平抛运动的推论、应用及拓展
第二讲:平抛运动

第二讲:平抛运动一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动; (2)竖直方向:自由落体运动. 4.基本规律如图,以抛出点O 为坐标原点,以初速度v 0方向(水平方向)为x 轴正方向,竖直向下为y 轴正方向.(1)位移关系(2)速度关系(3)轨迹方程:h =g2v 02x 25.基本应用例题、如图所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为(1)飞行时间由t =2hg知,时间取决于下落高度h ,与初速度v 0无关.(2)水平射程x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. (3)落地速度v =v x 2+v y 2=v 02+2gh ,以θ表示落地速度与水平正方向的夹角,有tan θ=v y v x=2ghv 0,落地速度与初速度v 0和下落高度h 有关. (4)速度改变量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图所示.(5)两个重要推论①做平抛运动的物体在任意时刻的瞬时速度的反向延长线一例题、如图甲所示是网球发球机,某次室内训练时将发球机放在距地面一定的高度,然后向竖直墙面发射网球.假定网球均水平射出,某两次射出的网球碰到墙面时速度与水平方向夹角分别为30°和60°,若不考虑空气阻力,则( )A.两次发射的初速度大小之比为3∶1定通过此时水平位移的中点,如图所示,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v yv 0=2y Ax A→x B=x A2①做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt 2v 0→tan θ=2tan α二、与斜面结合的平抛运动1.顺着斜面平抛(如图)方法:分解位移.x =v 0t ,y =12gt 2,tan θ=y x,可求得t =2v 0tan θg.2.对着斜面平抛(垂直打到斜面,如图) 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt,可求得t =v 0g tan θ.三、斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动.例题、某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0;做匀速直线运动,v 0x =v 0cos θ,x =v 0tcos θ. (2)竖直方向:v 0y =v 0sin θ,F 合y =mg .做竖直上抛运动,v 0y =v 0sin θ,y =v 0tsin θ-12gt2四、类平抛运动1.类平抛运动物体受到与初速度垂直的恒定的合外力作用时,其轨迹与平抛运动相似,称为类平抛运动.类平抛运动的受力特点是物体所受合力为恒力,且与初速度的方向垂直.2.类平抛运动问题的求解技巧(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性.(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向上列方程求解.针对训练题型1:平抛运动性质例题、如图所示的光滑斜面ABCD 是边长为l 的正方形,倾角为30°,一物块(视为质点)沿斜面左上方顶点A 以平行于AB 边的初速度v 0水平射入,到达底边CD 中点E ,则( )A .初速度2glB .初速度4glC .物块由A 点运动到E 点所用的时间2lt g= D .物块由A 点运动到E 点所用的时间lt g=1.关于平抛运动的性质,以下说法中正确的是()A.变加速运动B.匀变速运动C.匀速率曲线运动D.不可能是两个直线运动的合运动2.人站在平台上平抛一小球,球离手时的速度为v1,落地时速度为v2,不计空气阻力,下列图中能表示出速度矢量的演变过程的是()A.B.C.D.题型2:平抛运动规律3.如图所示,从A、B、C三个不同的位置向右分别以v A、v B、v C的水平初速度抛出三个小球A、B、C,其中A、B在同一竖直线上,B、C在同一水平线上,三个小球均同时落在地面上的D点,不计空气阻力。
高中物理:平抛运动的推论及应用

高中物理:平抛运动的推论及应用一、平抛运动的概念将物体以一定初速度水平抛出,物体在只受重力的作用下所做的运动叫平抛运动。
二、平抛运动的性质平抛是加速度为重力加速度g的匀变速曲线运动,轨迹是抛物线。
值得注意的是:平抛运动的速率随时间变化并不均匀,但速度随时间的变化是均匀的。
平抛运动可看成是水平方向的匀速直线运动和竖直方向上的自由落体运动的合成。
三、平抛运动的规律以抛出点为原点,取水平方向为x轴,正方向与初速度v0的方向相同;竖直方向为y轴,正方向向下;物体在任一时刻t位置坐标P (x,y),位移s、速度v t(如图所示)的关系为:1、速度公式:水平分速度:,竖直分速度:。
t时刻平抛物体的速度大小和方向:。
2、位移公式(位置坐标):水平分位移:,竖直分位移:。
t时间内合位移的大小和方向:3、运动时间,仅取决于竖直下落的高度。
4、射程,取决于竖直下落的高度和初速度。
5、平抛物体运动中的速度变化:水平方向分速度保持。
竖直方向,加速度恒为g,速度,从抛出点起,每隔时间的速度的矢量关系如图所示。
这一矢量关系有两个特点:①任意时刻的速度水平分量均等于初速度;②任意相等时间间隔内的速度改变量均竖直向下,且。
但要注意如下两点:①平抛运动虽然为曲线运动,但也是一种匀变速运动,所以平抛运动为匀变速曲线运动,所有抛体做的都是加速度为g的匀变速运动。
②平抛运动的速率随时间变化并不均匀,速度随时间是均匀变化的。
推论1:做平抛运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为θ,位移与水平的夹角为,则tanθ=2tan.证明:如图1所示,由平抛运动规律得,所以。
例1、如图2所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角满足( )A、B、C、D、解析:直接根据推论1,可知正确选项为D.推论2:做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点.证明:如图3所示,B为OA的中点,设平抛物体的初速度为,从原点O到A点的时间为t,A点坐标为,B点坐标为,则,。
平抛运动:平抛(类平抛)运动基本规律的理解及应用

平抛运动基本规律的理解及应用
一、平抛运动的几个基本规律
1.飞行时间:t= 2gh,大小取决
v0
于下落高度 h,与初速度 v0 无关.
2.水平射程:x=v0t=v0 2gh,与初 h 速度 v0 和下落高度 h 有关.
3.落地速度:v= vx2+v2y= v20+2gh,
v 与 v0 的夹角 tan θ=vy /vx=
2gh,大 v0
小与初速度 v0 和下落高度 h 有关.
x=?
速度的 改变量△v
t=? vx=v0 θ
vy v=?
4.速度改变量:因为平抛运动的 加速度为恒定的重力加速度g,所 以做平抛运动的物体在任意相等 时间间隔Δt内的速度改变量Δv= gΔt相同,方向恒为竖直向下,如 图所示.
球员在球门中心正前方距离球门s处
高高跃起,将足球顶入球门的左下方
死角(图中P点)。球员顶球点的高度 h
为h,足球做平抛运动(足球可看成质
L/2
点,忽略空气阻力),则( )
s
A.足球位移的大小 x= L42+s2 B.足球初速度的大小 v0= 2gh(L42+s2)
注意分析足球的空间 位置及运动特征
C.足球末速度的大小 v= 2gh(L42+s2)+4gh
D.足球初速度的方向与球门线夹角的正切值 tan θ=2Ls
转解析
【备选】(多选)某物体做平抛运动时,
它的速度方向与水平方向的夹角为θ,
其正切值tan θ随时间t变化的图象如图
所示,(g取10 m/s2)则(
).
A.第1 s物体下落的高度为5 m
B.第1 s物体下落的高度为10 m
C.物体的初速度为5 m/s
第02讲 平抛运动

第2讲平抛运动【教学目标】1.知道平抛运动的定义以及条件,知道其运动轨迹是抛物线;2.理解平抛运动是加速度为g的匀变速曲线运动;3.熟练掌握平抛运动的规律,学会用平抛运动的规律解决实际问题的方法;4.理解平抛运动可以看作水平方向的匀速直线运动与竖直方向的自由落体运动的合运动,并且这两个运动互不影响.【重、难点】1.平抛运动的特点和规律;2.对平抛运动的两个分运动的理解和运用.如图所示,沿水平方向扔出一块橡皮,或者将一个小球从水平桌面以一定的初速度推离边沿,可以看到它们做曲线运动的轨迹是相似的.本节课我们来学习这一类常见曲线运动的规律.知识点睛一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,仅在重力作用下物体所做的运动称为平抛运动.2.由于平抛运动只受重力作用,加速度为g,故平抛运动是匀变速曲线运动.二、平抛运动的研究方法由于平抛运动是匀变速曲线运动,速度、位移的方向时刻发生变化,无法直接应用运动学公式,因此研究平抛运动问题时采用运动分解的方法.那么平抛运动可以看成哪两个分运动的合成呢?做平抛运动的物体,在水平方向上由于不受力,将做匀速直线运动;在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动,加速度等于g.平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体运动.以上是从理论角度去分析得到的结论,我们能否通过实验来验证我们的结论呢?实验探究平抛运动的特点(1)研究平抛运动水平方向分运动的特点①使电磁铁C 和D 分别相对各自轨道出口水平线处于相同高度.把两个钢球分别吸在电磁铁C 、D 上.切断电源,使两个钢球以相同的初速度同时水平射出.②改变电磁铁C 、D 与各自轨道出口水平线的相对高度,并确保高度相等. ③多次重复以上步骤.观察实验现象,并分析平抛运动水平方向分运动的特点. (2)研究平抛运动竖直方向分运动的特点①把两个钢球分别吸在电磁铁C 、E 上,并确保电磁铁E 上的钢球与轨道A 出口处于同一高度,释放轨道A 的钢球.钢球在水平出口处碰撞开关S ,切断电磁铁E 的电源,使钢球从电磁铁E 处释放. ②改变电磁铁E 的位置,让其从N 向M 移动.③多次重复以上步骤.观察实验现象,并分析平抛运动竖直方向分运动的特点.(3)结论:平抛运动在水平方向的分运动是匀速直线运动,在竖直方向的分运动是自由落体运动. 三、平抛运动的规律如图所示,以抛出点O 为坐标原点,水平方向为x 轴(正方向与初速度v 0方向相同),以竖直方向为y 轴(正方向向下),经时间t 做平抛运动的质点到达P 位置,速度为v .1.平抛运动的位置坐标与位移(1)位置坐标⎩⎪⎨⎪⎧x =v 0t y =12gt 2 (2)位移大小s =x 2+y 2=v 20t 2+14g 2t 4(3)位移方向tan α=y x =gt2v 0,其中α为位移与x 轴的夹角2.平抛运动的速度(1)水平分速度v x =v 0 (2)竖直分速度v y =gt (3)合速度大小v =v 20+v 2y =v 20+g 2t 2(4)合速度方向tan θ=v y v x =gtv 0,其中θ为合速度与水平方向的夹角3.平抛运动的轨迹由x =v 0t 与y =12gt 2可得y =g2v 20x 2.因此,平抛运动的轨迹是一条抛物线.考点一 对平抛运动的理解1.物体做平抛运动的条件物体的初速度v 0沿水平方向,只受重力作用,两个条件缺一不可. 2.平抛运动的性质:加速度为g 的匀变速曲线运动. 3.平抛运动的三个特点(1)理想化特点:平抛运动是一种理想化的模型,即把物体看成质点,抛出后只考虑重力作用,忽略空气阻力.(2)匀变速特点:平抛运动的加速度恒定,即始终等于重力加速度.(3)速度变化特点:任意两个相等的时间间隔内速度的变化相同,Δv =g Δt ,方向竖直向下,如图所示.例1.(多选)在空气阻力可忽略的情况下,下列物体的运动可视为平抛运动的是( ) A .沿水平方向扣出的排球 B .沿斜向上方投出的篮球 C .沿水平方向抛出的小石子 D .沿竖直方向向上抛出的橡皮 例2.(多选)关于平抛运动,下列说法中正确的是( ) A .平抛运动是一种非匀变速曲线运动 B .平抛运动是一种匀变速曲线运动 C .平抛运动的速度,加速度都在变化D .平抛运动中某时刻的速度方向为轨迹切线方向例3.从高空水平方向匀速飞行的飞机上,每隔1分钟投一包货物,空气阻力忽略不计,则空中下落的许多包货物和飞机的连线是( ) A .倾斜直线 B .竖直直线 C .平滑曲线 D .抛物线典例精析考点二 平抛运动中运动参量的决定因素 物体从离地高为h 处以初速度v 0水平抛出,则 1.由h =12gt 2,得落地时间t =2hg,故平抛运动的时间仅由下落高度h 决定,跟其他因素无关; 2.落地时的水平位移x= v 0t = v 02hg,故水平位移由初速度v 0和下落高度h 共同决定; 3.v y =gt =2gh ,落地时的速度v =v 20+v 2y =v 20+2gh ,故落地时的速度由初速度v 0和下落高度h共同决定.例4.(多选)如图所示,滑板运动员以速度v 0从离地高度为h 的平台末端水平飞出,落在水平地面上.忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是( )A .v 0越大,运动员在空中运动时间越长B .v 0越大,运动员落地瞬间速度越大C .运动员落地瞬间速度与高度h 有关D .运动员落地位置与v 0大小无关变式1、做平抛运动的物体,在水平方向通过的最大距离取决于( ) A .物体的高度和受到的重力 B .物体受到的重力和初速度 C .物体受到的重力、高度和初速度 D .物体的高度和初速度 考点三 平抛运动的规律应用例5.一架老式飞机在高出地面h =2km 的高度,以v 0=3.6×102km/h 的速度水平飞行,为了使飞机上投下的炸弹落在指定的目标上,应该在与轰炸目标的水平距离为多远的地方投弹?g 取10m/s 2,不计空气阻力.变式2、如图所示,飞机离地面高度为H=500m,水平匀速飞行,速度为v1=100m/s,追击一辆速度为v2=20m/s同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(飞机和汽车均视为质点,不计空气阻力,重力加速度g=10m/s2)变式3、如图所示,在距地面高为H=45 m处,有一小球A以初速度v0=10 m/s水平抛出.与此同时,在A的正下方有一物块B也以相同的初速度v0同方向滑出,B与地面间的动摩擦因数μ=0.5,A、B均可看成质点,空气阻力不计.求:(1)A球从抛出到落地的时间;(2)A球从抛出到落地这段时间内的水平位移;(3)A球落地时,A、B之间的距离.例6.一小球水平抛出时的速度大小为10m/s,落地时的速度大小为20m/s,g取10m/s2.求:(1)在空中的飞行时间t;(2)小球抛出时的高度h;(3)水平位移x.变式4、(多选)以v0的速度水平抛出一个物体,当其竖直分位移与水平分位移相等时,则()A.运动的时间为gv0B.竖直分速度等于水平分速度C.瞬时速度为5v0D.运动的位移是gv2222变式5、(多选)在距离水平地面高为h 处,将一物体以初速度v 0水平抛出(不计空气阻力),落地时速度为v 1,竖直分速度为v y ,落地点与抛出点的水平距离为s ,则能用来计算该物体在空中运动时间的式子有( )A .v 21-v 2gB .2h g C .2hv y D .sv 1例7.如图所示,斜面上a 、b 、c 三点等距,小球从a 点正上方O 点抛出,做初速度为v 0的平抛运动,恰好落在b 点.若小球初速度变为v ,其落点位于c ,则()A .v 0<v <2v 0B .v =2v 0C .2v 0<v <3v 0D .v >3v 0例8.在水平地面上方某一高度处沿水平方向抛出一个小物体,抛出t 1=1s 后物体的速度方向与水平方向的夹角为45°,落地时物体的速度方向与水平方向的夹角为60°,重力加速度g 取10 m/s 2.求: (1)物体平抛时的初速度v 0; (2)抛出点距离地面的竖直高度h ; (3)物体从抛出点到落地点的水平位移x .变式6、如图所示,由倾角为θ的斜面顶端A 处水平抛出一钢球,落到斜面底端B 处,斜面长为L ,重力加速度为g .求抛出时的初速度.研究平抛运动的一般思路1.把平抛运动分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动;2.分别运用两个分运动的运动规律去求分速度、分位移等,再合成得到平抛运动的速度、位移等.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,使问题的解决过程得到简化.考点四 两类与斜面结合的平抛运动 1.模型构建(1)物体从斜面上某一点水平抛出以后又重新落在斜面上,此时平抛运动物体的合位移方向与水平方向的夹角等于斜面的倾角;(2)做平抛运动的物体垂直打在斜面上,此时物体的合速度与竖直方向的夹角等于斜面的倾角.2.求解思路例9.如图所示,斜面倾角为θ=30°,小球从斜面上的P 点以初速度v 0水平抛出,恰好落到斜面上的Q 点.重力加速度为g .求:(1)小球从P 到Q 运动的时间;(2)PQ 的长度.例10.如图所示,以10m/s 的水平速度抛出的物体,飞行一段时间后垂直撞在倾角为θ=30°的斜面上,空气阻力不计,g 取10m/s 2,物体飞行的时间和物体撞在斜面上的速度的大小分别为( )A .3s ,20 m/sB .3s ,15 m/sC .3s ,15 m/sD .3s ,20 m/s变式7、一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为( )A .tan θB .2tan θC .1tan θD .12tan θ考点五 多个物体的平抛问题例11.如图所示,在同一竖直面内,小球a 、b 从高度不同的两点,分别以初速度v a 和v b 沿水平方向抛出,经过时间t a 和t b 后落到与两抛出点水平距离相等的P 点.若不计空气阻力,下列关系式正确的是( )A .t a >t b ,v a <v bB .t a >t b ,v a >v bC .t a <t b ,v a <v bD .t a <t b ,v a >v b 变式8、(多选)如图所示,在同一竖直平面内,距地面不同高度的地方,以不同的水平速度同时抛出两个小球.则两球( )A .一定不能在空中相遇B .抛出到落地的水平距离有可能相等C .落地时间可能相等D .抛出到落地的水平距离一定不相等考点六 平抛运动的两个推论a1.推论一:某时刻速度、位移与初速度方向的夹角α、θ的关系为tan α=2tan θ2.推论二:平抛运动的物体在任意时刻瞬时速度的反向延长线一定通过此时水平位移的中点 例12.如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上,物体与斜面接触时速度与水平方向的夹角φ满足( )A .tan φ=sin θB .tan φ=cos θC .tan φ=tan θD .tan φ=2tan θ变式9、如图所示,从倾角为θ的足够长的斜面上的A 点,先后将同一小球以不同的初速度水平向右抛出.第一次初速度为v 1,球落到斜面上的瞬时速度方向与斜面夹角为α1,第二次初速度为v 2,球落到斜面上的瞬时速度方向与斜面夹角为α2,则( )A .当v 1>v 2时,α1>α2B .当v 1>v 2时,α1<α2C .α1、α2的关系与斜面倾角θ有关D .无论v 1、v 2关系如何,均有α1=α2变式10、在一斜面顶端,将甲、乙两个小球分别以v 和v2的速度沿同一方向水平抛出,两球都落在该斜面上.甲球落至斜面时的速率是乙球落至斜面时速率的( ) A .2倍 B .4倍 C .6倍 D .8倍 考点七 平抛运动中的临界极值问题 1.特点(1)若题目中有“刚好”“恰好”“正好”等字眼,表明题述过程中存在临界点;(2)若题目中有“最大”“最小”“至多”“至少”“取值范围”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点. 2.求解思路(1)画出临界轨迹,找出临界状态对应的临界条件; (2)分解速度或位移; (3)列方程求解结果.例13.如图所示,水平屋顶高H=5m,围墙高h=3.2 m,围墙到房子的水平距离L=3m,围墙外马路宽x=10m,为使小球从屋顶水平飞出落在围墙外的马路上,求小球离开屋顶时的速度v的大小范围.(g取10 m/s2)变式11、一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m.一小球以水平速度v飞出,g取10 m/s2,欲打在第四级台阶上,则v的取值范围是()A. 6 m/s <v≤2 2 m/s B.2 2 m/s <v≤3.5 m/sC. 2 m/s<v< 6 m/s D.2 2 m/s<v< 6 m/s【能力展示】【小试牛刀】1.做平抛运动的物体,每秒的速度增量总是()A.大小相等,方向相同B.大小不等,方向不同C.大小相等,方向不同D.大小不等,方向相同2.在空中将一个小球水平抛出,不计空气阻力作用,则下列说法正确的是()A.不论抛出速度多大,抛出位置越高,飞得一定越远B.不论抛出速度多大,抛出位置越高,其飞行时间一定越长C.不论抛出位置多高,抛出速度越大的物体,其飞行时间一定越长D.不论抛出位置多高,抛出速度越大的物体,其水平位移一定越大3.从同一点O 抛出三个物体A 、B 、C ,做平抛运动的轨迹如图所示,则三个物体做平抛运动对应的初速度v A 、v B 、v C 的关系和三个物体做平抛运动对应的时间t A 、t B 、t C 的关系分别是( )A .v A >vB >vC t A >t B >t C B .v A =v B =v C t A =t B =t CC .v A <v B <v C t A >t B >t CD .v A >v B >v C t A <t B <t C4.(多选)在高度为h 的同一位置上向水平方向同时抛出两个小球甲和乙,若抛出时甲球的初速度大于乙球的初速度,则下列说法正确的是( )A .甲球落地时间小于乙球落地时间B .在空中飞行的任意时刻,甲球的速度总大于乙球的速度C .在飞行过程中的任一段时间内,甲球的水平位移总是大于乙球的水平位移D .若两球在飞行中遇到一堵竖直的墙,甲球击中墙的高度总是大于乙球击中墙的高度5.(多选)如图所示,在网球的网前截击练习中,若练习者在球网正上方距地面H 处,将球以初速度v 沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L ,重力加速度取g ,将球的运动视作平抛运动,下列表述正确的是( )A .球的初速度v 等于L g 2HB .球从击出至落地所用时间为2H g C .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关6.一个物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v ,那么它的运动时间是( )A .v -v 0gB .v +v 0gC .v 2-v 20gD .v 2+v 20gA OBC7.物体做平抛运动时,它的速度方向和水平方向间的夹角θ的正切tan θ随时间t 变化的图象是图中的( )8.如图所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd .从a 点正上方的O 点以速度v 水平抛出一个小球,它落在斜面上b 点.若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( )A .c 点B .b 与c 之间某一点C .d 点D .c 与d 之间某一点9.战斗机在某一高度匀速飞行,发现目标后在离目标水平距离为s 处投弹,可以准确命中目标,现战斗机飞行高度减半,速度大小减为原来的23,要仍能命中目标,则战斗机投弹时到目标的水平距离应为(不考虑空气阻力)( )A .13sB .23sC .23sD .223s 10.平抛物体的运动规律可以概括为两点:(1)水平方向做匀速运动;(2)竖直方向做自由落体运动.为了研究平抛物体的运动,可做下面的实验:如图所示,用小锤打击弹性金属片,A 球就水平飞出,同时B 球被松开,做自由落体运动,两球同时落到地面,这个实验 ( )A .只能说明上述规律中的第(1)条B .只能说明上述规律中的第(2)条C .不能说明上述规律中的任何一条D .能同时说明上述两条规律tA B tC tD t11.如图所示,以v0=10 m/s 的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角θ为45°的斜面上(g取10 m/s2),可知物体完成这段飞行的时间是()3s B. 3 s C.1 s D.2 s 12.(多选)刀削面是同学们喜欢的面食之一,因其风味独特,驰名中外.刀削面全凭刀削,因此得名.如图所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便飞向锅里,若面团到锅的上沿的竖直距离为0.8 m,最近的水平距离为0.5 m,锅的半径为0.5 m.要想使削出的面片落入锅中,则面片的水平速度可以是下列选项中的(g=10 m/s2)()A.1 m/s B.2 m/s C.3 m/s D.4 m/s 【大显身手】13.(多选)甲、乙、丙三个小球分别位于如图所示的竖直平面内,甲、乙在同一条竖直线上,甲、丙在同一条水平线上,水平面上的P点在丙的正下方,在同一时刻甲、乙、丙开始运动,甲以初速度v0做平抛运动,乙以水平速度v0沿光滑水平面向右做匀速直线运动,丙做自由落体运动,则()A.若甲、乙、丙三球同时相遇,则一定发生在P点B.若甲、丙两球在空中相遇,此时乙球一定在P点C.若只有甲、乙两球在水平面上相遇,此时丙球还未着地D.无论初速度v0大小如何,甲、乙、丙三球一定会同时在P点相遇14.(多选)枪管AB对准小球C,A、B、C在同一水平面上,如图所示,枪管和小球距地面的高度为45m.已知BC=100m,当子弹射出枪口时,C球开始自由下落,若子弹射出枪口时的速度v0=50 m/s,子弹恰好能在C下落20m时击中它.现其他条件不变,只改变子弹射出枪口时的速度v0,不计空气阻力,g取10 m/s2.则()A.v0=60 m/s时,子弹能击中小球B.v0=40 m/s时,子弹能击中小球C.v0=30 m/s时,子弹能击中小球D.以上的三个v0值,子弹可能都不能击中小球15.如图所示,一架在2 000 m高空以200 m/s的速度水平匀速飞行的轰炸机,要用两枚炸弹分别炸山脚和山顶的目标点A、B.已知山高720 m,山脚与山顶的水平距离为1 000 m,若不计空气阻力,g取10 m/s2,则投弹的时间间隔应为()A.4 s B.5 s C.9 s D.16 s 16.如图所示,相对的两个斜面,倾角分别为37°和53°,在顶点把两个小球A、B以同样大小的初速度分别向左、向右水平抛出,两个小球最终都落在斜面上.若不计空气阻力,sin 37°=0.6,cos 37°=0.8,sin 53°=0.8,cos 53°=0.6,则该过程中A、B两个小球运动时间之比为()A.1∶1 B.4∶3 C.16∶9 D.9∶16 17.如图所示,在距地面2l高空A处以水平初速度v0=gl投掷飞镖,在与A点水平距离为l的水平地面上的B点有一个气球,选择适当时机让气球以速度v0=gl匀速上升,在升空过程中被飞镖击中.飞镖在飞行过程中受到的空气阻力不计,在计算过程中可将飞镖和气球视为质点,已知重力加速度为g.试求:(1)飞镖是以多大的速度击中气球的?(2)掷飞镖和放气球两个动作之间的时间间隔Δt应为多少?18.如图所示,女排比赛时,排球场总长为18 m,设球网高为2 m,运动员站在网前3 m处正对球网跳起将球水平击出.若击球的高度为2.5 m,为使球既不触网又不越界,求球的速度范围.(不计空气阻力,g取10 m/s2)第2讲 平抛运动答案例1.AC 例2.BD 例3.B 例4.BC 变式1、D例5.2000m 变式2、800m 变式3、(1)3 s (2)30 m (3)20 m 例6.(1) 3 s (2)15m (3)10 3 m 变式4、CD 变式5、ABC例7.A 例8.(1)10 m/s 2)15 m 3)10 3 m 变式6、cos θgL 2sin θ例9.(1)gv 3320(2)g v 3420 例10.A 变式7、D 例11.A 变式8、AB 例12.D 变式9、D 变式10、A 例13.5 m/s≤v ≤13 m/s 变式11、A【能力展示】1.A 2.B 3.C 4.BCD 5.AB 6.C 7.C 8.B 9.C 10.B11.C 12.BC 13.AB 14.AB 15.C 16.D17.答案:(1)2gl (2)12l g解析:(1)飞镖A 被投掷后做平抛运动.从掷出飞镖到击中气球,经过时间t 1=l v 0=l g 此时飞镖在竖直方向上的分速度v y =gt 1=gl故此时飞镖的速度大小v =v 20+v 2y =2gl (2)飞镖从掷出到击中气球过程中下降的高度h 1=12gt 21=l 2气球从被释放到被击中过程中上升的高度h 2=2l -h 1=3l 2气球的上升时间t 2=h 2v 0=3l 2v 0=32l g可见,t 2>t 1,所以应先释放气球.释放气球与掷飞镖之间的时间间隔Δt =t 2-t 1=12l g18.310 m/s<v 0≤122m/s。
人教版A高一物理第五章第3讲 平抛运动及实验

第3讲平抛运动(二)一、知识梳理1.基本规律(1)速度关系(2)位移关系2.平抛运动的推论:⑴.平抛运动的物体在任一时刻任一位置处,速度方向与水平方向的夹角θ,与位移与水平方向的夹角φ有关系:tan q=2tan j⑵.做平抛运动的物体任意时刻的瞬时速度的反向延长线一定通过水平抛出点到该时刻物体水平位移的中点。
3.类平抛运动:物体所受合外力为恒力,初速度与合外力方向垂直。
三、题型与方法:【平抛规律应用】1.一物体做平抛运动,在落地前1s内,它的速度与水平方向的夹角由30°变为45°,求物体抛出时的初速度和下落的高度。
(取g=10m/s2)2.跳台滑雪是一种极为壮观的运动,它是在依山势建造的跳台上进行的运动。
运动员穿着专用滑雪板,不带雪杖在助滑路上获得较大速度后从跳台水平飞出,在空中飞行一段距离后着陆。
如图所示,设某运动员从倾角为θ=37°的坡顶A 点以速度v=20m/s沿水平方向飞出,到山坡上的B点着陆,山坡可以看成一个斜面。
(g=10m/s2,sin37º=0.6,cos37º=0.8)求:⑴.运动员在空中飞行的时间t;⑵.AB间的距离s。
3.如图所示,在距地面高为H=45m处,有一小球A以初速度v0=10m/s水平抛出,与此同时,在A的正下方有一物块B也以相同的初速度v0同方向滑出,B与地面间的动摩擦因数为μ=0.5,A、B均可看做质点,空气阻力不计,重力加速度g取10m/s2求:(1)A球从抛出到落地的时间和这段时间内的水平位移;(2)A球落地时,A、B之间的距离.【类平抛运动】4.如图所示的光滑斜面长为l,宽为b,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P水平射入,恰好从底端Q点离开斜面,试求:(1)物块由P运动到Q所用的时间t;(2)物块由P点水平入射时的初速度v0;(3)物块离开Q点时速度的大小v。
飞离跑道后逐渐上升,若飞机在此过程中水平5.质量为m的飞机以水平初速度V速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为l时,它的上升高度为h,如图所示,求:(1)飞机受到的升力大小;(2)上升至h高度时飞机的速度。
微专题:平抛运动规律的应用

专题平抛运动规律的应用[学习目标] 1.能熟练运用平抛运动规律解决问题.2.会分析平抛运动与其他运动相结合的问题.3.会分析类平抛运动.一、平抛运动的两个重要的推论及应用平抛运动的两个推论(1)某时刻速度、位移与初速度方向的夹角θ、α的关系为tan θ=2tan α.(2)做平抛运动的物体在任意时刻瞬时速度的反向延长线一定通过此时水平位移的中点.例1如图1所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上,物体与斜面接触时速度与水平方向的夹角φ满足(空气阻力不计)()图1A.tan φ=sin θB.tan φ=cos θC.tan φ=tan θD.tan φ=2tan θ答案 D解析物体从抛出至落到斜面的过程中,位移方向与水平方向夹角为θ,落到斜面上时速度方向与水平方向夹角为φ,由平抛运动的推论知tan φ=2tan θ,选项D正确.【考点】平抛运动推论的应用【题点】平抛运动推论的应用二、与斜面有关的平抛运动与斜面有关的平抛运动,包括两种情况:(1)物体从空中抛出落在斜面上;(2)物体从斜面上抛出落在斜面上.在解答该类问题时,除要运用平抛运动的位移和速度规律外,还要充分利用斜面倾角,找出斜面倾角同位移和速度的关系,从而使问题得到顺利解决.两种情况的特点及分析方法对比如下:方法内容斜面飞行时间总结分解速度水平方向:v x=v0竖直方向:v y=gt特点:tan θ=v xv y=v0gtt=v0g tan θ分解速度,构建速度三角形分解位移水平方向:x=v0t竖直方向:y=12gt2特点:tan θ=yx=gt2v0t=2v0tan θg分解位移,构建位移三角形例2如图2所示,以9.8 m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的固定斜面上,这段飞行所用的时间为(不计空气阻力,g取9.8 m/s2)()图2A.23s B.223sC. 3 sD.2 s答案 C解析如图所示,把末速度分解成水平方向的分速度v0和竖直方向的分速度v y,则有tan 30°=v0v y,v y=gt,联立得t=v0g tan 30°=3v0g= 3 s,故C正确.【考点】平抛运动与斜面的结合问题【题点】对着斜面水平抛物问题本题中物体垂直落到斜面上,属于知道末速度方向的题目.此类题目的分析方法一般是将物体的末速度进行分解,由速度方向确定两分速度之间的关系.例3 如图3所示,AB 为固定斜面,倾角为30°,小球从A 点以初速度v 0水平抛出,恰好落到B 点.求:(空气阻力不计,重力加速度为g )图3(1)A 、B 间的距离及小球在空中飞行的时间;(2)从抛出开始,经过多长时间小球与斜面间的距离最大?最大距离为多大? 答案 (1)4v 023g 23v 03g (2)3v 03g 3v 0212g解析 (1)设飞行时间为t ,则水平方向位移l AB cos 30°=v 0t , 竖直方向位移l AB sin 30°=12gt 2,解得t =2v 0g tan 30°=23v 03g ,l AB =4v 023g .(2)方法一(常规分解)如图所示,小球的速度方向平行于斜面时,小球离斜面的距离最大,设经过的时间为t ′,则此时有tan 30°=v y v 0=gt ′v 0故运动时间为t ′=v 0tan 30°g =3v 03g此时小球的水平位移为x ′=v 0t ′=3v 023g又此时小球速度方向的反向延长线交横轴于x ′2处,故小球离斜面的最大距离为H =12x ′sin 30°=3v 0212g.方法二(结合斜抛运动分解)如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面方向上,小球做的是以v 0y 为初速度、g y 为加速度的“竖直上抛”运动. 小球到达离斜面最远处时,速度v y =0, 由v y =v 0y -g y t ′可得t ′=v 0y g y =v 0sin 30°g cos 30°=v 0g tan 30°=3v 03g小球离斜面的最大距离y =v 0y 22g y =v 02sin 2 30°2g cos 30°=3v 0212g .【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题1.物体从斜面抛出后又落到斜面上,属已知位移方向的题目,此类题的解题方法一般是把位移分解,由位移方向确定两分位移的关系.2.从斜面上开始又落于斜面上的过程中,速度方向与斜面平行时,物体到斜面的距离最大,此时已知速度方向,需将速度进行分解.针对训练 两相同高度的固定斜面倾角分别为30°、60°,两小球分别由斜面顶端以相同水平速率v 抛出,如图4所示,不计空气阻力,假设两球都能落在斜面上,则分别向左、右两侧抛出的小球下落高度之比为( )图4A.1∶2B.3∶1C.1∶9D.9∶1答案 C解析 根据平抛运动的规律以及落在斜面上的特点可知,x =v 0t ,y =12gt 2,tan θ=yx ,分别将30°、60°代入可得左、右两球平抛所经历的时间之比为1∶3,两球下落高度之比为1∶9,选项C 正确.【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题 三、类平抛运动类平抛运动是指物体做曲线运动,其运动可以分解为互相垂直的两个方向的分运动:一个方向做匀速直线运动,另一个方向是在恒定合外力作用下的初速度为零的匀加速直线运动. (1)类平抛运动的受力特点物体所受的合外力为恒力,且与初速度的方向垂直. (2)类平抛运动的运动规律 初速度v 0方向上:v x =v 0,x =v 0t . 合外力方向上:a =F 合m ,v y =at ,y =12at 2.例4 如图5所示的光滑固定斜面长为l 、宽为b 、倾角为θ,一物块(可看成质点)沿斜面左上方顶点P 水平射入,恰好从底端Q 点离开斜面,试求:(重力加速度为g ,不计空气阻力)图5(1)物块由P 运动到Q 所用的时间t ; (2)物块由P 点水平射入时的初速度v 0; (3)物块离开Q 点时速度的大小v . 答案 (1)2lg sin θ(2)b g sin θ2l(3)(b 2+4l 2)g sin θ2l解析 (1)沿斜面向下的方向有mg sin θ=ma ,l =12at 2联立解得t =2lg sin θ. (2)沿水平方向有b =v 0t v 0=b t=bg sin θ2l. (3)物块离开Q 点时的速度大小 v =v 02+(at )2=(b 2+4l 2)g sin θ2l.【考点】类平抛物体的运动 【题点】类平抛物体的运动1.(平抛运动规律的推论)如图6所示,从倾角为θ的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜面上,当抛出的速度为v 1时,小球到达斜面时速度方向与斜面的夹角为α1;当抛出速度为v 2时,小球到达斜面时速度方向与斜面的夹角为α2,不计空气阻力,则( )图6A.当v 1>v 2时,α1>α2B.当v 1>v 2时,α1<α2C.无论v 1、v 2关系如何,均有α1=α2D.α1、α2的关系与斜面倾角θ有关 答案 C解析 小球从斜面某点水平抛出后落到斜面上,小球的位移与水平方向的夹角等于斜面倾角θ,即tan θ=y x =12gt2v 0t =gt2v 0,小球落到斜面上时速度方向与水平方向的夹角的正切值tan β=v y v x =gtv 0,故可得tan β=2tan θ,只要小球落到斜面上,位移方向与水平方向夹角就总是θ,则小球的速度方向与水平方向的夹角也总是β,故速度方向与斜面的夹角就总是相等,与v 1、v 2的关系无关,C 选项正确.【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题2.(类平抛运动)A 、B 两个质点以相同的水平速度v 0抛出,A 在竖直平面内运动,落地点为P 1.B 沿光滑斜面运动,落地点为P 2,不计阻力,如图7所示,下列关于P 1、P 2在x 轴上远近关系的判断正确的是( )图7A.P 1较远B.P 2较远C.P 1、P 2一样远D.A 、B 两项都有可能答案 B解析 A 质点水平抛出后,只受重力,做平抛运动,在竖直方向有h =12gt 12.B 质点水平抛出后,受重力和支持力,在斜面平面内所受合力为mg sin θ,大小恒定且与初速度方向垂直,所以B 质点做类平抛运动.在沿斜面向下方向上h sin θ=12g sin θ·t 22,由此得t 2>t 1,由于二者在水平方向(x 轴方向)上都做速度为v 0的匀速运动,由x =v 0t 知x 2>x 1. 【考点】类平抛物体的运动【题点】类平抛物体的运动3.(与斜面有关的平抛运动)如图8所示,运动员踏着专用滑雪板,不带雪杖在助滑路上(未画出)获得一速度后水平飞出,在空中飞行一段距离后着陆.设一位运动员由斜坡顶的A 点沿水平方向飞出的速度v 0=20 m/s ,落点在斜坡底的B 点,斜坡倾角θ=37°,斜坡可以看成一斜面,不计空气阻力.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:图8(1)运动员在空中飞行的时间t ; (2)A 、B 间的距离s . 答案 (1)3 s (2)75 m解析 (1)运动员由A 点到B 点做平抛运动,则水平方向的位移x =v 0t 竖直方向的位移y =12gt 2又yx =tan θ,联立得t =2v 0tan θg =3 s (2)由题意知sin θ=y s =12gt 2s得A 、B 间的距离s =gt 22sin θ=75 m.【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题4.(与斜面有关的平抛运动)如图9所示,小球以15 m/s 的水平初速度向一倾角为37°的斜面抛出,飞行一段时间后,恰好垂直撞在斜面上.不计空气阻力,在这一过程中,求:(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)图9(1)小球在空中的飞行时间; (2)抛出点距撞击点的竖直高度. 答案 (1)2 s (2)20 m解析 (1)将小球垂直撞在斜面上时的速度分解,如图所示.由图可知θ=37°,tan θ=v 0gt ,则t =v 0g tan θ=2 s.(2)h =12gt 2=12×10×22 m =20 m.【考点】平抛运动与斜面的结合问题 【题点】对着斜面水平抛物问题一、选择题考点一 平抛运动推论的应用1.如图1所示,从某高度水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g ,下列说法正确的是( )图1A.小球水平抛出时的初速度大小为gt tan θB.小球在t 时间内的位移方向与水平方向的夹角为θ2C.若小球初速度增大,则平抛运动的时间变长D.若小球初速度增大,则θ减小 答案 D解析 速度、位移分解如图所示,v y =gt ,v 0=v y tan θ=gt tan θ,故A 错.设位移方向与水平方向夹角为α,则tan θ=2tan α,α≠θ2,故B 错.平抛运动的落地时间由下落高度决定,与水平初速度无关,故C 错.由tan θ=v yv 0知,v 0增大则θ减小,D 正确.【考点】平抛运动推论的应用 【题点】平抛运动推论的应用2.某军区某旅展开的实兵实弹演练中,某火箭炮在山坡上发射炮弹,所有炮弹均落在山坡上,炮弹轨迹简化为平抛运动,如图2所示,则下列选项说法正确的是()图2A.若将炮弹初速度减为v 02,炮弹落在斜面上速度方向与斜面夹角不变B.若将炮弹初速度减为v 02,炮弹落在斜面上速度方向与斜面夹角变小C.若将炮弹初速度减为v 02,炮弹落在斜面上的速度方向与斜面夹角变大D.若将炮弹初速度减为v 02,炮弹位移变为原来的12答案 A解析 因为炮弹落在斜面上的位移方向不变,所以落在斜面上的速度方向不变,B 、C 项错误,A 项正确.由tan θ=12gt 2v 0t 得:t =2v 0tan θg ,而h =12gt 2,故h ∝v 02,若将炮弹初速度减为v 02,则炮弹下落高度变为原来的14,位移也变为原来的14,D 项错误.【考点】平抛运动推论的应用 【题点】平抛运动推论的应用 考点二 与斜面有关的平抛运动3.如图3所示,在斜面顶端先后水平抛出同一小球,第一次小球落到斜面中点,第二次小球落到斜面底端,从抛出到落至斜面上(忽略空气阻力)( )图3A.两次小球运动时间之比t 1∶t 2=1∶ 2B.两次小球运动时间之比t 1∶t 2=1∶2C.两次小球抛出时初速度之比v 01∶v 02=1∶2D.两次小球抛出时初速度之比v 01∶v 02=1∶4 答案 A解析 平抛运动竖直方向为自由落体运动,h =12gt 2,由题意可知两次平抛的竖直位移之比为1∶2,所以运动时间之比为t 1∶t 2=1∶2,A 对,B 错;水平方向为匀速直线运动,由题意知水平位移之比为1∶2,即v 01t 1∶v 02t 2=1∶2,所以两次抛出时的初速度之比v 01∶v 02=1∶2,选项C 、D 错.【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题4.如图4所示,从斜面上的A 点以速度v 0水平抛出一个物体,飞行一段时间后,落到斜面上的B 点,已知AB =75 m ,α=37°,不计空气阻力,g =10 m/s 2,下列说法正确的是( )图4A.物体的位移大小为60 mB.物体飞行的时间为6 sC.物体的初速度v 0大小为20 m/sD.物体在B 点的速度大小为30 m/s 答案 C解析 物体的位移等于初、末位置的距离,位移大小l =AB =75 m ,A 错误.平抛运动的竖直位移h =AB sin α=75×0.6 m =45 m ,根据h =12gt 2得,物体飞行的时间t =2h g=2×4510s =3 s ,B 错误.物体的初速度v 0=AB cos αt =75×0.83 m/s =20 m/s ,C 正确.物体落到B 点的竖直分速度v By =gt =10×3 m/s =30 m/s ,根据平行四边形定则知,物体落在B 点的速度v B =v 02+v By 2=400+900 m/s =1013 m/s ,D 错误. 【考点】平抛运动与斜面的结合问题 【题点】从斜面顶端水平抛物问题5.在一斜面顶端,将甲、乙两个小球分别以v 和v2的速度沿同一方向水平抛出,两球都落在该斜面上.甲球落至斜面时的速率是乙球落至斜面时速率的( )A.2倍B.4倍C.6倍D.8倍答案 A解析 如图所示,可知:x =v t , x ·tan θ=12gt 2,则x =2tan θg ·v 2,即x ∝v 2,v y =gt =2tan θ·v甲、乙两球抛出速度为v 和v2,则相应水平位移之比为4∶1,由相似三角形知,下落高度之比也为4∶1,由自由落体运动规律得,落在斜面上竖直方向速度之比为2∶1,则可得落至斜面时速率之比为2∶1.6.斜面上有P 、R 、S 、T 四个点,如图5所示,PR =RS =ST ,从P 点正上方的Q 点以速度v 水平抛出一个物体,物体落于R 点,若从Q 点以速度2v 水平抛出一个物体,不计空气阻力,则物体落在斜面上的( )图5A.R 与S 间的某一点B.S 点C.S 与T 间的某一点D.T 点 答案 A解析 平抛运动的时间由下落的高度决定,下落的高度越高,运动时间越长.如果没有斜面,增大速度后物体下落至与R 等高时恰位于S 点的正下方,但实际当中斜面阻碍了物体的下落,物体会落在R 与S 点之间斜面上的某个位置,A 项正确. 【考点】平抛运动与斜面的结合问题 【题点】对着斜面水平抛物问题7.如图6所示,B 点位于斜面底端M 点的正上方,并与斜面顶端A 点等高,且高度为h ,在A 、B 两点分别以速度v a 和v b 沿水平方向抛出两个小球a 、b (可视为质点),若a 球落到M 点的同时,b 球恰好落到斜面的中点N ,不计空气阻力,重力加速度为g ,则( )图6A.v a =v bB.v a =2v bC.a 、b 两球同时抛出D.a 球比b 球提前抛出的时间为(2-1)2hg答案 B解析 据题意,由于a 球落到斜面底端M 点时b 球落到斜面中点,则可知a 球的水平位移和竖直位移都是b 球的两倍,即x a =2x b ,h a =2h b ,由h =12gt 2和x =v t 得v =xg 2h ,故v a v b =21,v a =2v b ,故选项A 错误,选项B 正确;由于抛出时两球所在的高度相同,下落高度不同,如果同时抛出,b 球应该先到达斜面中点,故选项C 错误;a 球的运动时间为:t a =2h g,b 球的运动时间为:t b =hg,a 球先运动,Δt =t a -t b =(2-1)hg,故选项D 错误. 【考点】平抛运动与斜面的结合问题 【题点】对着斜面水平抛物问题 考点三 平抛运动规律的综合应用8.如图7所示,B 为竖直圆轨道的左端点,它和圆心O 的连线与竖直方向的夹角为α.一小球在圆轨道左侧的A 点以速度v 0平抛,恰好沿B 点的切线方向进入圆轨道.已知重力加速度为g ,则A 、B 之间的水平距离为( )图7A.v 02tan αgB.2v 02tan αgC.v 02g tan αD.2v 02g tan α答案 A解析 如图所示,对在B 点时的速度进行分解,小球运动的时间t =v y g =v 0tan αg ,则A 、B 间的水平距离x =v 0t =v 02tan αg,故A 正确,B 、C 、D 错误.【考点】平抛运动规律的综合应用 【题点】平抛运动和圆的结合9.如图8所示,水平地面上有一个坑,其竖直截面为半圆,O 为圆心,AB 为沿水平方向的直径.若在A 点以初速度v 1沿AB 方向平抛一小球,小球将击中坑壁上的最低点D 点;而在C 点以初速度v 2沿BA 方向平抛的小球也能击中D 点.已知∠COD =60°,则两小球初速度大小之比为(小球视为质点)( )图8A.1∶2B.1∶3C.3∶2D.6∶3答案 D解析 小球从A 点平抛击中D 点:R =v 1t 1,R =12gt 12;小球从C 点平抛击中D 点:R sin 60°=v 2t 2,R (1-cos 60°)=12gt 22,联立解得v 1v 2=63,D 正确.【考点】平抛运动规律的综合应用 【题点】平抛运动和圆的结合10.(多选)如图9所示,从半径为R =1 m 的半圆AB 上的A 点水平抛出一个可视为质点的小球,经t =0.4 s 小球落到半圆上,已知当地的重力加速度g =10 m/s 2,则小球的初速度v 0可能为( )图9A.1 m/sB.2 m/sC.3 m/sD.4 m/s答案 AD解析 由于小球经0.4 s 落到半圆上,下落的高度h =12gt 2=0.8 m ,位置可能有两处,如图所示,第一种可能:小球落在半圆左侧,v 0t =R -R 2-h 2=0.4 m ,v 0=1 m/s ,第二种可能:小球落在半圆右侧,v 0′t =R +R 2-h 2=1.6 m ,v 0′=4 m/s ,选项A 、D 正确.【考点】平抛运动推论的应用 【题点】平抛运动推论的应用 二、非选择题11.(平抛运动规律的综合应用)如图10所示,一小球从平台上水平抛出,恰好落在平台前一倾角为α=53°的固定斜面顶端并刚好沿斜面下滑,已知平台到斜面顶端的高度为h =0.8 m ,不计空气阻力,g =10 m/s 2,sin 53°=0.8,cos 53°=0.6,求:图10(1)小球水平抛出的初速度大小v 0; (2)斜面顶端与平台边缘的水平距离x . 答案 (1)3 m/s (2)1.2 m解析 小球从平台运动到斜面顶端的过程中做平抛运动,由平抛运动规律有:x =v 0t ,h =12gt 2,v y =gt由题图可知:tan α=v y v 0=gtv 0代入数据解得:v 0=3 m/s ,x =1.2 m. 【考点】平抛运动规律的综合应用 【题点】平抛运动规律的综合应用12.(与斜面有关的平抛运动)如图11所示,在倾角为37°的斜面上从A 点以6 m/s 的初速度水平抛出一个小球,小球落在B 点,求:(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力)图11(1)A 、B 两点间的距离和小球在空中飞行的时间; (2)小球刚碰到斜面时的速度方向与水平方向夹角的正切值. 答案 (1)6.75 m 0.9 s(2)32解析 (1)如图所示,设小球落到B点时速度的偏转角为α,运动时间为t .则tan 37°=h x =12gt 2v 0t =56t又因为tan 37°=34,解得t =0.9 s所以x =v 0t =5.4 m则A 、B 两点间的距离l =xcos 37°=6.75 m(2)在B 点时,tan α=v y v 0=gt v 0=32.13.(与斜面有关的平抛运动)如图12所示,一个小球从高h =10 m 处以水平速度v 0=10 m/s 抛出,撞在倾角θ=45°的斜面上的P 点,已知AC =5 m.g =10 m/s 2,不计空气阻力,求:图12(1)P 、C 之间的距离;(2)小球撞击P 点时速度的大小和方向.答案 (1)5 2 m (2)10 2 m/s 方向垂直于斜面向下解析 (1)设P 、C 之间的距离为L ,根据平抛运动规律有AC +L cos θ=v 0t ,h -L sin θ=12gt 2联立解得L =5 2 m ,t =1 s(2)小球撞击P 点时的水平速度v 0=10 m/s 竖直速度v y =gt =10 m/s所以小球撞击P 点时速度的大小v =v 02+v y 2=10 2 m/s设小球撞击P 点时的速度方向与水平方向的夹角为α,则tan α=v yv 0=1解得α=45°故小球撞击P 点时速度方向垂直于斜面向下. 【考点】平抛运动与斜面的结合问题 【题点】对着斜面水平抛物问题14.(平抛运动规律的综合应用)如图13所示,斜面体ABC 固定在地面上,小球p 从A 点静止下滑.当小球p 开始下滑时,另一小球q 从A 点正上方的D 点水平抛出,两球同时到达斜面底端的B 处.已知斜面AB 光滑,长度l =2.5 m ,斜面倾角θ=30°.不计空气阻力,g 取10 m/s 2,求:图13(1)小球p 从A 点滑到B 点的时间. (2)小球q 抛出时初速度的大小. 答案 (1)1 s (2)534m/s解析 (1)设小球p 从斜面上下滑的加速度为a ,由牛顿第二定律得:a =mg sin θm =g sin θ①设下滑所需时间为t 1,根据运动学公式得 l =12at 12② 由①②得 t 1=2lg sin θ③ 解得t 1=1 s ④(2)对小球q :水平方向位移x =l cos θ=v 0t 2⑤ 依题意得t 2=t 1⑥ 由④⑤⑥得v 0=l cos θt 1=534m/s.【考点】平抛运动和直线运动的物体相遇问题 【题点】平抛运动和直线运动的物体相遇问题。
第三章 第3节 平抛运动

第3节平抛运动一、平抛运动的认识 1.定义把物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动。
2.特点(1)受力特点:只受重力。
(2)运动特点:初速度水平,加速度为g ,方向竖直向下。
3.性质为匀变速曲线运动。
4.实验探究⎩⎪⎨⎪⎧水平方向:不受力,做匀速直线运动竖直方向:只受重力,做自由落体运动 二、平抛运动的规律 1.水平方向以初速度v 0做匀速直线运动,v x =v 0,x =v 0t 。
2.竖直方向做自由落体运动,v y =gt ,y =12gt 2。
下落时间:t =2yg ,t 只与下落高度y 有关,与其他因素无关。
1.物体以某一初速度水平抛出,不考虑空气阻力,物体只在重力作用下的运动叫平抛运动。
2.平抛运动是匀变速曲线运动,水平方向做匀速直线运动,x =v 0t ,竖直方向做自由落体运动,y =12gt 2。
3.平抛运动在空中运动时间由竖直高度决定,水平位移由竖直高度和水平初速度共同决定。
1.自主思考——判一判(1)平抛运动的速度、加速度都随时间增大。
(×)(2)平抛运动物体的速度均匀变化。
(√)(3)平抛运动不是匀变速曲线运动。
(×)(4)平抛物体的初速度越大,下落得越快。
(×)(5)平抛运动的初速度可以不沿水平方向。
(×)2.合作探究——议一议(1)体育运动中投掷的链球、铅球、铁饼、标枪等,都可以看成是抛体运动吗?都可以看成是平抛运动吗?图3-3-1提示:链球、铅球、铁饼、标枪等,若被抛出后所受空气阻力可忽略不计,可以看成是抛体运动。
它们的初速度不一定沿水平方向,所以它们不一定是平抛运动。
(2)两个小金属球同时从同一高度开始运动,不计空气阻力,A球自由落体,B球平抛运动,两球下落过程中的高度位置相同吗?为什么?提示:相同;A、B两球在竖直方向上的运动情况完全相同,从同一高度同时进行自由落体运动,因此,在下落过程中的高度位置始终相同。
(高中物理)平抛运动的一个重要的推论及其妙用

平抛运动的一个重要的推论及其妙用平抛运动是匀变速曲线运动中的常见运动,它可以看作由匀速直线运动和自由落体合成。
因此也是两个直线运动合成后为曲线运动的典型实例,其根本规律和处理方法一直是各类考试的热点。
下面介绍平抛运动中的一个重要结论及其妙用,供大家参考。
一、平抛运动的特点1.平抛运动可以分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动两个分运动的合成。
在水平方向上的速度v x =v 0,位移x =v 0t 。
在竖直方向上的速度v y =gt ,位移y =21gt 2。
所以平抛运动的合速度v t =220y υυ+,合位移s =22y x +,速度与水平方向上的夹角=arctanυυy ,位移与水平方向上的夹角=arctanxy,两个夹角的关系tan =2tan 。
其规律可以表示为如下表所示。
速度加速度位移图示水平方向 v x =v 0 a x =0 x =v 0t竖直方向v y =gt a y =gy =21gt 2平抛运动v t=220yυυ+tan=υυya =g竖直向下s=22y x +tan =xy2.平抛运动除常规的按照水平和竖直方向来分解以外,还可以根据需要向其它的方向分解出其它的不同的运动。
由平抛运动的处理思路,也使我们明确了其它匀变速曲线运动的处理方法,即把力或者速度正交分解力和垂直与力的方向上〔或速度和垂直与速度方向上〕的不同的运动3.有一些运动从初速度和受力情况上看和平抛运动类似——类平抛运动,也可以用平抛运动的处理思路来解决。
二、平抛运动的一个重要推论平抛运动的速度方向和位移方向不在一条直线上,如下列图,位移s 与水平方向的夹角小于速度与水平方向的夹角。
由几何关系: tan =xy υυ=υυyx =v 0ty =21gt 2=21v y t项目内容 svv x v yαββ xy O A x Ay A svv x v yα β β yA x Ay联立三式,解得 tan =22x yxy ==2tan这个关系说明速度方向与水平方向的夹角与位移方向与水平方向的夹角之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平抛运动的推论、应用及拓展
在高中物理教材中,对于平抛运动问题的处理一般是利用运动的合成和分解的方法,但有一些问题按此法处理显得繁琐复杂,若用平抛运动的推论来分析,则显得简单明了,
拓展推论可以快速解决一系列运动问题。
推论1:任意时刻的两个分运动的速度与合运动的速度构成一个矢量直角三角形。
例1. 从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为v 1和v 2,初速度方向相反,求经过多长时间两小球速度之间的夹角为90︒?
解析:设两小球抛出后经过时间t 它们速度之间的夹角为90︒,与竖直方向的夹角分别为α和β,对两小球分别构建速度矢量直角三角形如图1所示,依图可得
c t g gt v tg v gt αβ==12
1,()
又 αβαβ
+=︒∴=902,ctg tg () 由()()12式得:gt v v gt t g
v v 12121=∴=, 拓展:运用速度矢量直角三角形求最值。
例2. 如图2所示,河水流速v m s 12=/,一只小机动船在静水中运动的速度 v m s 23=/,现在它从A 点开始渡河,要使渡河位移最短,船头应指向何处行驶?
解析:由于v v 12>,机动船头无论朝什么方向船都不可能垂直河岸过河,那么机动船头朝向何方,船渡河位移才能最小呢?如图2所示,船航行由船随水的直线运动和船在静水中的直线运动组成,故船的航速、水流速度和船在静水中的速度构成一个矢量三角形。
显然当船的实际速度方向与以v 1的末端为圆心、以v 2大小为半径的圆相切时,此时θ角最大,位移最短。
故有:
s i n θθ==∴=︒v v 2132
60, 所以船头与河岸夹角为60︒时渡河位移最小。
例3. 在足够大的真空中,存在水平向右的匀强电场,若用绝缘细线将质量为m 的带电小球悬挂在电场中,静止时细线与竖直方向夹角θ=︒37。
现将该小球从电场中的某点竖直向上抛出,抛出时的初速度大小为v 0,如图3所示。
求小球在电场内运动过程中的最小速度为多少?
解析:小球的运动由小球在初速度方向上做匀速直线运动和在合外力方向上做初速度为零的匀加速直线运动组成,依题设情景分析可知,小球的速度是先减小后增大,其速度矢量三角形如图4所示,其中θ=︒37,由图可知,当小球的速度方向垂直加速度方向时小球速度最小。
故有sin min min θ==v v v v
035
,。
推论2:任意一段时间内两个分运动的位移与合运动的位移构成一个矢量直角三角形。
例4. 如图5所示,小球a 、b 分别以大小相等、方向相反的初速度从三角形斜面的顶点同时水平抛出,已知两斜面的倾角分别为θ1和θ2,求小球a 、b 落到斜面上所用的时间
对a 有:tg gt v t gt v a a a θ1200
1221==() 对b 有:tg gt v t gt v b b b θ2200
1222==()
对()()12两式得:
t t tg tg a b =θθ12
由结果可知:时间之比与初速度的大小无关,只与斜面的倾角有关。
例5. 宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L ,若抛出时初速度增大到两倍,则抛出点与落地点之间距离为3L ,已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G ,求该星球的质量M 。
解析:设第一次抛出小球,小球的水平位移为x ,竖直位移为h ,如图7所示,构建位
x h L 2221+=()
()()()232222x h L +=
由()()12式解得h L
=33()
令星球上重力加速度为g ',由平抛运动的规律得h g t =
1242'() 由万有引力定律与牛顿第二定律得
G Mm R
mg 25='() 由()()()345式得M LR Gt
=2332
2。
拓展:运用位移矢量三角形判断向各个方向抛出物的位置。
例6. 如图9所示,由楼上某点以同样大小的速度v 0向各个方向把若干个小球同时抛出,若不计空气阻力,试分析在运动的任何时刻,在空中运动的所有小球都位于一个球面
解析:所有在空中的小球的运动都是由小球在初速度方向上做匀速直线运动和竖直方向上做自由落体运动组成,依题意对从不同方向抛出的小球构建位移矢量三角形,如图10所示。
所以经t 秒后,各球由于自由落体都将下落h gt =12
2,但同时又在各自的v 0方向上运动了s v t =0,即它们各自实际位置在同一球面上,如图10所示,球心O 位置在抛出点A 下面12
2gt 处,球的半径R v t =0。
推论3:从抛出点开始,任意时刻速度偏向角的正切值等于位移偏向角的正切值的两倍。
平抛运动经过一段时间,其速度方向和位移方向是不相同的,如图11所示,由推论1、
推论2可得tg gt v tg gt v t
αθ==
2
2,。
所以tg tg αθ=2。
例7. 如图12所示,从倾角为θ的足够长斜面上的A 点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v 1,球落到斜面上瞬时速度方向与斜面夹角为α1,第二次初速度为v 2,球落到斜面上瞬时速度方向与斜面夹角为α2,不计空气阻力,若v v 12>,则α1______α2(填空“>”、“=”或“<”)。
解析:依题意据推论3有:
tg tg ()()αθθ121+=
tg tg ()()αθθ222+=
由()()12式得:tg tg ()()αθαθ12+=+
故:αα12=
由此题结论可得:类似例7情形,落到斜面的瞬时速度的偏向角与初速度大小无关。
例8. 如图13所示,在倾角为θ的斜面上A 点,以初速度v 0水平抛出一小球,小球落
解析:设小球落到B 点瞬时速度的偏向角为α,由推论3可知,tg tg αθ=2,故:
cos αθ
=+1
142tg ,据推论1可得:cos α=v v
0, 所以v v v tg ==+00214cos αθ。
拓展:由推论3可以得到以下结论:从抛出点开始,任意时刻速度的反向延长线与对应时刻的水平位移的交点为此水平位移的中点。
例9. 如图14所示为一物体做平抛运动的图像,此曲线上任一点P (x ,y )的速度方向的反向延长线交于x 轴上的A 点,则A 点的横坐标为( )
解析:据上述推论3的拓展结论可得:P 点的速度方向的反向延长线交于x 轴上的A 点的横坐标为0.5x ,故答案选B 项。
此结论在以后电磁学中解类平抛运动问题大有用途。