网架结构设计

合集下载

网架结构设计建议

网架结构设计建议

网架结构设计
1.网架结构类型
正放四角锥网架的节点、杆件数量最少、用钢量最省,屋面排水处理方便。

本工程网架选型合理。

2.网格尺寸:网格尺寸宜取(1/12~1/6L2)=2~4m,本工程取2m,合理。

3.高跨比:1/10~1/18L2=2.4~1.3m,本工程取1.8m,合理
4.荷载取值:按建筑做法及实际工程需要取值,请自校
5.温度作用:考虑±20°的温差作用,合理
6.强度控制(内力):杆件应力比宜控制在0.85以下,请自校
7.长细比(杆件):杆件长细比按压杆和拉杆分别控制长细比,请自

8.变形控制(位移):屋面结构控制在1/250内,请自校
9.杆件截面构造要求:相连续的构件截面差别不应超过20%,截面
规格差不宜大于2档。

避免刚度突变。

请自校
节点:
10.螺栓球:球直径按规范公式计算。

请自校
11.螺栓:受力满足承载力要求(由杆件内力控制),另外构造还应根
据相邻杆件及相关封板、锥头、套筒等零部件不相碰的要求核算螺栓直径(核算方法可通过检查可能相碰点至球心的连线与相邻杆件轴线间的夹角之和不大于杆件之间夹角)。

请自校
12.套筒:根据相应杆件的最大轴向承载力按压杆计算,构造上内孔
径可比螺栓直径大1mm。

请自校
13.支座:本工程属于较小跨度的网架结构,采用平板支座,合理。

采用全固接的方式,网架构件需要考虑温度作用产生的受力。

《网架结构设计》课件

《网架结构设计》课件

实验验证
对网架结构进行模型试验 或实际工程试验,验证设 计的可行性和安全性。
网架结构的形式选择
平板网架
由多个平板通过节点连接而成, 适用于大跨度、大空间的屋盖结
构。
曲面网架
通过节点连接形成曲面形状,适 用于具有曲线形状的屋盖结构。
立体网架
由多个平面网架组合而成,形成 三维空间结构,适用于高层或大
跨度建筑。
船舶工程
在船舶工程中,网架结构可应用 于船体内部支撑和甲板铺面。
核电站
在核电站中,网架结构可应用于 安全壳和相关辅助设施的结构支
撑。
网架结构的发展趋势与展望
智能化设计
01
随着计算机技术的发展,网架结构的优化设计 、稳定性分析等将更加智能化。
绿色环保
03
未来网架结构设计将更加注重绿色环保,采用 可再生材料和节能技术,降低能耗和碳排放。
整体稳定性
评估网架结构在外部荷载作用下的整体稳定性,防止结构发 生失稳。
局部稳定性
分析网架杆件在压力或弯曲作用下的稳定性,防止杆件屈曲 或失稳。
网架结构的优化设计
结构形式优化
根据工程需求和条件,选 择合适的网架结构形式, 如三角形、四边形、六面 体等。
尺寸优化
根据网架的内力分析和稳 定性要求,对网架杆件截 面尺寸进行优化,降低用 钢量。
新材料的应用
02
新型材料的不断涌现,如碳纤维、玻璃纤维等 ,将为网架结构的设计和应用提供更多可能性

定制化设计
04
随着个性化需求的增加,网架结构的定制化设 计将更加普遍,以满足不同领域和特定需求的
结构设计要求。
THANKS
施工精度控制
在施工过程中,对网架结构的拼装、 吊装等环节进行精度控制,确保安装 误差在允许范围内。

空间网架结构设计

空间网架结构设计
还有其它Schwedler型 d):菱形网格,造型美观 e):适用于中,小跨度
第22页/共33页
网架和网壳结构(12)
a)肋环型四角锥球面网壳 d)平板组成式球面网壳
b)联方型四角锥球面网壳
c)联方型三角锥球面网壳
双层球面网壳的网格形式 1.交叉桁架体系
只需将单层球面网壳中的杆件用平面网片代替(略) 2.角锥体系(常见四种)
第20页/共33页
网架和网壳结构(10)
a)正放四角锥柱面网壳 d)三角锥柱面网壳
b)正放抽空四角锥柱面网壳 c)斜置正放四角锥柱面网壳
e)抽空三角锥柱面网壳
双层柱面网壳的网格形式 1.交叉桁架体系(略) 2.四角锥体系
a):刚度大,杆件少,最常用 b):适用于小跨度,轻屋面 c):系将a)斜置 3.三角锥体系 常用d) , e) 两种
水平梁和框架一起 承受悬索拉力
水平梁 承受悬索ቤተ መጻሕፍቲ ባይዱ力
悬索直接 锚挂于框架
斜拉索将 悬索拉力 拉向地锚
第25页/共33页
悬索结构(2)
•幅射式布置形式(适用于圆形,椭圆形平面)
下凹双曲率碟形屋面 不便于排水,最大的 碟形屋面:美国阿拉 美达比赛馆,跨径 128m(1967)
伞形屋面 最大的伞形屋面: 前苏联伊利姆斯克 汽车库,跨径206m
第28页/共33页
悬索结构(5)
•鞍形索网布置形式
a)
第29页/共33页
悬索结构(6)
一些典型建筑
•单层悬索
德国乌柏特市游泳馆
德国多特蒙特展览大厅
前苏联克达斯若牙尔斯克车库 第30页/共33页
日本古川市民会馆
•双层悬索
悬索结构(7)
瑞典斯德哥尔摩约翰尼绍夫滑冰场

网架结构建筑案例

网架结构建筑案例

网架结构建筑案例网架结构是一种由杆件和节点组成的空间结构,其特点是构件轻巧、构造简单、适应性强,因此在建筑领域得到了广泛的应用。

下面我们将介绍几个典型的网架结构建筑案例,以便更好地了解网架结构的设计和应用。

首先,让我们来看看北京鸟巢体育馆。

作为2008年北京奥运会的主要比赛场馆之一,鸟巢采用了大跨度网架结构,其外形犹如一个巨大的鸟巢,因此得名“鸟巢”。

整个建筑采用了约110,000吨的钢材,结构设计采用了网架结构,使得整个建筑具有了轻盈的外观,同时也满足了大跨度空间的要求。

鸟巢的设计不仅在结构上具有创新性,而且在建筑美学上也具有很高的艺术价值,成为了北京奥运会的标志性建筑之一。

接下来,我们来看看迪拜哈利法塔。

哈利法塔是世界上最高的建筑,其高度达828米,采用了网架结构设计。

在哈利法塔的设计中,网架结构被用于支撑建筑的高层结构,使得建筑在高度上能够保持稳定。

同时,网架结构也使得建筑在视觉上具有了轻盈的外观,给人一种飘逸的感觉。

哈利法塔的建筑结构设计充分展示了网架结构在超高层建筑中的应用价值。

最后,让我们来看看上海世博会中国馆。

中国馆是2010年上海世博会的标志性建筑,其外形采用了传统的“藕丝篮”造型,整个建筑采用了大跨度网架结构设计。

中国馆的网架结构设计不仅使得建筑具有了独特的外观,而且在功能上也具有了很高的灵活性,使得馆内空间得以合理利用。

中国馆的网架结构设计充分展示了网架结构在文化建筑中的应用潜力。

通过以上几个典型的网架结构建筑案例,我们可以看到,网架结构不仅具有轻盈、灵活的特点,而且在建筑美学上也具有很高的价值。

网架结构的应用不仅可以满足建筑的功能要求,而且可以赋予建筑更多的艺术魅力。

因此,我们相信,在未来的建筑设计中,网架结构将会得到更广泛的应用,为人们创造出更多美丽、实用的建筑作品。

网架结构节点设计解析

网架结构节点设计解析

网架结构节点设计解析网架结构节点是指构成整个网架结构的基本组成部分,它们之间的连接和关系决定了网架的功能和性能。

设计好网架结构节点是一个关键的任务,本文将从设计的目标、关键要素、节点类型和实现方法四个方面对网架结构节点的设计进行解析。

一、设计目标网架结构节点的设计目标是确保整个系统的稳定性、可靠性、可扩展性和性能。

稳定性要求节点之间的通信和数据传输效率高、可靠性高,系统能够长时间运行而不发生故障;可扩展性要求节点能够扩展和缩小,适应不同规模和负载的需求;性能要求节点能够快速响应用户请求,处理大量的数据和并发访问。

二、关键要素1.节点类型:节点可以分为核心节点、边缘节点和终端节点。

核心节点是整个网架的核心部分,负责处理核心任务和协调各个节点的工作;边缘节点是核心节点和终端节点之间的桥梁,负责缓冲和转发数据,减轻核心节点的负载;终端节点是最终的用户访问节点,负责接收用户请求和返回处理结果。

2.节点连接:节点之间的连接可以通过物理连接或逻辑连接来实现。

物理连接是指直接通过网络、硬件等传输媒介进行连接,适用于距离较近、传输速度要求高的情况;逻辑连接是通过软件协议、API等进行连接,适用于跨网络、跨地域的通信。

3.节点功能:节点的功能包括数据处理、存储、计算、通信等,不同节点的功能可以根据具体需求进行配置和分配。

例如,核心节点的存储和计算能力要求较高,边缘节点的通信和转发能力要求较高,终端节点的用户接口和交互能力要求较高。

三、节点类型1.核心节点:核心节点是整个网架的核心部分,负责处理核心任务、协调各个节点的工作和维护整个系统的稳定性和可靠性。

核心节点的设计要考虑高可用性、高性能和高扩展性。

可以采用分布式架构,将不同功能和任务的核心节点分开部署,通过负载均衡和集群技术来分担负载和提高系统性能。

2.边缘节点:边缘节点是核心节点和终端节点之间的桥梁,负责缓冲和转发数据,减轻核心节点的负载,并提高系统的响应速度。

网架结构设计方案

网架结构设计方案

3.网架几何不变的充分条件 分析网架结构几何不变的充分条件时,应先对组成网架的基本单元进 行分析,进而对网架的整体作出评价。 三角形是几何不变的。如果网架基本单元的外表面是由三角形所组 成,则此基本单元也将是几何不变的。在对组成网架的基本单元进行分析 时,一般有以下两种类型和两种分析方法。 1)两种类型: 自约结构体系 自身就为几何不变体系; 它约结构体系 需要加设支承链杆,才能成为几何不变体系。 2)两种分析方法:
三边支承,开口)采用了这种网架结构型式。
图 4-14 斜放四角锥网架
④ 星形四角锥网架
图 4-15 星形四角锥网架 7
网架结构设计找江苏八方 一级施工资质 质优价廉 网架加工制作安装一条龙服务
这种网架的单元体形似星体,星体单元由两个倒置的三角形小桁架相 互交叉而成(图 4-15)。两个小桁架底边构成网架上弦,它们与边界成 45 º角。在两个小桁架交汇处设有竖杆,各单元顶点相连即为下弦杆。因此, 它的上弦为正交斜放,下弦为正交正放,斜腹杆与上弦杆在同一竖直平面 内。上弦杆比下弦杆短,受力合理。但在角部的上弦杆可能受拉。该处支 座可能出现拉力。网架的受力情况接近交叉梁系,刚度稍差于正放四角锥 网架。
类较多,屋面排水坡的形成也较困难。
当平面长宽比为 1~2.25 之间时,长跨跨中下弦内力大于短跨跨中的
下弦内力;当平面长宽比大于 2.5 之间时,长跨跨中下弦内力小于短跨跨
中的下弦内力。当平面长宽比为 1~1.5 之间时,上弦杆的最大内力不在跨
中,而是在网架 1/4 平面的中部。这些内力分布规律不同于普通简支平板
平面
上弦
剖面
下弦
腹杆
上弦节点 下弦节点
图 4-7 网架结构图示图例
图 4-8 两向正交正放网架

网架结构设计建议

网架结构设计建议

网架结构设计
1.网架结构类型
正放四角锥网架的节点、杆件数量最少、用钢量最省,屋面排水处理方便。

本工程网架选型合理。

2.网格尺寸:网格尺寸宜取(1/12~1/6L2)=2~4m,本工程取2m,合理。

3.高跨比:1/10~1/18L2=2.4~1.3m,本工程取1.8m,合理
4.荷载取值:按建筑做法及实际工程需要取值,请自校
5.温度作用:考虑±20°的温差作用,合理
6.强度控制(内力):杆件应力比宜控制在0.85以下,请自校
7.长细比(杆件):杆件长细比按压杆和拉杆分别控制长细比,请自

8.变形控制(位移):屋面结构控制在1/250内,请自校
9.杆件截面构造要求:相连续的构件截面差别不应超过20%,截面
规格差不宜大于2档。

避免刚度突变。

请自校
节点:
10.螺栓球:球直径按规范公式计算。

请自校
11.螺栓:受力满足承载力要求(由杆件内力控制),另外构造还应根
据相邻杆件及相关封板、锥头、套筒等零部件不相碰的要求核算螺栓直径(核算方法可通过检查可能相碰点至球心的连线与相邻杆件轴线间的夹角之和不大于杆件之间夹角)。

请自校
12.套筒:根据相应杆件的最大轴向承载力按压杆计算,构造上内孔
径可比螺栓直径大1mm。

请自校
13.支座:本工程属于较小跨度的网架结构,采用平板支座,合理。

采用全固接的方式,网架构件需要考虑温度作用产生的受力。

网架结构概述、荷载、设计和节点构造

网架结构概述、荷载、设计和节点构造
平面结构体系:
梁式结构(平面桁架、空间桁架),平面刚架和拱式结构
空间结构体系:
平板网架结构,网壳结构,悬索结构,斜拉结构,张拉整体结构等
我国采用平板网架结构最早的是上海师范学院球类房(1954年建成),采 用了31.4m×40.5m的正放四角锥网架。
1966年天津市科学宫采用了斜放四角锥网架,平面尺寸14.84m×23.32m , 网架高度1m,网格为7×11,采用3号钢(相当于目前的Q235钢),由高 频焊接管组成,周边简支于钢筋混凝土圈梁上,耗钢量只有6.26kg/m2。 使用前,对6.36m×10.6m的3×5个网格的1/5模型进行了试验,在第一根 压杆失稳时,荷载为设计荷载的2.1倍,证明结构安全可靠。
大跨度覆盖的空间结构。空间网架结构具有以下特点: 1.网架结构整体性好、空间刚度大、结构稳定。 2.网架结构靠杆件的轴力传递载荷,材料强度得到充分利用,既
节约钢材,又减轻了自重。 3.网架结构自重轻,地震力就小,钢材具有良好的延伸性,可吸
收大量地震能量,网架空间刚度大,抗震性能优良。 4.网架结构高度小,可有效利用空间,普通钢结构高跨比为1/8—网架按Biblioteka 杆层数不同可分为双层网架和三层网架。
双层网架是由上弦、下弦和腹杆组成的空间结构,是常用的网 架形式。
三层网架是由上弦、中弦、下弦、 上腹杆和下腹杆组成的间结构,其特 点是增加网架高度,减小弦杆内力, 减小网格尺寸和腹杆长度。当网架跨 度较大时,三层网架用钢量比双层网 架用钢量省。但由于节点和杆件数量 增多,尤其是中层节点所连杆件较多, 使构造复杂,造价有所提高。
c.三向网架:三个方向的竖向 平面桁架互成60°角斜向交叉。 上下弦平面内的网格均为几何不变 的三角形,因此,这种网架是由若 干以稳定的三棱体作为基本单元所 组成的几何不变体系。网架空间刚 度大,受力性能好,内力分布也较 均匀,但汇交于一个节点的杆件最 多可达13根。节点构造较复杂,宜 采用钢管杆件及焊接空心球节点。 三向网架适用于三角形、六边形、多边形和圆形并且跨度较大的建筑平面。 当用于圆形平面时,周边将出现一些不规则网格,需另行处理。三向网架的 节间一般较大,有时可达6m以上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4-1)
如果将网架作为刚体考虑,则最少的支座约束链杆数为 6,故 r ≥6。
由此可知,当 m ≥ 3J − r 时,为超静定结构的必要条件;当 m =
3J − r 时,为静定结构的必要条件;当 m ≤ 3J − r 时,为几何可变体系。
3.网架几何不变的充分条件 分析网架结构几何不变的充分条件时,应先对组成网架的基本单元进 行分析,进而对网架的整体作出评价。 三角形是几何不变的。如果网架基本单元的外表面是由三角形所组 成,则此基本单元也将是几何不变的。在对组成网架的基本单元进行分析 时,一般有以下两种类型和两种分析方法。 1)两种类型: 自约结构体系 自身就为几何不变体系; 它约结构体系 需要加设支承链杆,才能成为几何不变体系。 2)两种分析方法:
图 4-16 棋盘形四角锥网架
图 4-17 三角锥网架
3)三角锥体系 这类网架的基本单元是一倒置的三角锥体。锥底的正三角形的三边为 网架的上弦杆,其棱为网架的腹杆。随着三角锥单元体布置的不同,上下 弦网格可为正三角形或六边形,从而构成不同的三角锥网架。 ① 三角锥网架 三角锥网架上下弦平面均为三角形网格,下弦三角形网格的顶点对着 上弦三角形网格的形心(图 4-17)。三角锥网架受力均匀,整体抗扭、抗 弯刚度好;节点构造复杂,上下弦节点交汇杆件数均为 9 根。适用于建筑 平面为三角形、六边形和圆形的情况。 上海徐汇区工人俱乐部剧场(六边形,外接圆直径 24m)采用了这种 网架结构型式。
的平面桁架相交而成(图 4-11)。
这类网架受力均匀,空间刚度大。
但也存在一定的不足,即在构造上
汇交于一个节点的杆件数量多,最
多可达 13 根,节点构造比较复杂,
宜采用圆钢管杆件及球节点。
三向网架适用于大跨度 (L>60m),而且建筑平面为三角形、
图 4-11 三向网架
六边形、多边形和圆形等平面形状比较规则的情况。
腹杆
上弦节点 下弦节点
图 4-7 网架结构图示图例
图 4-8 两向正交正放网架
两向正交正放网架适用于建筑平面为正方形或接近正方形,且跨度较 小的情况。上海黄浦区体育馆(45×45m)和保定体育馆(55.34×68.42m) 采用了这种网架结构型式。
② 两向正交斜放网架 两向正交斜放网架由两组平面桁架互成 90º交叉而成,弦杆与边界成 45º角。边界可靠时,为几何不变体系(图 4-9)。各榀桁架长度不同,靠 角部的短桁架刚度较大对与其垂直的长桁架有弹性支撑作用,可以使长桁 架中部的正弯矩减小,因而比正交正放网架经济。不过由于长桁架两端有 负弯矩,四角支座将产生较大拉力。角部拉力应由两个支座负担。 两向正交斜放网架适用于建筑平面为正方形或长方形情况。首都体育 馆(99×112.2m)和山东体育馆(62.7×74.1m)采用了这种网架结构型式。
4)三边支承一边开口或两边支承两边开口的网架 在矩形平面的建筑中,由于考虑扩建的可能性或由于建筑功能的要求, 需要在一边或两对边上开口,因而使网架仅在三边或两对边上支承,另一 边或两对边为自由边(如图 4-5)。自由边的存在对网架的受力是不利的,
3
为此应对自由边作出特殊处理。一级可在自由边附近增加网架层数或在自 由边加设托梁或托架。对中、小型网架,亦可采用增加网架高度或局部加 大杆件截面的办法予以加强。
空间网架结构设计
高福聚
石油大学建筑工程系 二○○四年六月
第四章 网架结构设计
4.1 网架结构的形式及种类
4.1.1 网架结构的基本单元及几何不变性
1.基本单元 网架结构可以看作是平面桁架的横向拓展、也可以看作是平板的格构 化。网架结构的起源,据说是仿照金刚钻石原子晶格的空间点阵排布,因 而是一种仿生的空间结构,具有很高强度和很大的跨越能力。 网架结构是由许多规则的几何体组合而成,这些几何体就是网架结构 的基本单元。常用的有:三角锥、四角锥、三棱体、正方棱柱体,此外还 有:六角锥、八面体、十面体等(图 4-1)。
可变体系。
4.1.2 网架结构的形式
在对网架结构分类时,采取不同的分类方法,可以划分出不同类型的 网架结构型式。一般地,
1.按结构组成分 1)双层网架 具有上下两层弦杆,是最常用的网架结构形式。 2)三层网架 具有上中下三层弦杆,强度和刚度都比双层网架提高很 大。在实际应用时,如果跨度 l>50m,酌情考虑;当跨度 l>80m 时,应
满足工程要求。
正放抽空四角锥网架适用于屋面荷载较轻的中、小跨度网架。
石家庄铁路枢纽南站货棚(132×132m,柱网 24×24m,多点支承)
和唐山齿轮厂联合厂房(84×156.9m,柱网 12×12m,周边支承与多点支
承相结合)是采用这种网架型式较早的典型实例。
③ 斜放四角锥网架
斜放四角锥网架的上弦杆与边界成 45º角,下弦正放,腹杆与下弦在
5)悬挑网架 为满足一些特殊的需要,有时候网架结构的支承形式为一边支承、三 边自由。为使玩网架结构的受力合理,也必须在另一方向设置悬挑,以平 衡下部支承结构的受力,使之趋于合理,比如体育场看台罩棚(图 4-6)。
图 4-6 体育场看台罩棚
3.按照跨度分类 网架结构按照跨度分类时,我们把跨度 L≤30m 的网架称之为小跨度 网架;跨度 30m<L≤60m 时为中跨度网架;跨度 L>60m 为大跨度网架。 此外,随着网架跨度的不断增大,出现了特大跨度和超大跨度的说法, 但目前还没有严格的定义。一般地,当 L>90m 或 120m 时称为特大跨度; 当 L>150m 或 180m 时为超度跨度。
图 4-9 两向正交斜放网架
图 4-10 两向斜交斜放网架
③ 两向斜交斜放网架 两向斜交斜放网架由两组平面桁架斜向相交而成,弦杆与边界成一斜 角(图 4-10)。 这类网架在网格布置、构造、计算分析和制作安装上都比较复杂,而 且受力性能也比较差,除了特殊情况外,一般不宜使用。
5
④ 三向网架
三向网架由三组互成 60º交角
① 以一个几何不变的单元为基础,通过三根不共面的杆件交出一个新
节点所构成的网架也为几何不变;如此延伸。
② 列出考虑了边界约束条件的结构总刚度矩阵 [K ], 如果 K ≠ [ ] 0, K 为非奇异矩阵,网架位移和杆力有唯一解,网架为几何不变体系; 如果 K =0, [K ]为奇异矩阵,网架位移和杆力没有唯一解,网架为几何
4
两向正交正放网架是由两组平面桁架互成 90º交叉而成,弦杆与边界 平行或垂直。上、下弦网格尺寸相同,同一方向的各平面桁架长度一致, 制作、安装较为简便(图 4-8)。由于上、下弦为方形网格,属于几何可 变体系,应适当设置上下弦水平支撑,以保证结构的几何不变性,有效地 传递水平荷载。
平面Biblioteka 上弦剖面下弦6
图 4-12 正放四角锥网架
图 4-13 正放抽空四角锥网架
② 正放抽空四角锥网架
正放抽空四角锥网架是在正放四角锥网架的基础上,除周边网格不动
外,适当抽掉一些四角锥单元中的腹杆和下弦杆,使下弦网格尺寸扩大一
倍(图 4-13)。其杆件数目较少,降低了用钢量,抽空部分可作采光天窗,
下弦内力较正放四角锥约放大一倍,内力均匀性、刚度有所下降,但仍能
图 4-1 网架结构的基本单元 1
网架在任何外力作用下都必须是几何不变体系。因此,应该对网架进 行机动分析。
2.网架几何不变的必要条件
网架是一个铰接的空间结构,其任意一个节点有三个自由度。对于一
个具有 J 个节点,m 个杆件的网架,支撑于具有 r 根约束链杆的支座上时,
其几何不变的必要条件是:
m + r − 3J ≥0 或 m ≥ 3J − r
上海体育馆(D=110m 圆形)和江苏体育馆(76.8×88.681m 八边形)
较早地采用了这种网架结构型式。
2)四角锥体系 四角锥体系网架的上、下弦均呈正方形(或接近正方形的矩形)网格, 相互错开半格,使下弦网格的角点对准上弦网格的形心,再在上下弦节点 间用腹杆连接起来,即形成四角锥体系网架。四角锥体系网架有五种形式, 分列如下: ① 正放四角锥网架 正放四角锥网架由倒置的四角锥体组成,锥底的四边为网架的上弦 杆,锥棱为腹杆,各锥顶相连即为下弦杆。它的弦杆均与边界正交,故称 为正放四角锥网架(图 4-12)。 这类网架杆件受力均匀,空间刚度比其它类的四角锥网架及两向网架 好。屋面板规格单一,便于起拱,屋面排水也较容易处理。但杆件数量较 多,用钢量略高。 正放四角锥网架适用于建筑平面接近正方形的周边支承情况,也适用 于屋面荷载较大、大柱距点支承及设有悬挂吊车的工业厂房情况。 较为典型的工程实例如上海静安区体育馆(40×40m)和杭州歌剧院 (31.5×36m)。
2
当优先考虑。 3)组合网架 根据不同材料各自的物理力学性质,使用不同的材料组
成网架的基本单元,继而形成网架结构。一般是利用钢筋混凝土板良好的 受压性能替代上弦杆。这种网架结构型式的刚度大,适宜于建造活动荷载 较大的大跨度楼层结构。
2.按支承情况分类 1)周边支承网架 周边支承网架是目前采用较多的一种形式,所有边界节点都搁置在柱 或梁上,传力直接,网架受力均匀(如图 4-2)。 当网架周边支承于柱顶时,网格宽度可与柱距一致;当网架支承于圈 梁时,网格的划分比较灵活,可不受柱距影响。 2)点支承网架 一般有四点支承和多点支承两种情形,由于支承点处集中受力较大, 宜在周边设置悬挑,以减小网架跨中杆件的内力和挠度(如图 4-3)。
同一垂直平面内(图 4-14)。上弦杆长度约为下弦杆长度的 0.707 倍。在
周边支承情况下,一般为上弦受压,下弦受拉。节点处汇交的杆件较少(上
弦节点 6 根,下弦节点 8 根),用钢量较省。但因上弦网格斜放,屋面板种
类较多,屋面排水坡的形成也较困难。
当平面长宽比为 1~2.25 之间时,长跨跨中下弦内力大于短跨跨中的
4.按网格形式分类 这是网架结构分类中最普遍采用的一种分类方式,根据《网架结构设 计与施工规程》JGJ7-91 的规定,我们目前经常采用的网架结构分为四个 体系十三种网架结构型式。 1)交叉平面桁架体系 这个体系的网架结构是由一些相互交叉的平面桁架组成,一般应使斜 腹杆受拉,竖杆受压,斜腹杆与弦杆之间夹角宜在 40~60º之间。该体系 的网架有以下四种: ① 两向正交正放网架
相关文档
最新文档