磁珠的作用以及和电感的区别

合集下载

电感和磁珠的区别与联系

电感和磁珠的区别与联系

电感与磁珠区别:1.电感是储能元件,而磁珠是能量转换(消耗)器件。

电感和磁珠都可以用于滤波,但是机理不一样。

电感滤波是将电能转化为磁能,磁能将通过两种方式影响电路:一种方式是重新转换回电能,表现为噪声;一种方式是向外部辐射,表现为EMI(电磁干扰)。

而磁珠是将电能转换为热能,不会对电路构成二次干扰。

2.电感在低频段滤波性能较好,但在50MHz以上的频段滤波性能较差;磁珠利用其电阻成分能充分地利用高频噪声,并将之转换为热能已达到彻底消除高频噪声的目的。

3.从EMC(电磁兼容)的层面说,由于磁珠能将高频噪声转换为热能,因此具有非常好的抗辐射功能,是常用的抗EMI器件,常用于用户接口信号线滤波、单板上高速时钟器件的电源滤波等。

4.电感和电容构成低通滤波器时,由于电感和电容都是储能器件,因此两者的配合可能产生自激;磁珠是耗能器件,与电容协同工作时,不会产生自激。

5.电源用电感的额定电流相对较大,因此,电感常用于需要通过大电流的电源电路上,如用于电源模块滤波;而磁珠一般仅用于芯片级电源滤波(不过,目前市场上已经出现了大额定电流的磁珠)。

6.磁珠和电感都具有直流电阻,磁珠的直流电阻相对于同样滤波性能的电感更小一些,因此用于电源滤波时,磁珠上的压降更小。

7.用于滤波时,电感的工作电流小于额定电流,否则,电感不一定会损坏,但是电感值会出现偏差。

电感与磁珠相同点:1.额定电流。

当电感的额定电流超过其额定电流时,电感值将迅速减小,但电感器件未必损坏;而磁珠的工作电流超过其额定电流时,将会对磁珠造成损伤。

2.直流电阻。

用于电源线路时,线路上存在一定的电流,如果电感或磁珠本身的直流电阻较大,则会产生一定压降。

因此选型中,都要求选择直流电阻小的器件。

3.频率特性曲线。

电感和磁珠的厂家资料都附有器件频率特性曲线图。

在选型中,需仔细参考这些曲线,以选择合适的器件。

应用时,注意其谐振频率。

磁珠的选型由磁珠的阻抗特性曲线可知:转换频率点以下,磁珠体现电感性,转换频率点以上,磁珠体现电阻性。

磁珠和电感有什么区别

磁珠和电感有什么区别

磁珠和电感有什么区别描述磁珠专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。

磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDRSDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过错50MHZ。

磁珠有很高的电阻率和磁导率,等效于电阻和电感串联,但电阻值和电感值都随频率变化。

电感(电感线圈)是用绝缘导线绕制而成的电磁感应元件,也是电子电路中常用的元器件之一。

电感是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母“L”表示,主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。

磁珠和电感有什么区别电感和磁珠有什么联系与区别?电感是储能元件,而磁珠是能量转换(消耗)器件电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。

两者都可用于处理EMC、EMI问题。

磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过错50MHZ。

地的连接一般用电感,电源的连接也用电感,而对信号线则采用磁珠?但实际上磁珠应该也能达到吸收高频干扰的目的啊?而且电感在高频谐振以后都不能再起电感的作用了……先必需明白EMI的两个途径,即:辐射和传导,不同的途径采用不同的抑制方法。

前者用磁珠,后者用电感。

对于扳子的IO部分,是不是基于EMC的目的可以用电感将IO部分和扳子的地进行隔离,比如将USB的地和扳子的地用10uH的电感隔离可以防止插拔的噪声干扰地平面?电感一般用于电路的匹配和信号质量的控制上。

磁珠与电感

磁珠与电感

磁珠与电感的作用与区别此文来至网络理论上对传导干扰信号进行抑制,要求抑制电感的电感量越大越好,但对于电感线圈来说,电感量越大,则电感线圈的分布电容也越大,两者的作用将会互相抵消。

图2是普通电感线圈的阻抗与频率的关系图,由图中可以看出,电感线圈的阻抗开始的时候是随着频率升高而增大的,但当它的阻抗增大到最大值以后,阻抗反而随着频率升高而迅速下降,这是因为并联分布电容的作用。

当阻抗增到最大值的地方,就是电感线圈的分布电容与等效电感产生并联谐振的地方。

图中,L1 > L2 > L3,由此可知电感线圈的电感量越大,其谐振频率就越低。

从图2中可以看出,如果要对频率为1MHz的干扰信号进行抑制,选用L1倒不如选用L3,因为L3的电感量要比L1小十几倍,因此L3的成本也要比L1低很多。

如果我们还要对抑制频率进一步提高,那么我们最后选用的电感线圈就只好是它的最小极限值,只有1圈或不到1圈了。

磁珠,即穿心电感,就是一个匝数小于1圈的电感线圈。

但穿心电感比单圈电感线圈的分布电容小好几倍到几十倍,因此,穿心电感比单圈电感线圈的工作频率更高。

穿心电感的电感量一般都比较小,大约在几微亨到几十微亨之间,电感量大小与穿心电感中导线的大小以及长度,还有磁珠的截面积都有关系,但与磁珠电感量关系最大的还要算磁珠的相对导磁率。

图3、图4是分别是指导线和穿心电感的原理图,计算穿心电感时,首先要计算一根圆截面直导线的电感,然后计算结果乘上磁珠相对导磁率就可以求出穿心电感的电感量。

另外,当穿心电感的工作频率很高时,在磁珠体内还会产生涡流,这相当于穿心电感的导磁率要降低,此时,我们一般都使用有效导磁率。

有效导磁率就是在某个工作频率之下,磁珠的相对导磁率。

但由于磁珠的工作频率都只是一个范围,因此在实际应用中多用平均导磁率。

在低频时,一般磁珠的相对导磁率都很大(大于100),但在高频时其有效导磁率只有相对导磁率的几分之一,甚至几十分之一。

磁珠和绕线电感的区别

磁珠和绕线电感的区别

一、电感器的定义。

1.1 电感的定义:电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。

当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。

根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。

当形成闭合回路时,此感应电势就要产生感应电流。

由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。

由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。

电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。

总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。

这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。

由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。

1.2 电感线圈与变压器电感线圈:导线中有电流时,其周围即建立磁场。

通常我们把导线绕成线圈,以增强线圈内部的磁场。

电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。

一般情况,电感线圈只有一个绕组。

变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。

两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。

1.3 电感的符号与单位电感符号:L电感单位:亨(H)、毫亨(mH)、微亨(uH),1H=103mH=106uH。

1.4 电感的分类:按电感形式分类:固定电感、可变电感。

磁珠和电感的区别

磁珠和电感的区别

磁珠和电感的区别简介:磁珠和电感作为两种常见的电子元件,在电子领域使用广泛。

它们都能够在电路中起到储存和释放能量的作用,但是它们的工作原理和特点略有不同。

本文将从磁性特性、工作原理、应用领域等方面探讨磁珠和电感之间的区别。

一、磁性特性1. 磁珠:磁珠是一种由磁性材料制成的小圆球状物体。

它具有良好的磁性,往往适用于高频电路中。

磁珠一般采用铁氧体等材料制成,具有高磁导率和强磁饱和特性,可以在高频电路中提供较低的电感值。

磁珠在电路中起到滤波、隔离和储能的作用。

2. 电感:电感是一种由导体线圈制成的元件,主要使用导体线圈的电磁感应原理。

电感的磁性取决于线圈中的线圈材料和线圈的形状。

线圈中的磁性材料一般采用镍铁合金,具有较高的磁导率和饱和磁感应强度。

电感可以在电路中储存和释放能量,具有阻抗变化和滤波功能。

二、工作原理1. 磁珠:磁珠主要通过磁导率和磁感应强度来调整电路中的电感值。

当电流通过磁珠时,磁珠内部会产生磁场,通过改变磁场强度和方向,可以改变电感的大小和性质。

磁珠可根据不同的工作频率和电流条件选择合适的材料和尺寸。

2. 电感:电感基于电磁感应原理工作。

当电流通过线圈时,产生的磁场会自感应回到线圈中,产生感应电动势,并对电路中的电流起到调节的作用。

线圈的大小和形状以及线圈中的材料都会影响电感的大小和性能。

通过改变线圈的参数,可以实现对电流和电压的调控。

三、应用领域1. 磁珠:磁珠常见于高频电路和无线通信领域。

它们广泛应用于滤波器、隔离器和匹配器等电路中,可提供较低的电感值和较高的频率响应。

磁珠还可用于电源管理电路和射频功率放大器等应用,具有稳定性和可靠性的特点。

2. 电感:电感广泛应用于电源电路、放大器、射频通信和变频器等领域。

在直流电源电路中,电感可用于稳定电流和降低电压波动。

在放大器和射频通信领域,电感可用于匹配和调谐,提高信号转换效率。

电感还常用于变频器中的滤波和电路保护等方面。

结论:磁珠和电感作为常见的电子元件,在电子领域起到重要作用。

磁珠和电感的区别

磁珠和电感的区别

磁珠和电感的区别磁珠由氧磁体组成,电感由磁芯和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去,因此说电感是储能元件,而磁珠是能量转换(消耗)器件。

电感多用于电源滤波回路,磁珠多用于信号回路,磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。

两者都可用于处理EMC、EMI问题。

磁珠是用来吸收超高频信号,例如一些RF电路、PLL、振荡电路、含超高频存储器电路(DDR SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路、中低频的滤波电路等,其应用频率范围很少超过50MHZ。

地的连接一般用电感,电源的连接也用电感,而对信号线则常采用磁珠。

片式磁珠与片式电感片式电感在电子设备的PCB板电路中会大量使用感性元件和EMI滤波器元件,这些元件包括片式电感和片式磁珠。

在需要使用片式电感的场合,要求电感实现以下两个基本功能:电路谐振和扼流电抗。

谐振电路包括谐振发生电路、振荡电路、时钟电路、脉冲电路、波形发生电路等。

谐振电路还包括高Q带通滤波器电路。

要使电路产生谐振,必须有电容和电感同时存在于电路中。

在电感的两端存在寄生电容,这是由于器件两个电极之间的铁氧体本体相当于电容介质而产生的。

在谐振电路中,电感必须具有高品质因素Q,窄的电感偏差,稳定的温度系数,才能达到谐振电路窄带,低的频率温度漂移的要求。

高Q电路具有尖锐的谐振峰值。

窄的电感偏置保证谐振频率偏差尽量小。

稳定的温度系数保证谐振频率具有稳定的温度变化特性。

标准的径向引出电感和轴向引出电感以及片式电感的差异仅仅在于封装不一样。

电感结构包括介质材料(通常为氧化铝陶瓷材料)上绕制线圈,或者空心线圈以及铁磁性材料上绕制线圈。

在功率应用场合,作为扼流圈使用时,电感的主要参数是直流电阻(DCR,定义为元件在没有交流信号下的直流电阻)、额定电流和低Q 值。

当作为滤波器使用时,希望宽的带宽特性,因此并不需要电感的高Q特性,低的直流电阻(DCR)可以保证最小的电压降。

芯片术语

芯片术语

电感和磁珠的联系与区别1.磁珠主要用于高频隔离,抑制差模噪声等。

2.电感是储能组件,而磁珠是能量转换(消耗)器件电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC(电磁兼容性Electro Magnetic Compatibility)对策磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。

两者都可用于处理EMC、EMI(电磁干扰Electro-Magnetic Interference)问题。

磁珠是用来吸收超高频信号,象一些RF(无线电频率radio frequency)电路,PLL(锁相环Phase Locking Loop),振荡电路,含超高频存储器电路(DDR SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能组件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过50MHZ。

地的连接一般用电感,电源的连接也用电感,而对信号线则采用磁珠。

3.详细论述:在电子设备的PCB板电路中会大量使用感性组件和EMI滤波器组件。

这些组件包括片式电感和片式磁珠,以下就这两种器述并分析他们的普通应用场合以及特殊应用场合。

表面贴装组件的好处在于小的封装尺寸和能够满足实际空间的要求。

除力以及其它类似物理特性不同外,通孔接插件和表面贴装器件的其它性能特点基本相同1.片式电感:在需要使用片式电感的实现以下两个基本功能:电路谐振和扼流电抗。

谐振电路包括谐振发生电路,振荡电路,时钟电路,脉冲电路,波形发生电路还包括高Q带通滤波器电路。

要使电路产生谐振,必须有电容和电感同时存在于电路中。

在电感的两端存在寄生电容,这是由于电极之间的铁氧体本体相当于电容介质而产生的。

在谐振电路中,电感必须具有高Q,窄的电感偏差,稳定的温度系数,才能达到谐振电路窄带,低的频率温度漂移的要求。

高Q电路具有尖锐的谐振峰值。

窄的电感偏置保证谐振频率偏差尽量小。

稳定的温度系数保证谐振电路稳定的温度变化特性。

磁珠和电感的区别

磁珠和电感的区别

磁珠和电感的区别磁珠由氧磁体组成,电感由磁芯和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去,因此说电感是储能元件,而磁珠是能量转换(消耗)器件。

电感多用于电源滤波回路,磁珠多用于信号回路,磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。

两者都可用于处理EMC、EMI问题。

磁珠是用来吸收超高频信号,例如一些RF电路、PLL、振荡电路、含超高频存储器电路(DDR SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路、中低频的滤波电路等,其应用频率范围很少超过50MHZ。

地的连接一般用电感,电源的连接也用电感,而对信号线则常采用磁珠。

片式磁珠与片式电感片式电感在电子设备的PCB板电路中会大量使用感性元件和EMI滤波器元件,这些元件包括片式电感和片式磁珠。

在需要使用片式电感的场合,要求电感实现以下两个基本功能:电路谐振和扼流电抗。

谐振电路包括谐振发生电路、振荡电路、时钟电路、脉冲电路、波形发生电路等。

谐振电路还包括高Q带通滤波器电路。

要使电路产生谐振,必须有电容和电感同时存在于电路中。

在电感的两端存在寄生电容,这是由于器件两个电极之间的铁氧体本体相当于电容介质而产生的。

在谐振电路中,电感必须具有高品质因素Q,窄的电感偏差,稳定的温度系数,才能达到谐振电路窄带,低的频率温度漂移的要求。

高Q电路具有尖锐的谐振峰值。

窄的电感偏置保证谐振频率偏差尽量小。

稳定的温度系数保证谐振频率具有稳定的温度变化特性。

标准的径向引出电感和轴向引出电感以及片式电感的差异仅仅在于封装不一样。

电感结构包括介质材料(通常为氧化铝陶瓷材料)上绕制线圈,或者空心线圈以及铁磁性材料上绕制线圈。

在功率应用场合,作为扼流圈使用时,电感的主要参数是直流电阻(DCR,定义为元件在没有交流信号下的直流电阻)、额定电流和低Q值。

当作为滤波器使用时,希望宽的带宽特性,因此并不需要电感的高Q特性,低的直流电阻(DCR)可以保证最小的电压降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁珠的作用磁珠:又名0欧姆电阻它的一个应用如下:当需要模拟地和数字地共地时,可以考虑采用磁珠,与直接用导线连接两个地相比采用磁珠可以减小网络间的相互干扰稳压电源直流输出需要进行滤波,比如串连一个几十微亨的电感等,但是当电流达到数安培,甚至几十上百安培时,电感肯定会黑了!如果用扼流圈,线圈截面又需要很大,这时可以在导线或者电阻上套一个磁珠,相当于一个功率电感,起滤波的作用,对高频又很好的抑制作用,主要是1MHz以上的噪声。

全称为铁氧体磁珠滤波器。

磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。

磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100mMHZ ,它在低频时电阻比电感小得多。

电感的等效电阻可有Z=2X3.14xf 来求得。

铁氧体磁珠(Ferrite Bead) 是目前应用发展很快的一种抗干扰元件,廉价、易用,滤除高频噪声效果显著。

在电路中只要导线穿过它即可(我用的都是象普通电阻模样的,导线已穿过并胶合,也有表面贴装的形式,但很少见到卖的)。

当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。

高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个元件的值都与磁珠的长度成比例。

磁珠种类很多,制造商应提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。

有的磁珠上有多个孔洞,用导线穿过可增加元件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声能力不可能如预期的多,而用多串联几个磁珠的办法会好些。

铁氧体是磁性材料,会因通过电流过大而产生磁饱和,导磁率急剧下降。

大电流滤波应采用结构上专门设计的磁珠,还要注意其散热措施。

铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和交流输出),还可广泛应用于其他电路,其体积可以做得很小。

特别是在数字电路中,由于脉冲信号含有频率很高的高次谐波,也是电路高频辐射的主要根源,所以可在这种场合发挥磁珠的作用。

铁氧体磁珠还广泛应用于信号电缆的噪声滤除。

以常用于电源滤波的HH-1H3216-500为例,其型号各字段含义依次为:HH 是其一个系列,主要用于电源滤波,用于信号线是HB系列;1 表示一个元件封装了一个磁珠,若为4则是并排封装四个的;H 表示组成物质,H、C、M为中频应用(50-200MHz),T低频应用(<50MHz),S高频应用(>200MHz);3216 封装尺寸,长3.2mm,宽1.6mm,即1206封装;500 阻抗(一般为100MHz时),50 ohm。

其产品参数主要有三项:阻抗[Z]@100MHz (ohm) : Typical 50, Minimum 37;直流电阻DC Resistance (m ohm): Maximum 20;额定电流Rated Current (mA): 2500.磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。

他比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果。

磁珠主要用于高频隔离,抑制差模噪声等。

在电子设备的PCB板电路中会大量使用感性元件和EMI滤波器元件。

这些元件包括片式电感和片式磁珠,以下就这两种器件的特点进行描述并分析他们的普通应用场合以及特殊应用场合。

表面贴装元件的好处在于小的封装尺寸和能够满足实际空间的要求。

除了阻抗值,载流能力以及其他类似物理特性不同外,通孔接插件和表面贴装器件的其他性能特点基本相同。

片式电感在需要使用片式电感的场合,要求电感实现以下两个基本功能:电路谐振和扼流电抗。

谐振电路包括谐振发生电路,振荡电路,时钟电路,脉冲电路,波形发生电路等等。

谐振电路还包括高Q带通滤波器电路。

要使电路产生谐振,必须有电容和电感同时存在于电路中。

在电感的两端存在寄生电容,这是由于器件两个电极之间的铁氧体本体相当于电容介质而产生的。

在谐振电路中,电感必须具有高Q,窄的电感偏差,稳定的温度系数,才能达到谐振电路窄带,低的频率温度漂移的要求。

高Q电路具有尖锐的谐振峰值。

窄的电感偏置保证谐振频率偏差尽量小。

稳定的温度系数保证谐振频率具有稳定的温度变化特性。

标准的径向引出电感和轴向引出电感以及片式电感的差异仅仅在于封装不一样。

电感结构包括介质材料(通常为氧化铝陶瓷材料)上绕制线圈,或者空心线圈以及铁磁性材料上绕制线圈。

在功率应用场合,作为扼流圈使用时,电感的主要参数是直流电阻(DCR),额定电流,和低Q值。

当作为滤波器使用时,希望宽带宽特性,因此,并不需要电感的高Q特性。

低的DCR可以保证最小的电压降,DCR定义为元件在没有交流信号下的直流电阻。

片式磁珠片式磁珠的功能主要是消除存在于传输线结构(PCB电路)中的RF噪声,RF能量是叠加在直流传输电平上的交流正弦波成分,直流成分是需要的有用信号,而射频RF能量却是无用的电磁干扰沿着线路传输和辐射(EMI)。

要消除这些不需要的信号能量,使用片式磁珠扮演高频电阻的角色(衰减器),该器件允许直流信号通过,而滤除交流信号。

通常高频信号为30MHz 以上,然而,低频信号也会受到片式磁珠的影响。

片式磁珠由软磁铁氧体材料组成,构成高体积电阻率的独石结构。

涡流损耗同铁氧体材料的电阻率成反比。

涡流损耗随信号频率的平方成正比。

使用片式磁珠的好处:小型化和轻量化在射频噪声频率范围内具有高阻抗,消除传输线中的电磁干扰。

闭合磁路结构,更好地消除信号的串绕。

极好的磁屏蔽结构。

降低直流电阻,以免对有用信号产生过大的衰减。

显著的高频特性和阻抗特性(更好的消除RF能量)。

在高频放大电路中消除寄生振荡。

有效的工作在几个MHz 到几百MHz的频率范围内。

要正确的选择磁珠,必须注意以下几点:不需要的信号的频率范围为多少。

噪声源是谁。

需要多大的噪声衰减。

环境条件是什么(温度,直流电压,结构强度)。

电路和负载阻抗是多少。

是否有空间在PCB板上放置磁珠。

前三条通过观察厂家提供的阻抗频率曲线就可以判断。

在阻抗曲线中三条曲线都非常重要,即电阻,感抗和总阻抗。

总阻抗通过ZR22πfL()2+:=fL来描述。

典型的阻抗曲线如下图所示:通过这一曲线,选择在希望衰减噪声的频率范围内具有最大阻抗而在低频和直流下信号衰减尽量小的磁珠型号。

片式磁珠在过大的直流电压下,阻抗特性会受到影响,另外,如果工作温升过高,或者外部磁场过大,磁珠的阻抗都会受到不利的影响。

使用片式磁珠和片式电感的原因:是使用片式磁珠还是片式电感主要还在于应用。

在谐振电路中需要使用片式电感。

而需要消除不需要的EMI噪声时,使用片式磁珠是最佳的选择。

片式磁珠和片式电感的应用场合:片式电感:射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,PDAs(个人数字助理),无线遥控系统以及低压供电模块等。

片式磁珠:时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止电感是储能元件,而磁珠是能量转换(消耗)器件电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。

两者都可用于处理EMC、EMI问题。

磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过错50MHZ。

地的连接一般用电感,电源的连接也用电感,而对信号线则采用磁珠?但实际上磁珠应该也能达到吸收高频干扰的目的啊?而且电感在高频谐振以后都不能再起电感的作用了……还请各位大侠明示先必需明白EMI的两个途径,即:辐射和传导,不同的途径采用不同的抑制方法。

前者用磁珠,后者用电感。

对于扳子的IO部分,是不是基于EMC的目的可以用电感将IO部分和扳子的地进行隔离,比如将USB的地和扳子的地用10uH的电感隔离可以防止插拔的噪声干扰地平面?电感一般用于电路的匹配和信号质量的控制上。

在模拟地和数字地结合的地方用磁珠。

在模拟地和数字地结合的地方用磁珠。

数字地和模拟地之间的磁珠用多大磁珠的大小(确切的说应该是磁珠的特性曲线)取决于你需要磁珠吸收的干扰波的频率为什么磁珠的单位和电阻是一样的呢??都是欧姆!!磁珠就是阻高频嘛,对直流电阻低,对高频电阻高,不就好理解了吗,比如1000R@100Mhz就是说对100M频率的信号有1000欧姆的电阻因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。

磁珠的datasheet上一般会附有频率和阻抗的特性曲线图。

一般以100MHz 为标准,比如2012B601,就是指在100MHz的时候磁珠的Impedance为600欧姆。

在很多产品中,交换机的两个地用电容连接起来,为什么不用电感?你说的两个地,其中一个是不是机壳的?我估计(以下全部估计,有错请指点)如果用磁珠或者直接相连的话,人体静电等意外电平会轻易进入交换机的地,这样交换机工作就不正常了。

但如果它们之间断开,那么遭受雷击或者其他高压的时候,两个地之间的电火花引起起火……加电容则避免这种情况。

对于加电容的解释我也觉得很勉强呵呵,请高手指教!交换机的地,是通过两个地之间的之间的电容去消除谐波。

就像高阻抗的变压器一样,他附加了一个消除谐波的通路!我自己认为!请指正!铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。

铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。

在高频情况下,他们主要呈电抗特性比并且随频率改变。

实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。

实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。

铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。

线圈,磁珠有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠。

用途由起所需电感量决定。

请教:对于骅讯的USB声卡方案中,在UBS电源端与地端也分别接有一个磁珠,不知是否有人清楚,但是在实际生产中也有些工程把磁珠用电感去代替了,请问这样可以吗?那里的磁珠是起什么作用哟?作为电源滤波,可以使用电感。

相关文档
最新文档