象上的一点坐标,设顶点式,若给出了图象与X轴的两交点,设交点式。
考点二、二次函数的图象与性质
一般地,抛物线的对称轴可根据公式直接计算,或利用配方法将二次函数化为顶点式的形式,再写出即可。
若抛物线的解析式未知,要判断对称轴在Y轴的左侧还是右侧,则须结合已知条件与抛物线所经过的点,分析和判断已知点关于对称轴的对称点的横坐标的范围,
进而确定对称轴的范围,才可得出结论。
如需资料,请私信留言“初中数学”。