北师大版高中数学必修五期末综合测试卷.doc

合集下载

【北师大版】高中数学必修五期末试题(含答案)(1)

【北师大版】高中数学必修五期末试题(含答案)(1)

一、选择题1.设0,0a b >>,若4a b +=.则49a b+的最小值为( ) A .254B.252 C .85D .1252.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .323.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) A .3B .2C .3D .334.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 5.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106 m (如图),则旗杆的高度为( )A .10 mB .30 mC .3mD .6 m6.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin 3sin sin A C B A C +-=,1b =,则23a c -的最小值为( )A .4-B .3-C .2-D .3-7.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若22b c ac =+,则角C 的取值范围是( )A .π(0,)4B .ππ(,)42C .ππ(,)43D .π,64π⎛⎫ ⎪⎝⎭9.已知数列{}n a 中,11n n a a n +-=+,11a =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则满足143n S n n ⎛⎫≥- ⎪⎝⎭)的n 的最大值为( )A .3B .4C .5D .610.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或11.正整数数列{}n a 满足:1,2(*)22,21n n n k a ka k N k a k +=⎧=∈⎨+=-⎩,则( ) A .数列{}n a 中不可能同时有1和2019两项 B .n a 的最小值必定为1 C .当n a 是奇数时,2n n a a +≥D .n a 的最小值可能为212.已知数列{}n a 中,11a =,又()1,1n a a +=,()21,1n b a =+,若//a b ,则4a =( ) A .7B .9C .15D .17二、填空题13.设实数s ,t 满足0t >,且24s t +=,则128s s t+的最小值是____________. 14.已知对满足4x y xy +=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为___________.15.已知实数x ,y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为________.16.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,sin sin B C +=bc 的值为______. 17.ABC 中,a ,b ,c 分别是,,A B C ∠∠∠的对边,2224ABCa b c S+-=,则C =_________.18.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E测得60BEC∠=,并测得23DC=,2CE=(单位:千米),测得A、B两点的距离为___________千米.19.数列{}n a中,11a=,212a=,11211(2)n n nna a a+-=+≥,则{}1n na a+⋅的前n项和nS=__________.20.若数列{}n a满足12a=,1441n n na a a+=++,则使得22020na≥成立的最小正整数n的值是______.三、解答题21.已知关于x的一元二次不等式2(1)0ax a x b-++<的解集为112x x x⎧⎫-⎨⎬⎩⎭或.(Ⅰ)求,a b的值;(Ⅱ)若不等式2(2)30bx m a x m+++-≥对任意实数[0,4]m∈恒成立,求实数x的取值范围.22.已知2()(1)1f x ax a x=+--(1)若()0f x>的解集为11,2⎛⎫--⎪⎝⎭,求关于x的不等式31axx+≤-的解集;(2)解关于x的不等式()0f x≥.23.在ABC中,内角A,B,C的对边分别为a,b,c,且3cos sinb C C a⎛⎫+=⎪⎪⎝⎭.(1)求角B的值;(2)若2c=,2222c a b ab=+-,求ABC的面积.24.如图,在ABC中,AB AC⊥,2AB AC==,点E,F是线段BC(含端点)上的动点,且点E在点F的右下方,在运动的过程中,始终保持π4EAF∠=不变,设EABθ∠=弧度.(1)写出θ的取值范围,并分别求线段AE,AF关于θ的函数关系式;(2)求EAF△面积S的最小值.25.已知各项均为正数的数列{}n a 的前n 项和为n S ,且满足222n n n S a a =+-.(1)求数列{}n a 的通项公式; (2)若232n nn a a b --=,求数列{}n b 的前n 项和n T . 26.数列{}n a 的前n 项之和为n S ,11a =,11n n a pa +=+(p 为常数) (1)当1p =时,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项之和; (2)当2p =时,求证数列{}1n a +是等比数列,并求n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用“1”的代换凑配出定值后用基本不等式可得最小值. 【详解】0,0,4a b a b >>+=()(4914914912513134444b a a b a b a b a b ⎛⎫⎛⎫∴+=++=++≥⨯+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当49b aa b =,即812,55a b ==时取等号. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.3.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,4t bc =最后通过基本不等式求得AD 的最大值。

【北师大版】高中数学必修五期末试卷带答案

【北师大版】高中数学必修五期末试卷带答案

一、选择题1.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-2.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6543.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2C .a 3>b 3D .a b b a> 4.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .21a c +>21b c + D .a |c |>b |c |5.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC边上的中线BD =△ABC 的周长为( ) A .15B .14C .16D .12 6.在△ABC 中,AC =BC =1,∠B =45°,则∠A =( )A .30°B .60°C .30°或150°D .60°或120°7.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若tan C =cos 8A =,b =ABC 的面积为( ) A.BCD8.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C.D.9.已知数列{}n a 的前n 项和为n S ,且0n a >,n *∈N ,若数列{}n a 和{}n S 都是等差数列,则下列说法不正确的是( ) A .{}n n a S +是等差数列B .{}n n a S ⋅是等差数列C .{}2na 是等比数列D .{}2nS 是等比数列10.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .2611.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-12.等差数列{}n a 的前n 项和为n S ,已知32110S a a =+,534a =,则1a =( ) A .2B .3C .4D .5二、填空题13.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.14.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.15.已知ABC 的面积为4,2tan 3B =,AB AC >,设M 是边BC的中点,若AM =,则BC =___________.16.在ABC 中,6B π=,D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACDBC =_____________.17.已知ABC 中,D 是BC 上的点,AD 平分BAC ∠,且2ABD ADC S S =△△,1AD =,12DC =,则AC =_________. 18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,23ABC π∠=,ABC ∠的平分线交AC 于点D ,且2BD =,则3a c +的最小值为___________.19.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527i i a ==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______. 20.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c 可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.三、解答题21.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围. 22.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.23.在ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,若2b =,sin B b B =-.(1)求角B 的大小;(2)若BAC ∠的平分线AD 交BC 于点D ,△ACD BD 的长度. 24.已知ABC 的内角,,A B C 的对边分别为,,a b c ,2cos cos cos aA b C c B=+.(1)求角A 的大小;(2)若a =11b c+的取值范围. 25.已知等差数列{}n a ,且55a =,515S =,首项为1的数列{}n b 满足112n n n n b a b a ++= (1)求数列{}n a 的通项公式及前n 项和n S ; (2)求数列{}n b 前n 项和n T .26.已知数列{}n a 的前n 项和为n S ,且11a =,()121n n a S n N *+=+∈,等差数列{}n b 满足39b =,15272b b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 的前n 项和为n T ,且n n n c a b =⋅,求n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.2.A解析:A根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=.因为11611161161()()(17)17)5555n m m n m n m n m n +=++=++≥=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.3.C解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 4.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的;当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.5.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =, 若AC边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.6.A解析:A 【分析】直接利用正弦定理求出sin A 的大小,根据大边对大角可求A 为锐角,即可得解A 的值. 【详解】因为:△ABC 中,BC =1,AC =∠B =45°,所以:BC AC sinA sinB=,sinA 112BC sinB AC ⨯⋅===. 因为:BC <AC ,可得:A 为锐角, 所以:A =30°. 故选:A . 【点评】本题考查正弦定理在解三角形中的应用,考查计算能力,属于基础题.7.B解析:B 【分析】结合同角三角函数的基本关系可求出sin 4C =,cos 4C =,sin 8A =,由两角和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】因为sin tan cos C C C ==,且22sin cos 1C C +=,解得sin C =,cos C =,又cos A =,所以sin A ==,故sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+=.因为sin sin a bA B =,b =,故sin 2sin b A a B==,故11sin 2224ABC S ab C =⨯=⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.8.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+,平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.9.D解析:D 【分析】由题意,判断出数列{}n a 是公差为0的等差数列,然后分别利用等差数列的定义与等比数列的定义判断每个选项即可. 【详解】因为数列{}n a 和{}n S 都是等差数列,1n n n a S S -=-,所以可判断n a 为定值,所以数列{}n a 是公差为0的等差数列,即10n n a a --=.对A ,()()1111----++-=-+-=n n n n n n n n n a S a S S S a a a ,所以数列{}n n a S +是等差数列;对B ,1121----=⋅⋅⋅⋅-=n n n n n n n n n a S a S a S a S a ,所以数列{}n n a S ⋅是等差数列;对C ,222211-==n n n n a a a a ,所以数列{}2n a 是等比数列;对D ,设n a a =,则222,==n n S na S n a ,则221222222(1)(1)-==--n n n a n n a n S S ,所以数列{}2n S 不是等比数列.故选:D 【点睛】解答本题的关键在于判断出数列{}n a 是公差为0的等差数列,然后结合等差数列的定义,等比数列的定义列式判断是否为等差或者等比数列.10.A解析:A 【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.11.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.12.A解析:A 【解析】设等差数列{a n }的公差为d ,∵S 3=a 2+10a 1,a 5=34, ∴3a 1+3d =11a 1+d ,a 1+4d =34, 则a 1=2. 本题选择A 选项.二、填空题13.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可. 【详解】 由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线1122y x z =-,,1122y x z =-,的截距最小, 此时z 最大,由2222x y x y -⎧⎨+⎩== ,得A (1,0).代入目标函数z=x-2y , 得z=1-2×0=1, 故答案为1. 【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【解析】由题意知且2和3是方程的两个根即答案为7【点睛】本题考查一元二次不等式的解法与应用问题解题的关键是根据一元二次不等式与对应方程之间的关系求出的值 解析:7【解析】由题意知0a > 且2和3是方程250ax x b -+=的两个根,5321,7632a a a b b b a=,=⎧+⎪=⎧⎪∴∴+=⎨⎨=⎩⎪⨯⎪⎩. 即答案为7.【点睛】本题考查一元二次不等式的解法与应用问题,解题的关键是根据一元二次不等式与对应方程之间的关系,求出a b ,的值15.4【分析】首先利用余弦定理和三角形面积公式建立关于的方程再分别求根据余弦定理求结合条件求得的值【详解】得:解得:①中利用余弦定理②由①②可得解得:或即当时得此时不成立当时得此时成立故故答案为:4【点解析:4 【分析】首先利用余弦定理和三角形面积公式,建立关于,a c 的方程,再分别求,a c ,根据余弦定理求b ,结合条件AB AC >,求得BC 的值. 【详解】2tan 3B =,得:sin 13B =,cos 13B =11sin 422ABCSac B ac ===,解得:ac =① ABM中,利用余弦定理222252cos 542413a a a c c B c ac =+-⋅⋅=+-= ②由①②可得22174ac a c ⎧=⎪⎨+=⎪⎩,解得:2a c ⎧=⎪⎨=⎪⎩4a c =⎧⎪⎨=⎪⎩, AB AC >,即c b >当2a c ==时,2222cos 32b a c ac B =+-=,得b =c b <,不成立,当4,a c == 2222cos 5b a c ac B =+-=,得b =c b >,成立,故4BC a ==. 故答案为:4 【点睛】易错点点睛:本题的易错点是求得,a c 后,还需满足条件AB AC >这个条件,否则会增根.16.【分析】先由面积公式求出即得再由余弦定理求出进而利用正弦定理求出再在中利用正弦定理即可求出【详解】在中解得是锐角三角形则由余弦定理可得即则在中由正弦定理可得即则则在中即解得故答案为:【点睛】本题考查【分析】先由面积公式求出sin ACD ∠,即得cos ACD ∠,再由余弦定理求出AD ,进而利用正弦定理求出sin A ,再在ABC 中利用正弦定理即可求出. 【详解】 在ACD △中,11sin 42sin 22ACDS AC CD ACD ACD =⨯⨯⨯∠=⨯⨯⨯∠=解得sin ACD ∠=ACD △是锐角三角形,1cos 4ACD ∴∠=,则由余弦定理可得222142242164AD =+-⨯⨯⨯=,即4AD =, 则在ACD △中,由正弦定理可得sin sin AD CDACD A=∠2sin A =,则sin A =则在ABC 中,sin sin BC ACA B=412=,解得BC =.【点睛】本题考查正余弦定理和三角形面积公式的应用,解题的关键是先在ACD △中,利用面积公式和正余弦定理解出sin A .17.【分析】由面积比得得由角平分线定理得在和中应用余弦定理结合可求得【详解】由已知则又平分所以设则中同理中因为所以解得(负的舍去)故答案为:【点睛】本题考查三角形面积公式三角形内角平分线定理余弦定理通过【分析】 由面积比得2BD DC =,得1BD =,由角平分线定理得2ABAC=,在ABD △和ACD △中应用余弦定理结合cos cos ADB ADC ∠=-∠可求得AC . 【详解】由已知1sin 221sin 2ABD ACD BD AD ADBS BD S CD CD AD ADC ⋅∠===⋅∠△△,12CD =,则1BD =, 又AD 平分BAC ∠,所以2AB BDAC CD==,2AB AC =,设AC x =,则2AB x =, ABD △中,22222114cos 1222BD DA AB x ADB x BD AD +-+-∠===-⋅, 同理,ACD △中,221154cos 14212x ADC x +-∠==-⨯⨯, 因为180ADB ADC ∠+∠=︒,所以225cos cos 1204ADB ADC x x ∠+∠=-+-=,解得x (负的舍去),故答案为:32. 【点睛】本题考查三角形面积公式,三角形内角平分线定理,余弦定理,通过180ADB ADC ∠+∠=︒,cos cos 0ADBADC ∠+∠=,把两个三角形联系起来达到求解的目的.18.【分析】根据面积关系建立方程关系结合基本不等式1的代换进行求解即可【详解】如图所示则的面积为即∴∴当且仅当即时取等号所以a+3c 的最小值为8+4故答案为:8+4【点睛】本题考查基本不等式的应用考查三 解析:843+【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可. 【详解】如图所示,则ABC 的面积为111sin1202sin 602sin 60222ac a c =⋅+⋅︒︒︒, 即22ac a c =+,∴1112a c +=. ∴3(3)a c a c +=+1132242(423)843c a a c a c ⎛⎫⎛⎫+⨯=⨯++≥+=+⎪ ⎪⎝⎭⎝⎭.当且仅当33843c a a c a c ⎧=⎪⎨⎪+=+⎩即2232233a c ⎧=+⎪⎨=+⎪⎩时取等号. 所以,a +3c 的最小值为8+43. 故答案为:8+43.【点睛】本题考查基本不等式的应用,考查三角形的面积公式和角平分线性质的应用,考查分析和计算能力,属于基础题.19.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列, 从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.20.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a c b a c ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c =⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+,当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠,故①错误;②:数列{}n a 的前n 项和21nn S =-, 当1n =时,111211a S ==-=,当2n ≥时,111(21)(21)2n n n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列, 所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.三、解答题21.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦.【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3. (2)①当0a =时,()30f x =-≤恒成立; ②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩ 解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<.综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦. 【点睛】研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果. 22.(1)2()2f x x =-,()g x x =;(2)答案见解析. 【解析】试题分析:(1)根据函数奇偶性的性质利用方程组法即可求f (x )和g (x )的解析式;(2)()()h x g x < 即()23130mx m x +--<,讨论当0m =时,当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m =,23x =-,比较1m与-3的大小,进行讨论; 试题(1)由题意()()22f x g x x x -+-=--,即()()22f x g x x x -=--,又()()22f x g x x x +=+-联立得()22f x x =-,()g x x =.(2)由题意不等式即()23130mx m x +--<,当0m =时,即30x --<,解得3x >-;当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m=,23x =-, 故当0m >时,易知13m >-,不等式的解为13x m-<<; 当0m <时,若13m >-,即13m <-时,不等式的解为3x <-或1x m>; 若13m =-,即13m =-时,不等式的解为3x ≠-; 若13m <-,即13m >-时,不等式的解为1x m<或3x >-; 综上所述,当13m <-时,不等式的解为1|3x x x m 或⎧⎫-⎨⎬⎩⎭;当103m -≤<时,不等式的解集为1|3x x x m ⎧⎫-⎨⎬⎩⎭或;当0m =时,不等式的解集为{}3x x -; 当0m >时,不等式的解集为1|3x x m ⎧⎫-<<⎨⎬⎩⎭. 点睛:本题主要考查根据奇偶性的定义利用方程组法求函数解析式及求含参的一元二次不等式解集;在讨论时从二次项系数等于0,不等于0入手,当不等于0时,往往先对式子进行因式分解得出对应二次方程的根,然后比较根的大小,讨论要不重不漏. 23.(1)6B π=;(2)BD =【分析】(1)有已知条件,结合正弦定理边角关系、辅助角公式得sin 13B π⎛⎫+= ⎪⎝⎭,根据三角形内角的性质,即可求角B .(2)由题设,应用正弦定理得1sin 2AD BD θ⋅=,结合三角形面积公式有sin AD θ=BD 的长度.【详解】(1)由2b =sin B b B =-,∴sin 2B B +=,即1sin 12B B =,得sin 13B π⎛⎫+= ⎪⎝⎭,又()0,B π∈,∴4,333B πππ⎛⎫+∈ ⎪⎝⎭,可知32B ππ+=,解得6B π=. (2)设BAD θ∠=,由AD 是BAC ∠的平分线,有CAD θ∠=,在△ABD 中,由正弦定理得sin sin 6BD ADπθ=,所以1sin 2AD BD θ⋅=. 又△ACD,所以1sin sin 2b AD AD θθ⋅==,∴12BD =BD = 【点睛】 关键点点睛:(1)综合应用正弦定理边角互化,辅助角公式,三角形内角的性质求角; (2)应用正弦定理及三角形面积公式求边长.24.(1)3A π=;(2)⎫+∞⎪⎪⎣⎭. 【分析】(1)利用正弦定理边化角可化简已知关系式求得cos A ,结合A 的范围可求得结果;(2)解法一:利用正弦定理边化角可整理得到1161sin 262B b c B ππ⎛⎫+ ⎪⎝⎭+=⎛⎫-+⎪⎝⎭,利用B 的范围可求得sin 6B π⎛⎫+⎪⎝⎭的范围,代入整理可求得结果; 解法二:利用余弦定理和基本不等式可求得3bc ≤,整理得到11b c +=合二次函数的性质可求得所求的范围. 【详解】(1)由正弦定理得:()sin sin 2cos sin cos sin cos sin A AA B C C B B C ==++.B C A π+=-,()sin sin B C A ∴+=,2cos 1A ∴=,即1cos 2A =,()0,A π∈,3A π∴=.(2)解法一:由正弦定理知,2sin sin sin sin 3a b c A B C π====,sin sin 1111sin sin 3612sin 2sin 2sin sin 2sin sin sin 2362B B B B C b c B C B C B B B ππππ⎛⎫⎛⎫+++ ⎪ ⎪+⎝⎭⎝⎭∴+=+===⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭.3A π=,20,3B π⎛⎫∴∈ ⎪⎝⎭. 令6B πθ=+,则5,66ππθ⎛⎫∈⎪⎝⎭,则1sin ,12θ⎛⎤∈ ⎥⎝⎦.则11cos 24sin sin 22sin 22b cθθθθ⎫+====+∞⎪⎪⎣⎭-+--+⎪⎝⎭. 解法二:3a =,3A π=,∴由余弦定理知:2232b c bc bc bc +-=≥-(当且仅当b c =时取等号),3bc ∴≤,()233b c bc +=+,则113bc ≥,11b c b c bc +∴+===.11b c ∴+的取值范围为⎫+∞⎪⎪⎣⎭. 【点睛】方法点睛:求解与边长相关的取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;将所求式子化为符合基本不等式的形式或配凑成函数的形式来进行求解;应用此方法时,需注意基本不等式等号成立的条件.25.(1)n a n =,(1)2n n n S +=;(2)1242n n n T -+=-. 【分析】(1)设等差数列{}n a 的公差为d ,结合55a =,515S =列出关于首项与公差的方程组,求出首项和公差,可得数列{}n a 的通项公式及其前n 项和n S ; (2)先求得()11112n n b b n n n +=⋅≥+,得到n b n ⎧⎫⎨⎬⎩⎭是111b =为首项,12为公比的等比数列,可得数列{}n b 的通项公式:12n n nb -=,再用错位相减法可得数列{}n b 的前n 项和n T . 【详解】(1)依题意,设数列{}n a 的公差为d 因为53515S a ==,所以33a =,故35153a a d -==-. 故()33n a a n d n =+-=,(1)2n n n S +=(2)依题意,112n n n n b a b a ++=,()11112n nb b n n n+=⋅≥+ 所以n b n ⎧⎫⎨⎬⎩⎭是111b =为首项,12为公比的等比数列,112n n b n -⎛⎫= ⎪⎝⎭,从而12n n nb -=01221123122222n n n n n T ---=+++⋅⋅⋅++ 123111*********n n n n n T --=+++++⋅⋅⋅ 12111112122121222222212n n n n n n n n n T --+=+++⋅⋅⋅+-=-=-- 所以1242n n n T -+=-.【点睛】关键点点睛:本题考查的知识点是等差数列通项公式与求和公式、等比数列前n 项和公式、错位相减求和,综合性强,难度中档.“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:(1)掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列对应项的积构成的新数列);(2)相减时注意最后一项的符号; (3)求和时注意项数别出错;(4)最后结果一定不能忘记等式两边同时除以1q -. 26.(1)13-=n n a ,3n b n =;(2)1321344n n n T +-=+⋅. 【分析】(1)由数列的递推关系式求出等比数列{}n a 的通项公式,利用等差数列的基本量运算得出{}n b 的通项公式; (2)利用错位相减法求出n T . 【详解】(1)1211n n a S n +=+≥①1212n n a S n -=+≥②①-②得:13n n a a +=,2n ≥ 又因为11a =,23a =所以数列{}n a 是以1为首项,3为公比的等比数列 所以13-=n n a因为{}n b 为等差数列且39b =,15272b b +=所以有:()111292724b d b b d +=⎧⎨+=+⎩解得:13b =,3d =,所以3n b n =(2)由(1)知3nn c n =⋅213233n n T n =⋅+⋅+⋅①()23131323133n n n T n n +=⋅+⋅+-⋅+⋅②①-②得:2312333...33n n n T n +-=++++-⋅()11131333233132n n n n n T n n +++---=-⋅=-⋅-1321344n n n T +-=+⋅【点睛】方法点睛:本题考查数列的通项公式,考查数列的求和,数列求和的方法总结如下:1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.。

北师大版高中数学必修5综合测试试题及答案

北师大版高中数学必修5综合测试试题及答案

北师大版高中数学必修5综合测试试题及答案必修模块5试题.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共3页.满分为150分。

考试时间120分钟.第Ⅰ卷选择题共50分一.选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一项是符合题目要求的)1.已知等差数列{an}中,a7a916,a41,则a12的值是A.15B.30C.31D.6422.若全集U=R,集合M=某某4,S=某3某0,则MðUS=某1A.{某某2}B.{某某2或某3}C.{某某3}D.{某2某3}3.若1+2+22+……+2n>128,nN某,则n的最小值为A.6B.7C.8D.94.在ABC中,B60,bac,则ABC一定是2A、等腰三角形B、等边三角形C、锐角三角形D、钝角三角形115.若不等式a某2b某20的解集为某|某,则a-b值是23A.-10B.-14C.10D.146.在等比数列{an}中,S4=1,S8=3,则a17a18a19a20的值是A.14B.16C.18D.207.已知某2y1,则2某4y的最小值为A.8B.6C.22D.28.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n个图案中有白色地面砖的块数是A.4n2B.4n2C.2n4D.3n3第1个第2个第3个某4y309.已知变量某,y满足3某5y25,目标函数是z2某y,则有某1A.zma某12,zmin3C.zmin3,z无最大值B.zma某12,z无最小值D.z既无最大值,也无最小值10.在R上定义运算:某y某(1y),若不等式(某a)(某a)1对任意实数某成立,则实数a的取值范围是A.1a1B.0a2C.1331aD.a2222第Ⅱ卷非选择题共100分二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上)11.已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为.12.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为.13.在数列an中,a11,且对于任意正整数n,都有an1ann,则a100=________________.14.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设ai,j(i、j∈N某)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,23456如a4,2=8.若ai,j=2006,则i、j的值分别为________,__________78910…………………………三、解答题:(本大题共6小题,共80分。

【北师大版】高中数学必修五期末试题及答案(1)

【北师大版】高中数学必修五期末试题及答案(1)

一、选择题1.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( ) A .2 B .1 C .2 D .22 2.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .103.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163 B .13 C .2 D .44.如果0a b >>,0t >,设b M a =,b t N a t +=+,那么( ) A .M N <B .M N >C .M ND .M 与N 的大小关系和t 有关 5.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b c =且sin 1cos sin cos B B A A-=,若点O 是ABC 外一点,()0AOB θθπ∠=<<,2OA =,1OB =.则平面四边形OACB 的面积的最大值是( )A .8534+B .4534+C .3D .4532+ 6.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( )A .1B .2C .4D .67.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .178.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .23D .439.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .510110.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( )A .-784B .-368C .-389D .-39211.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( )A .2B .3C .269D .25912.已知数列{}n a 为等差数列,10a <且1231990a a a a +++⋅⋅⋅+=,设()*12n n n n b a a a n N ++=∈,当{}n b 的前n 项和n S 最小时,n 的值有( )A .5个B .4个C .3个D .2个 二、填空题13.西气东输工程把西部的资源优势变为了经济优势,实现了气能源需求与供给的东西部衔接,同时该项工程的建设也加快了西部及沿线地区的经济发展.在输气管道工程建设过程中,某段直线形管道铺设需要经过一处平行峡谷,勘探人员在峡内恰好发现一处四分之一圆柱状的圆弧拐角,用测量仪器得到此横截圆面的圆心为O ,半径OM ON =且为1米,而运输人员利用运输工具水平横向移动直线形输气管不可避免的要经过此圆弧拐角,需从宽为38米的峡谷拐入宽为16米的峡谷.如图所示,位于峡谷悬崖壁上的两点A ,B 的连线恰好与圆弧拐角相切于点T (点A ,T ,B 在同一水平面内),若要使得直线形输气管能够顺利地通过圆弧拐角,其长度不能超过______________米.14.一船向正北方向匀速行驶,看见正西方向两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西45︒方向上,另一灯塔在南偏西60︒方向上,则该船的速度是____海里/小时.15.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A 、B 两点的距离为______16.在ABC 中,角,,A B C 的对边分别为,,a b c ,22b =且ABC ∆面积为)2223S b a c =--,则面积S 的最大值为_____. 17.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x y x+的取值范围是__________. 18.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a 距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.19.已知111,2n n a a a +==,若(1)n n n b a n =+-⋅,则数列{}n b 的前10项的和10S =______.20.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 三、解答题21.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少. 22.(1)已知()2f x kx =+,不等式()3f x <的解集为()1,5-,不等式()1x f x ≥的解集为A .求集合A ; (2)解关于x 的不等式()2220ax a x +--≥.23.已知在△ABC 中,a ∶b ∶c =2∶6∶(3+1),求角A 的大小.24.如图,在ABC 中,AB AC ⊥,2AB AC ==,点E ,F 是线段BC (含端点)上的动点,且点E 在点F 的右下方,在运动的过程中,始终保持π4EAF ∠=不变,设EAB θ∠=弧度.(1)写出θ的取值范围,并分别求线段AE ,AF 关于θ的函数关系式;(2)求EAF △面积S 的最小值.25.已知公差为2的等差数列{}n a ,且1a ,7a ,5a 成等比数列.(1)求数列{}n a 的通项公式;(2)若数列{}n a 的前n 项和为n S ,求数列n S n ⎧⎫⎨⎬⎩⎭的最小项. 26.已知等比数列{}n a 的公比3q =,并且满足2a ,318a +,4a 成等差数列. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足31log n n nb a a =+,记n S 为数列{}n b 的前n 项和,求使2220n S n ->成立的正整数n 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据基本不等式的性质求出2a+b+c 的最小值即可.详解:由题得:因为a 2+ac+ab+bc=2,∴(a+b )(a+c )=2,又a ,b ,c 均为正实数,∴2a+b+c=(a+b )+(a+c )≥2()()a b a c ++=22,当且仅当a+b=a+c 时,即b=c 取等号.故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.2.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解 【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法3.B解析:B【分析】根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案.【详解】根据题意,正数x ,y 满足x +y =1, 则2211x y y x +++=22(1)(1)11--+++y x y x=(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13 [8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13, 即2211x y y x +++的最小值为13, 所以3m ≤,则m 的最大值为13; 故选:B .【点睛】本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题. 4.A解析:A【分析】对M 与N 作差,根据差值的正负即可比较大小.【详解】()()()()()b a t a b t t b a b b t M N a a t a a t a a t +-+-+-=-==+++,因为0a b >>,所以0b a -<, 又0t >,所以0a t +>,所以()()0t b a a a t -<+,即0M N -<,所以M N <. 故选:A【点睛】本题主要考查作差法比较大小,考查学生的化简分析能力,属于常规题型.5.A解析:A【分析】由条件整理可得ABC 是等边三角形,利用OACB AOB ABC S S S =+可化简得532sin 3OACB S πθ⎛⎫=-+ ⎪⎝⎭,即可求出最值. 【详解】 在ABC 中,sin 1cos sin cos B B A A-=, sin cos cos sin sin B A B A A ∴+=,即sin()sin()sin sin A B C C A π+=-== A C ∴=,b c =,∴ABC 是等边三角形,OACB AOB ABC S S S ∴=+2113||||sin ||222OA OB AB θ=⋅+⨯⨯ ()221321sin ||||2||||cos 2OA OB OA OB θθ=⨯⨯⨯++-⋅ 3sin (41221cos )θθ=++-⨯⨯⨯ 53sin 3cos 4θθ=-+ 532sin 34πθ⎛⎫=-+ ⎪⎝⎭, 0θπ<<,2333πππθ∴-<-<, 则当32ππθ-=,即56πθ=时,sin 3πθ⎛⎫- ⎪⎝⎭取得最大值1, 故四边形OACB 面积的最大值为53853244++=. 故选:A.【点睛】本题考查两角差的正弦公式,考查三角形的面积公式,考查余弦定理,考查三角恒等变换的应用,解题的关键是利用三角形面积公式结合三角恒等变换化简得2sin 3OACB S πθ⎛⎫=-+ ⎪⎝⎭6.C解析:C【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去).考点:余弦定理,正弦定理.7.D解析:D【分析】由题意得出点D 为AF的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案.【详解】 2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB =)22ABC 1()sin 601217sin 602DEF AD S S ︒︒∴== 故选:D【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.8.C解析:C【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BDBA BC =+,再平方利用基本不等式求解即可. 【详解】 cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为故选:C.【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题. 9.B解析:B【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B.【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律. 10.D解析:D【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D. 【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.11.C解析:C【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解.【详解】因为()21n S n n =-,所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=,∴1259k +=, 解可得269k =故选:C.【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题. 12.B解析:B【分析】根据等差数列的性质可知1000a ,从而判断数列{}n a 是单调递增数列,即可判断当{}n b 的前n 项和n S 最小时,n 可取的值.【详解】数列{}n a 为等差数列,119921981002a a a a a ,1231990a a a a +++⋅⋅⋅+=,则1001990a ,即1000a , 10a <,可以判断数列{}n a 是单调递增数列,991010,0a a , 12n n n n b a a a ++=,12323412n n n n S a a a a a a a a a , 当{}n b 的前n 项和n S 最小时,n 可取的值为97,98,99,100共4个.故选:B.【点睛】本题主要考查等差数列的性质,属于中档题.二、填空题13.75【分析】设则可得AB 长度的表达式利用凑1法结合基本不等式即可求得答案【详解】设其中延长OM 交AB 于D 过B 做SB 垂线交DO 于G 延长ON 交AB 于E 过A 做SA 垂线交NO 于F 如图所示:在中AF=39则即解析:75 【分析】设=MOT θ∠,则可得AB 长度的表达式,利用凑“1”法,结合基本不等式,即可求得答案. 【详解】设=MOT θ∠,其中(0)2πθ∈,,延长OM ,交AB 于D ,过B 做SB 垂线,交DO 于G ,延长ON ,交AB 于E ,过A 做SA 垂线,交NO 于F ,如图所示:在Rt AEF 中,AEF θ∠=,AF =39,则sin AF AE θ=,即39sin AE θ=, 在Rt BDG 中,DBG θ∠=,17BG =,则cos BG BD θ=,即17cos BD θ=, 在Rt DOE 中, OT DE ⊥,OT=1,所以11,cos sin DO EO θθ==, 又1122DO EO DE OT ⨯⨯=⨯⨯,所以1sin cos DE θθ=, 所以39171()sin cos sin cos AB f AE BD DE θθθθθ==+-=+-=39cos 17sin 1sin cos θθθθ+-, 因为4sin 3cos 5sin()5θθθϕ+=+≤,其中3tan 4ϕ=,当且仅当2πθϕ+=时,等号成立,所以1(4sin 3cos )(39cos 17sin )139cos 17sin 15()sin cos sin cos f θθθθθθθθθθθ++-+-=≥22221(68sin 207sin cos 117cos )(sin cos )5sin cos θθθθθθθθ++-+==22 63207112 sin sin cos cos716207555(9tan)sin cos5tan5θθθθθθθθ++=++71620729tan755tan5θθ≥⨯⨯+=,当且仅当169tantanθθ=,即4tan3θ=时等号成立,所以若要使得直线形输气管能够顺利地通过圆弧拐角,其长度不能超过75米.故答案为:75.【点睛】解题的关键是根据题意,得到AB长度的表达式,难点在于需利用凑“1”法,将表达式化简成齐次式,结合基本不等式求解,考查计算化简的能力,属中档题.14.【分析】由题意设得到然后在中利用正弦定理求解【详解】如图所示:设船的初始位置为半小时后行驶到两个港口分别位于和所以则设则在中所以利用正弦定理解得所以船速为故答案为:【点睛】本题主要考查正弦定理的实际解析:()1031+【分析】由题意,设BA x=,得到CA x=,然后在Rt BDA中,利用正弦定理求解.【详解】如图所示:设船的初始位置为A,半小时后行驶到B,两个港口分别位于C和D,所以45BCA∠=︒,15CBD∠=︒,则30CDB∠=︒,设BA x=,则CA x=,在Rt BDA中,10DA x=+.所以利用正弦定理10sin60sin30x x+=︒︒,解得)531x=所以船速为)()153110312÷=.故答案为:)1031【点睛】本题主要考查正弦定理的实际应用,还考查了运算求解的能力,属于中档题.15.【分析】由与求出的度数根据以及的长利用正弦定理即可求出的长【详解】解:在中即则由正弦定理得:故答案为:【点睛】本题考查正弦定理以及特殊角的三角函数值熟练掌握正弦定理是解本题的关键解析:【分析】由ACB ∠与BAC ∠,求出ABC ∠的度数,根据sin ACB ∠,sin ABC ∠,以及AC 的长,利用正弦定理即可求出AB 的长. 【详解】解:在ABC ∆中,50AC m =,45ACB ∠=︒,105CAB ∠=︒, 即30ABC ∠=︒, 则由正弦定理sin sin AB ACACB ABC=∠∠,得:50sin 21sin 2AC ACBAB ABC∠===∠.故答案为:. 【点睛】本题考查正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.16.【分析】利用三角形面积构造方程可求得可知从而得到;根据余弦定理结合基本不等式可求得代入三角形面积公式可求得最大值【详解】由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中解析:4-【分析】利用三角形面积构造方程可求得tan 3B =-,可知56B π=,从而得到sin ,cos B B ;根据余弦定理,结合基本不等式可求得(82ac ≤,代入三角形面积公式可求得最大值. 【详解】()()222312cos sin 12122S b a c ac B ac B =--=⋅-=sin tan cos B B B ∴==()0,B π∈ 56B π∴=cos B ∴=1sin 2B =由余弦定理2222cos b a c ac B =+-得:()228323a c ac ac =++≥+(当且仅当a c =时取等号)()82323ac ∴≤=-+ 11sin 42324S ac B ac ∴==≤- 本题正确结果:423- 【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.17.【解析】先画出可行域如图:因为目标函数表示动点与定点连线斜率再加1;由图可知;最小最大;联立可得即联立可得即故:∴所以:故答案为点睛:本题考查线性规划问题难点在于目标函数几何意义近年来高考线性规划问解析:4,43⎡⎤⎢⎥⎣⎦【解析】先画出可行域如图:因为目标函数表示动点()P x y ,与定点00O (,)连线斜率k 再加1; 由图可知;OC k 最小,OA k 最大; 联立1{4x x y =+=,可得13x y ,即()1,3A ,联立1{4y x y =+=,可得31x y =⎧⎨=⎩,即()3,1C ,故:13OC k =,3OA k =,∴133OP k ≤≤,所以:041[4]03x y y u x x +-=+∈-=,,故答案为4,43⎡⎤⎢⎥⎣⎦. 点睛:本题考查线性规划问题,难点在于目标函数几何意义,近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视;①画可行域②明确目标函数几何意义,目标函数表示动点()P x y ,与定点()00O ,连线斜率k 再加1,③过O 做直线与可行域相交可计算出直线PO 斜率,从而得出所求目标函数范围.18.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成 解析:(1,)+∞【分析】由题中定义得出()()f x a f x +>,作差变形后得出22313304ax a x a a ++->对任意的x ∈R 恒成立,结合0a >得出∆<0,由此可求得实数a 的取值范围. 【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a ⎡⎤⎛⎫+-=+-++--+=++- ⎪⎢⎥⎣⎦⎝⎭,因为函数()y f x =是“a 距”增函数,所以22313304ax a x a a ++->恒成立, 由0a >,所以2210912014a a a ⎛⎫∆<⇒--<⇒> ⎪⎝⎭. 因此,实数a 的取值范围是()1,+∞. 故答案为:()1,+∞. 【点睛】本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题.19.1028【分析】由题可知为等比数列求出的通项公式即可写出的通项公式利用分组求和法即可求出前10项和【详解】是首项为1公比为2的等比数列则故答案为:1028【点睛】本题考查等比数列的判断以及通项公式的解析:1028 【分析】由题可知{}n a 为等比数列,求出{}n a 的通项公式,即可写出{}n b 的通项公式,利用分组求和法即可求出前10项和. 【详解】111,2n n a a a +==,{}n a ∴是首项为1,公比为2的等比数列,11122n n n a --∴=⨯=,121nn nb n , 则910124212310S1011251102812.故答案为:1028.【点睛】本题考查等比数列的判断以及通项公式的求法,考查分组求和法求数列的前n 项和,属于基础题.20.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.三、解答题21.(1)()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽. 【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x米, 因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<;(2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫⎪ ⎪⎝-⎝⎭⎭2808160648m =-=,当且仅当1600x x=,即()404,400x =∈时等号成立.因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题. 22.(1)[)1,2;(2)见解析 【分析】(1)由题意得,23523k k ⎧-+=⎪⎨+=⎪⎩,由此可求得()2f x x =-+,代入后转化为一元二次不等式即可求出答案;(2)分类讨论法解不等式即可. 【详解】解:(1)∵()2f x kx =+,不等式()3f x <的解集为()1,5-, ∴方程23kx +=的解集为1,5,∴23523k k ⎧-+=⎪⎨+=⎪⎩,解得1k =-,∴()2f x x =-+,∴()112x x f x x ≥⇔≥-+()2102x x -⇔≤-()()12020x x x ⎧--≤⇔⎨-≠⎩, 解得12x ≤<, ∴[)1,2A =;(2)∵()2220ax a x +--≥,①当0a =时,原不等式化为220x --≥,解得1x ≤-;当()2010a a x x a ⎛⎫≠∴-+≥ ⎪⎝⎭, ②当0a >时,原不等式化为()210x x a ⎛⎫-+≥ ⎪⎝⎭, 解得1x ≤-,或2x a≥; ③当0a <时,原不等式化为()210x x a ⎛⎫-+≤ ⎪⎝⎭, 1︒当21a=-即2a =-时,原不等式化为()210x +≤,解得1x =-; 2︒当21a<-即20a -<<时,解得21x a ≤≤-;3︒当21a >-即2a <-时,解得21x a -≤≤;综上:当2a <-时,原不等式的解集为21,x a ⎡⎤∈-⎢⎥⎣⎦; 当2a =-时,原不等式的解集为{}1x ∈-; 当20a -<<时,原不等式的解集为2,1x a ⎡⎤∈-⎢⎥⎣⎦; 当0a =时,原不等式的解集为(],1x ∈-∞-;当0a >时,原不等式的解集为(]2,1,x a ⎡⎫∈-∞-+∞⎪⎢⎣⎭. 【点睛】本题主要考查一元二次不等式的解法,考查分式不等式的解法,考查转化与化归思想,考查分类讨论法,属于中档题.23.45A =︒【分析】利用余弦定理可求A 的大小. 【详解】由题设可设)2,,1(0)a k bc k k ===>,由余弦定理得,222222644cos 2k k k b c a A bc +-+-===,而A 为三角形内角,故45A =︒.24.(1)π04θ≤≤,πsin4AE θ=⎛⎫+ ⎪⎝⎭;cos AF θ=;(2))21.【分析】(1)依据直角三角形直接写出θ的范围,然后根据正弦定理可得AE ,AF 关于θ的函数关系式.(2)根据(1)的条件可得EAF S △,并结合辅助角公式,简单计算以及判断即可. 【详解】(1)由题意知π04θ≤≤,πππsin sin sin 444AE AB AE θθ=⇒=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ππcos sin sin 42AF AC AF θθ=⇒=⎛⎫- ⎪⎝⎭. (2)12sin 4EAF S θ==+ ⎪⎝⎭⎝⎭△)122111cos 2πsin 221224θθθ==≥=+⎛⎫+++ ⎪⎝⎭.当且仅当π8θ=时,取“=”. 25.(1)211n a n =-;(2)最小项为第7项为297. 【分析】(1)由等比中项的性质以及等差数列的通项公式求出数列{}n a 的通项公式; (2)当5n ≤时,由112n a n =-得出n S ,由二次函数的性质得出数列n S n ⎧⎫⎨⎬⎩⎭的最小项,当6n >时,由211n a n =-得出n S 结合导数数列n S n ⎧⎫⎨⎬⎩⎭的最小项. 【详解】(1)由题知:2715a a a =⋅,则()()2111128a a a +=⋅+得:19a =-即1(1)211n a a n d n =+-=- (2)当5n ≤时,112n a n =-,29112102n nS n n n +-=⨯=- 则21010n S n n n n n-==-,即5n =时,min 5n S n ⎛⎫= ⎪⎝⎭当6n ≥时,211n a n =-,251211(5)10502n n S S n n n +-=+⨯-=-+,则5010n S n n n=+- 令50()10,6f x x x x =+-≥,2225050()1x f x x x -'=-=当6x <<()0f x '<,当x >时,()0f x '>即函数()f x在(上单调递减,在()+∞上单调递增 即7n =时,min297n S n ⎛⎫=⎪⎝⎭ 最小项为第7项为297【点睛】关键点睛:解决本题的关键在于先讨论211n a n =-的正负,从而确定{}n a 的通项公式,进而得出n S ,最后由二次函数的性质以及导数得出数列n S n ⎧⎫⎨⎬⎩⎭的单调性,由此得出最小值. 26.(1)()*3nn a n N =∈;(2)所求的正整数n 的最小值为20.【分析】(1)由公比3q =,并且满足2a ,318a +,4a 成等差数列直接用基本量代换求数列{}n a 的通项公式; (2)先求出311+log ,3n n n n b a n a ==+,用分组求和法求出n S ,解不等式即可. 【详解】(1)因为数列{}n a 是公比为3的等比数列,&#xF02E; 又由234,18,a a a +成等差数列,∴243236a a a +=+, 所以1113271836a a a +=+,解得13a =, 从而数列{}n a 的通项公式为()*3nn a n N =∈.(2)311+log ,3n n n n b a n a ==+ ∴()()21111111111331211333222313n n n n n n n n S n ⎛⎫- ⎪++⎛⎫⎝⎭=+++++++=+=+- ⎪⎝⎭-, ∴21213n nS n n -=+-, 又113n n ⎧⎫+-⎨⎬⎩⎭是递增的,当19n =时, 219122020,3n S n -=-<当20n =时, 220122120,3n S n -=-> 所以所求的正整数n 的最小值为20.【点睛】(1)等差(比)数列问题解决的基本方法:基本量代换; (2)分组求和法进行数列求和适用于{}n n a b +,分组后对{}n a 和{}n b 分别求和.。

【北师大版】高中数学必修五期末试题附答案

【北师大版】高中数学必修五期末试题附答案

一、选择题1.设0a >,0b >,则下列不等式中不.恒成立的是( ). A .12a a+≥B .222(1)a b a b +≥+-C .||a b a b -≥-D .3322a b ab +≥ 2.不等式ax 2+bx+2>0的解集是,则a+b 的值是( ) A .10B .﹣10C .14D .﹣143.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<4.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31c a -<<- B .113c a -<<- C .21c a -<<- D .112c a -<<- 5.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π6.已知ABC 的内角,,A B C 所对的边分别为,,a b c ,若tan tan 1tan tan B C B C +=-⋅,且2bc =,则ABC 的面积为( )A .22B .2C .24D .227.已知ABC ∆中,2a =,3b =,60B =,那么角A 等于( )A .135B .45C .135或45D .908.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A. B.C .60mD .20m9.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-10.2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采样返回,标志着中国航天向前又迈出了一大步.月球距离地球约38万千米,有人说:在理想状态下,若将一张厚度约为0.1毫米的纸对折n 次其厚度就可以超过到达月球的距离,那么至少对折的次数n 是( )(lg 20.3≈,lg3.80.6≈) A .40B .41C .42D .4311.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .612.在“全面脱贫”行动中,贫困户小王2020年1月初向银行借了扶贫免息贷款10000元,用于自己开发的农产品、土特产品加工厂的原材料进货,因产品质优价廉,上市后供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底街缴房租800元和水电费400元,余款作为资金全部用于再进货,如此继续,预计2020年小王的农产品加工厂的年利润为( )(取111275=..,121.29=)A .25000元B .26000元C .32000元D .36000元二、填空题13.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.14.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.15.已知不等式24xa x ≤+对任意的[]1,3x ∈恒成立,则实数a 的范围为_______. 16.在ABC 中,点M 是边BC的中点,AM =2BC =,则2AC AB +的最大值为___________.17.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,()226b a c =+-,23B π=,则ABC 的面积是______________. 18.如图,在四边形ABCD 中,已知AB BC ⊥,5AB =,7AD =,135BCD ∠=︒,1cos 7A =,则BC =________.19.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.20.已知等差数列{}n a 的前n 项和为n S ,1a 为整数,213a =-,8n S S ≥,则数列{}n a 的通项公式为n a =________.三、解答题21.选修4-5 不等式选讲已知函数f (x )=|x -1|-2|x +1|的最大值为m . (1)求m ;(2)若a ,b ,c ∈(0,+∞),a 2+2b 2+c 2=2m ,求ab +bc 的最大值.22.已知函数2(4)()x f x x +=(0)x >. (1)解不等式:f (x )>503; (2)求函数f (x )的最小值.23.在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,5b c =,sin 1c A =.点D 是AC的中点,BD AB ⊥,求c 和ABC ∠.24.如图,一辆汽车在一条水平的公路上向正西行驶到A 处时测得公路北侧一山顶D 在北偏西45°的方向上,仰角为α,行驶300米后到达B 处,测得此山顶在北偏西15°的方向上,仰角为β,若β=45°,则此山的高度CD 和仰角α的正切值.25.已知n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数且n *∈N 若.130n n a a ++⋅>恒成立,求: (1)数列{}n a 的通项公式; (2)数列{}n a 的前n 项和n S .26.从条件①()21n n S n a =+,②1(2)n n n S S a n -+=≥,③0n a >,22n n n a a S +=,中任选一个,补充到下面问题中,并给出解答.(注:如果选择多个条件分别作答,按照第一个解答计分.)已知数列{}n a 的前n 项和为n S ,11a =,___________. (1)求数列{}n a 的通项公式;(2)若1a ,k a ,2k S +成等比数列,求正整数k 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:根据基本不等式、作差法、分析法论证A,B,C 正确,举反例得D 错误. 详解:332222()()a b ab a b a ab b +-=-+-, 当512b a b -<<有3322a b ab <+, 故D 项错误,其余恒成立:111222,a a a a a a+≥⋅=⇒+≥ 2222222(1)(1)(1)02(1),a b a b a b a b a b +-+-=-+-≥⇒+≥+-当a b ≥时2220a b a b ab a b a b b a b a b ---+≥---+=⇒-≥-,当a b <时0a b a b ->>-,选D .点睛:本题考查根据基本不等式、作差法、分析法论证等知识点,考查推理论证能力.2.D解析:D 【解析】试题分析:不等式ax 2+bx+2>0的解集是,说明方程ax 2+bx+2=0的解为,把解代入方程求出a 、b 即可. 解:不等式ax 2+bx+2>0的解集是即方程ax 2+bx+2=0的解为故则a=﹣12,b=﹣2.考点:一元二次方程的根的分布与系数的关系.3.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的4.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题5.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积.【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.D解析:D 【分析】由两角和的正切公式可得()tan 1B C +=,即可得到34A π=,然后由面积公式可得结果. 【详解】因为tan tan 1tan tan B C B C +=-⋅,即()tan 1B C +=,在ABC 中,所以tan 1A =-,即34A π=,所以sin 2A =,所以11sin 22222ABCSbc A ==⨯⨯=. 故选:D . 【点睛】本题考查三角形的面积公式的应用,考查两角和的正切公式,属于基础题.7.B解析:B 【分析】先由正弦定理求出sin A ,进而得出角A ,再根据大角对大边,大边对大角确定角A . 【详解】由正弦定理得:sin sin sin sin a b A B A B =⇒=,sin 2A B ==, ∴45A =或135,∵a b <,∴A B <,∴45A =,故选B. 【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.8.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203sin120BC3tan 3020320ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.9.A解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.10.C解析:C 【分析】设对折n 次时,纸的厚度为n a ,则{}n a 是以10.12a =⨯为首项,公比为2的等比数列,求出{}n a 的通项,解不等式460.12381010n n a =⨯≥⨯⨯即可求解【详解】设对折n 次时,纸的厚度为n a ,每次对折厚度变为原来的2倍, 由题意知{}n a 是以10.12a =⨯为首项,公比为2的等比数列,所以10.1220.12n nn a -=⨯⨯=⨯,令460.12381010n n a =⨯≥⨯⨯,即122 3.810n ≥⨯,所以lg 2lg 3.812n≥+,即lg 20.612n ≥+,解得:12.6420.3n ≥=, 所以至少对折的次数n 是42,故选:C 【点睛】关键点点睛:本题解题的关键是根据题意抽象出等比数列的模型,求出数列的通项,转化为解不等式即可.11.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.12.C解析:C 【分析】设1月月底小王手中有现款为1(120%)10000120010800a =+⨯-=元,n 月月底小王手中有现款为n a ,1n +月月底小王手中有现款为1n a +,由题意可知16000 1.2(6000)n n a a +-=-,所以数列{6000}n a -是首项为4800,公比为1.2的等比数列,求出12a 即得解. 【详解】设1月月底小王手中有现款为1(120%)1000080040010800a =+⨯--=元,n 月月底小王手中有现款为n a ,1n +月月底小王手中有现款为1n a +,则1 1.21200n n a a +=-,即16000 1.2(6000)n n a a +-=-, 所以数列{6000}n a -是首项为4800,公比为1.2的等比数列,∴11126000480012a -=⨯,即1112480012600042000a =⨯+=,年利润为420001000032000-=元, 故选:C 【点睛】关键点睛:解答本题的关键是根据递推关系1 1.21200n n a a +=-构造数列{6000}n a -,求出新数列的通项关系.二、填空题13.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利解析:(1,2]. 【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解. 【详解】 设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯, 所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m n mnt t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2].故答案为:(1,2]. 【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键.14.10【分析】作出不等式组对于的平面区域利用数形结合即可得到结论【详解】解:作出不等式组对于的平面区域如图:由则平移直线由图象可知当直线经过点时直线在轴上的截距最大此时最大由解得此时故答案为:10【点解析:10 【分析】作出不等式组对于的平面区域,利用数形结合即可得到结论. 【详解】解:作出不等式组对于的平面区域如图: 由32z x y =+,则322z y x =-+, 平移直线322zy x =-+, 由图象可知当直线322zy x =-+, 经过点A 时,直线322z y x =-+, 在y 轴上的截距最大,此时z 最大,由2y x y =⎧⎨-=⎩,解得(2,2)A ,此时322210max z =⨯+⨯=, 故答案为:10.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.15.【分析】利用基本不等式求得在的最大值即可求得实数的范围【详解】因为则当且仅当时即等号成立即在的最大值为又由不等式对任意的恒成立所以即实数的范围为故答案为:【点睛】本题主要考查不等式的恒成立问题其中解解析:1[,)4+∞.【分析】利用基本不等式求得24xx +在[]1,3x ∈的最大值,即可求得实数a 的范围. 【详解】因为[]1,3x ∈,则211444x x x x =≤=++,当且仅当4x x =时,即2x =等号成立, 即24xx +在[]1,3x ∈的最大值为14, 又由不等式24x a x ≤+对任意的[]1,3x ∈恒成立,所以14a ≥ 即实数a 的范围为1[,)4+∞.故答案为:1[,)4+∞.【点睛】本题主要考查不等式的恒成立问题,其中解答中熟练应用基本不等式求得24xx +的最大值是解答的关键,着重考查推理与运算能力.16.【分析】用余弦定理表示出求出后利用余弦函数性质可得最大值【详解】记则在中同理在中可得∴设则其中是锐角显然存在使得∴的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理考查换元法求最值解题方法是用解析:【分析】用余弦定理表示出,AC AB ,求出2AC AB +后利用余弦函数性质可得最大值. 【详解】记AMC α∠=,则AMB πα∠=-, 在AMC中,2222cos 314AC AM MC AM MC ααα=+-⋅=+-=-,同理在AMB中可得24AB α=+,∴228AB AC +=,设AB x =,AC x =,(0,)2x π∈.则12cos )cos )2AC AB x x x x x x +=+=+=+)x θ=+,其中cosθθ==θ是锐角, 显然存在0(0,)22x ππθ=-∈,使得0sin()1x θ+=,∴2AC AB +的最大值为故答案为: 【点睛】关键点点睛:本题考查余弦定理,考查换元法求最值.解题方法是用余弦定理表示出,AB AC,得出228AB AC +=,利用三角换元法AB x =,AC x =,(0,)2x π∈.这里注意标明x 的取值范围.在下面求最值时需确认最值能取到,然后结合三角函数的性质求最值.17.【分析】利用余弦定理求出的值再利用三角形的面积公式可求得的面积【详解】由余弦定理可得可得则解得因此的面积是故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边和角但不能直接使用正弦定理【分析】利用余弦定理求出ac 的值,再利用三角形的面积公式可求得ABC 的面积. 【详解】由余弦定理可得222222cos b a c ac B a c ac =+-=++,222a c b ac ∴+-=-,()2222626b a c a c ac =+-=++-,可得222260a c b ac +-+-=,则260ac ac --=,解得6ac =,因此,ABC 的面积是11sin 62222ABC S ac B ==⨯⨯=△.故答案为:2. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.18.【分析】由余弦定理可得由诱导公式可得进而可得由三角恒等变换得再由正弦定理即可得解【详解】在中由余弦定理得所以所以又所以所以所以在中由正弦定理得所以故答案为:【点睛】本题考查了正弦定理和余弦定理解三角解析:)41【分析】由余弦定理可得8BD =、1cos 2ABD ∠=,由诱导公式可得1sin 2CBD ∠=,进而可得cos CBD ∠=sin BDC ∠,再由正弦定理即可得解. 【详解】在ABD △中,由余弦定理得2222cos 64BD AB AD AB AD A =+-⋅⋅=, 所以8BD =,所以2221cos 22AB BD AD ABD AB BD +-∠==⋅,又AB BC ⊥,所以1sin cos 2CBD ABD ∠=∠=,0,2CBD π⎛⎫∠∈ ⎪⎝⎭,所以cos CBD ∠==, 所以()sin sin sin cos cos sin BDC BCD CBD BCD CBD BCD CBD ∠=∠+∠=∠∠+∠∠12==, 在BCD △中,由正弦定理得sin sin 2BC BD BDC BCD ===∠∠,所以)41BC BDC =∠==.故答案为:)41.【点睛】本题考查了正弦定理和余弦定理解三角形的应用,考查了三角恒等变换的应用及运算求解能力,属于中档题.19.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.20.【分析】设等差数列的公差为由等差数列的性质及前n 项和公式可得再由二次函数的图象与性质可得求得后再由等差数列的通项公式即可得解【详解】设等差数列的公差为则为整数所以由结合二次函数的图象与性质可得解得所 解析:217n -【分析】设等差数列{}n a 的公差为d ,由等差数列的性质及前n 项和公式可得231322n n d d S n ⎛⎫+ ⎝-⎪⎭=,再由二次函数的图象与性质可得313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯,求得d 后再由等差数列的通项公式即可得解. 【详解】设等差数列{}n a 的公差为d ,则1213a a d d =-=--,d 为整数, 所以()()()2131313112222n d S d n n n n d a n d d n n n --=+⎛⎫--++ ⎪⎝=⎭=-, 由8n S S ≥,结合二次函数的图象与性质可得0d >,313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯, 解得131376d ≤≤, 所以2d =,所以1215a a d =-=-,所以()()111521217n a a n d n n =+-=-+-=-. 故答案为:217n -. 【点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了利用二次函数的图象与性质解决等差数列前n 项和最值的问题,属于中档题.三、解答题21.(1) m =2 (2) ab +bc 的最大值为2 【解析】试题分析:(1)根据绝对值内的零点,分类讨论,去掉绝对值符号,求出函数的最大值,即可得到m .(2)利用重要不等式求解ab+bc 的最大值. (1)当x ≤-1时,f (x )=3+x ≤2; 当-1<x <1时,f (x )=-1-3x <2; 当x ≥1时,f (x )=-x -3≤-4.故当x =-1时,f (x )取得最大值2,即m =2.(2)因为a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ), 当且仅当a =b =c =1时取等号,所以ab +bc ≤22222a b c ++ =2,即ab +bc 的最大值为2. 22.(1)8|03x x ⎧<<⎨⎩或}6x >;(2)16 【分析】(1)令2(4)503x x +>,解得x 的范围与0x >求交集即可得解集. (2)将2(4)()x f x x+=展开整理,然后用基本不等式求最值.【详解】(1)220(4)50()(4)5033x x f x x x x>⎧+⎪=>⇔⎨+>⎪⎩, 208|03264803x x x x x >⎧⎧⇔⇔<<⎨⎨-+>⎩⎩或}6x >.(2)22(4)81616()8816x x x f x x x x x +++===++≥=,当且仅当16x x =,即4x =时函数2(4)()x f x x+=取得最小值16.【点睛】本题主要考查了分式不等式的解法,和基本不等式求最值,属于基础题. 23.5c =,34ABC π∠=. 【分析】由勾股定理求出BD ,再由sin BDA AD=,sin 1c A =,5b c =求出5c =,5b =,再由余弦定理求出a ,最后由正弦定理求出ABC ∠. 【详解】解:在直角三角形ABD 中,22222224b c BD AD AB c ⎛⎫=-=-= ⎪⎝⎭,所以2c BD =.所以5sin BD A AD ==. 又因为sin 1c A =,所以5c =由5b c =得,5b =.因为5sin A =,0,2A π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin A A =-=. 在ABC 中,由余弦定理,得22255(5)255105a =+-⨯⨯⨯= 由正弦定理,得sin sin a b A ABC =∠,即510sin 55ABC =∠2sin 2ABC ∠=. 又因为,2ABC ππ⎛⎫∠∈ ⎪⎝⎭,所以34ABC π∠=. 【点睛】关键点睛:解决本题的关键在于正余弦定理的综合应用,综合利用两个定理求出c 和ABC ∠.24.231. 【分析】设山的高度CD =x ,在ABC 中,利用正弦定理求得CB ,AC ,在Rt BCD 中,由∠CBD =45°得CD =CB 2,然后在Rt ACD 中,由tan CDACα=求解. 【详解】设山的高度CD =x 米,由题可得∠CAB =45°,∠ABC =105°,AB =300米,∠CBD =45°. 在ABC 中,得:∠ACB =180°-45°-105°=30°, 利用正弦定理可得sin 30sin 45sin105AB CB AC==, 所以()300sin 45300sin1053002,15062sin30sin30CB AC ⨯⨯====+,在Rt BCD 中,由∠CBD =45°得CD =CB, 在Rt ACD 中可得tan 1CD AC α=== 25.(1)*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩;(2)2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【分析】 (1)先令12n nx t =,根据所给方程,得到()()2312log 23n n n t n t n n ++=+,构造函数()()214log 2n g x x n x +=+,确定122n n n t +<<,再讨论n 为奇数和n 为偶数两种情况,结合题中条件,即可求出数列的通项;(2)根据(1)的结果,讨论n 为奇数和n 为偶数两种情况,利用分组求和的方法,结合等差数列的求和公式,即可求出结果. 【详解】(1)因为n x 是关于x 的方程2121log 3n n x n n x+-=+的实数根,令12n n x t =,则12n nx t =, 所以()()2312log 23n n n t n t n n ++=+,记()()214log 2n g x x n x +=+,显然()g x 单调递增,且2221log 32n n g n n n n n n n +⎛⎫=+<+<+ ⎪⎝⎭,()()222111log 13132n n g n n n n n n n ++⎛⎫=+++=++>+ ⎪⎝⎭, 所以122n n n t +<<, 当*21()n k k N =-∈时,2112n k k t k --<<<,则[]11122n n n n a t k x ⎡⎤-===-=⎢⎥⎣⎦;当*2()n k k N =∈时,21122n k k t k +<<=+,则[]122n nn n a t k x ⎡⎤====⎢⎥⎣⎦; 综上,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩; (2)由(1)可得,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩, 当*21()n k k N =-∈时,()()1352461......n n n S a a a a a a a a -=+++++++++211121002412461122222......22222222224n n n n n n n +---⎛⎫⎛⎫++ ⎪ ⎪---⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭;当*2()n k k N =∈时,()()1351246......n n n S a a a a a a a a -=+++++++++2220024224622222 (222)22222224n n n n n n n -⎛⎫⎛⎫++ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭; 综上,2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【点睛】 关键点点睛:求解本题的关键在于由n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,求出12n x 的范围,利用12n n a x ⎡⎤=⎢⎥⎣⎦,通过讨论n 的奇偶,得出数列通项,即可求解. 26.(1)答案见详解;(2)答案见详解. 【分析】选①时,先写()1122n n S n a ++=+,作差得到n a n ⎧⎫⎨⎬⎩⎭是等差数列,即求得n a n =,再按要求列方程解得正整数k 的值即可;选②时,代入1n n n a S S -=-,化简得到是等差数列,求得2n S n =,再计算n a 即可,再按要求列方程解得正整数k 的值即可;选③时,先写21112n n n a a S ++++=,作差得到数列{}n a 是等差数列,即求得na n =,再按要求列方程解得正整数k 的值即可. 【详解】解:若选①,()21n n S n a =+,则()1122n n S n a ++=+, 两式作差得()()11221n n n a n a n a ++-=++,即101n na a n n,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭是等差数列,首项是111a =,公差是0,故1n a n =,所以n a n =;由{}n a 通项公式知,()12n n n S +=,故()()2232k k k S +++=,又11a =,k a k =, 结合题意知,()()22312k k k ++=⨯,即2560k k --=,解得1k =-或6k =,因为k 是正整数,所以6k =.若选②(2)n a n =≥,11a =,故0n S >1n n n a S S -=-=,=1=,2n ≥,故1=,公差是1n =,故2n S n =.2n ≥时,()221121n n n a S S n n n -=-=--=-,且11a =也适合该式,故数列{}n a 的通项公式21n a n =-;11a =,21k a k =-,()222k S k +=+,结合题意知,()()222112k k -=⋅+,即23830k k --=,解得3k =或13k =-, 因为k 是正整数,所以3k =.若选③,0n a >,22n n n a a S +=,则21112n n n a a S ++++=,两式作差得()211n n a a +++()212n n n a a a +-+=,化简得()()1110n n n n a a a a +++--=,由0n a >知,10n n a a ++>,得110n n a a +--=,即11n n a a +-=, 数列{}n a 是等差数列,首项是1,公差为1,故n a n =; 由{}n a 通项公式知,()12n n n S +=,故()()2232k k k S +++=,又11a =,k a k =,结合题意知,()()22312k k k ++=⨯,即2560k k --=,解得1k =-或6k =,因为k 是正整数,所以6k =. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,若已知式是关于na 和n S 关系式时,也通常利用两式作差得到1n n n S S a --=消去n S ,或者代入1n n n a S S -=-消去n a ,进行化简计算.。

【北师大版】高中数学必修五期末试卷附答案

【北师大版】高中数学必修五期末试卷附答案

一、选择题1.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R2.设x ,y 满足约束条件22032600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则22a b +的最小值为( ) A .254B .499C .14425D .225493.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-4.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭5.在ABC 中,a ,b ,c 分别为角A ,B ,C的对边,若a =b =45B =︒,则A =( )A .30B .30或150︒C .60︒或120︒D .60︒6.在ABC ∆中,30,10B AC =︒=,D 是AB边上的一点,CD =ACD ∠为锐角,ACD ∆的面积为20,则BC =( ) A.B.C.D.7.在△ABC 中,a 2tanB =b 2tanA ,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形8.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若tan C =cos 8A =,b =ABC 的面积为( ) A.BCD9.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .5B .6C .7D .810.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .411.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .1212.已知1,1x ,2x ,7成等差数列,1,1y ,2y ,8成等比数列,点()11,M x y ,()22,N x y ,则直线MN 的方程是( )A .10x y -+=B .10x y --=C .70x y --=D .70x y +-=二、填空题13.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.14.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________. 15.在ABC 中,6B π=,D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACDBC =_____________.16.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________17.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.18.已知ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,AB 边上的高为CD ,且2CD AB =,则a bb a+的取值范围是___________. 19.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+⎪⎝⎭,则10S =______. 20.已知等比数列{a n }的前n 项和为S n ,且133,12n n a S a λ++==,则实数λ的值为_____三、解答题21.设矩形ABCD 的周长为20,其中AB AD >,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AD x =,DP y =.(1)将y 表示成x 的函数,并求定义域; (2)求ADP △面积的最大值.22.因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入90万元安装了一台新设备,并立即进行生产,预计使用该设备前(N )n n +∈年的材料费、维修费、人工工资等共为(2552n n +)万元,每年的销售收入55万元.设使用该设备前n 年的总盈利额为()f n 万元.(1)写出()f n 关于n 的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理;问哪种方案处理较为合理?并说明理由.23.在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5a =,6c =,3sin 5B =.(1)求b 和sin A 的值;(2)求三角形BC 边的中线AD 长; (3)求πsin(2)4A +的值. 24.在①222b a c =+,②cos sin a B b A =,③sin cos B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,___________,3A π=,b =ABC 的面积.25.设数列{}n a 满足()*122222nn a a a n n +++=∈N . (1)求数列{}n a 的通项公式; (2)求数列21n n a ⎧⎫-⎨⎬⎩⎭的前n 项和n T . 26.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为122x xx--->+,即32x->+,即32x<+,则有20x+<,解得2x<-,所以不等式12xx->+的解集为{}|2x x<-,故选A.点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.2.C解析:C【分析】根据z的最大值求得,a b的关系式,结合点到直线的距离公式,求得22a b+的最小值.【详解】由2203260x yx y-+=⎧⎨--=⎩解得43xy=⎧⎨=⎩.画出可行域如下图所示,由于0,0a b>>,所以目标函数()0,0z ax by a b=+>>在点()4,3取得最大值4312a b+=.22a b+的最小值等价于原点到直线43120x y+-=的距离的平方,原点到直线43120x y+-=的距离为221212534-=+,所以22a b+的最小值为212144525⎛⎫=⎪⎝⎭.故选:C本小题主要考查根据线性规划的最值求参数,考查数形结合的数学思想方法,属于中档题.3.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.4.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()2233x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.5.C解析:C∵45a b B ===︒∴根据正弦定理sin sin a b A B=,即sin sin a B A b ===∵a b =>=∴()45,135A ∈︒︒ ∴60A =︒或120︒ 故选C6.C解析:C 【分析】先利用面积公式计算出sin ACD ∠,计算出cos ACD ∠,运用余弦定理计算出AD ,利用正弦定理计算出sin A ,在ABC ∆中运用正弦定理求解出BC . 【详解】解:由ACD ∆的面积公式可知,11sin 1025sin 2022ACAD ACD ACD ∠=∠=,可得sinACD ∠=,ACD ∠为锐角,可得cos ACD ∠==在ACD ∆中,21002021025805AD =+-=,即有AD =由sin sin AD CDACD A =∠可得sin sin CD ACD A AD ∠=,由sin sin AC BCB A=可知sin sin 2AC A BC B ===.故选C . 【点睛】本题考查正弦定理与余弦定理在解三角形中的应用,考查方程思想,属于中档题.7.D解析:D 【分析】根据正弦定理22tan ta in n s sin B B A A =⋅⋅,化简得到sin 2sin 2A B =,得到答案. 【详解】22tan tan a B b A =,故22tan ta in n s sin B B A A =⋅⋅,即sin 2sin 2A B =.故22A B =或22A B π+=,即A B =或2A B π+=.【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力.8.B解析:B 【分析】结合同角三角函数的基本关系可求出sin 4C =,cos 4C =,sin 8A =,由两角和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】因为sin tan cos C C C ==,且22sin cos 1C C +=,解得sin 4C =,cos 4C =,又cos A =,所以sin A ==,故sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+=.因为sin sin a bA B =,b =,故sin 2sin b A a B==,故11sin 2224ABC S ab C =⨯=⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.9.A解析:A 【分析】由等差数列的前n 和公式,求得1710a a +=,再结合等差数列的性质,即可求解. 【详解】由题意,根据等差数列的前n 和公式,可得1777()352a a S +==,解得1710a a +=, 又由等差数列的性质,可得17452a a a +==. 故选:A. 【点睛】熟记等差数列的性质,以及合理应用等差数列的前n 和公式求解是解答的关键10.C解析:C先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩, 又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.11.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D .本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.12.B解析:B 【分析】本题先根据题意求出1x 、2x 、1y 、2y ,再写出点M 、N 的坐标并求MN k ,最后求直线MN 的方程即可. 【详解】解:∵1,1x ,2x ,7成等差数列,∴12121721x x x x +=+⎧⎨=+⎩,解得1235x x =⎧⎨=⎩,∵1,1y ,2y ,8成等比数列,∴12212181y y y y ⋅=⨯⎧⎨=⨯⎩,解得1224y y =⎧⎨=⎩∴点()3,2M ,()5,4N ,42153MN k -==- ∴直线MN 的方程:41(5)y x -=⨯-,即10x y --=.故选:B. 【点睛】本题考查等差中项,等比中项,根据两点求直线的一般式方程,是基础题.二、填空题13.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可. 【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B .代入目标函数z y x =-,得044z =-=-. 所以z y x =-的最小值是4-. 故答案为:4- 【点睛】方法点睛:线性规划问题解题步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.14.①③【分析】结合基本不等式对四个函数逐个分析可得出答案【详解】对于①函数是定义域为的偶函数当时当且仅当时等号成立根据对称性可知函数的最小值为2满足题意;对于②因为所以则当且仅当即时等号成立所以即函数解析:①③ 【分析】结合基本不等式,对四个函数逐个分析,可得出答案. 【详解】对于①,函数1y x x=+是定义域为()(),00,-∞+∞的偶函数,当()0,x ∈+∞时,12x x +≥=,当且仅当1x =时等号成立, 根据对称性可知,函数1y x x=+的最小值为2,满足题意; 对于②,11123214124212112y x x x x x x ⎛⎫=++=-++=--+- ⎪---⎝⎭, 因为12x <,所以120x ->,则11244212x x -+-≥=--,当且仅当11212x x -=-,即0x =时等号成立, 所以1124212y x x ⎛⎫=--+-≤ ⎪-⎝⎭,即函数1123212y x x x ⎛⎫=++< ⎪-⎝⎭的最大值为2,没有最小值,不满足题意;对于③,222114144141x x xy x x x x x +⎛⎫=++=+ ⎪++⎝⎭,因为1x >,所以2104x x+>,所以2214241x x y x x +=+≥=+,当且仅当221441x x x x +=+,即2x =所以()2114141xy x x x x ⎛⎫=++> ⎪+⎝⎭的最小值为2,符合题意; 对于④,22221sin cos sin cos y x x x x=+,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以sin cos 0x x >,所以22221sin cos 2sin cos x x x x +≥=,当且仅当22221sin cos sin cos x x x x=,即sin cos 1x x =时等号成立,因为11sin cos sin 222x x x =≤,所以sin cos 1x x ≠, 即函数22221sin cos sin cos y x x x x=+的最小值不是2,不符合题意;故答案为:①③. 【点睛】本题考查函数的最值,考查基本不等式的应用,考查学生的推理能力与计算能力,属于中档题.15.【分析】先由面积公式求出即得再由余弦定理求出进而利用正弦定理求出再在中利用正弦定理即可求出【详解】在中解得是锐角三角形则由余弦定理可得即则在中由正弦定理可得即则则在中即解得故答案为:【点睛】本题考查【分析】先由面积公式求出sin ACD ∠,即得cos ACD ∠,再由余弦定理求出AD ,进而利用正弦定理求出sin A ,再在ABC 中利用正弦定理即可求出. 【详解】 在ACD △中,11sin 42sin 22ACDS AC CD ACD ACD =⨯⨯⨯∠=⨯⨯⨯∠=解得sin ACD ∠=ACD △是锐角三角形,1cos 4ACD ∴∠=,则由余弦定理可得222142242164AD =+-⨯⨯⨯=,即4AD =, 则在ACD △中,由正弦定理可得sin sin AD CDACD A=∠2sin A =,则sin 8A =, 则在ABC 中,sin sin BC ACA B=412=,解得BC =.【点睛】本题考查正余弦定理和三角形面积公式的应用,解题的关键是先在ACD △中,利用面积公式和正余弦定理解出sin A .16.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值. 【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =. 设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BCB A=∠∠,即32sin(3)sin παα=-,整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=, 结合sin 0α≠得222(2cos 12cos )3αα-+=,即258cos α=,显然α是锐角,所以cos αα=∴sin 22sin cos ααα==.再由ABC 得:2sin sin 2ABαα=,∴=解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.17.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.18.【分析】由余弦定理得出由三角形的面积公式得出进而可得出利用正弦函数的有界性和基本不等式即可求得的取值范围【详解】如下图所示:由余弦定理得由三角形的面积公式得得则当时即当时取得最大值由基本不等式可得当解析:2,22⎡⎤⎣⎦【分析】由余弦定理得出2222cos a b c ab C =++,由三角形的面积公式得出22sin c ab C =,进而可得出22sin 4b a C a b π⎛⎫+=+ ⎪⎝⎭,利用正弦函数的有界性和基本不等式即可求得a bb a +的取值范围. 【详解】 如下图所示:由余弦定理得2222cos c a b ab C =+-,2222cos a b c ab C ∴+=+,1122CD AB c ==,由三角形的面积公式得11sin 222ABC cS ab C c ==⋅△,得22sin c ab C =,()222sin cos 22sin 4a b ab C C ab C π⎛⎫∴+=+=+ ⎪⎝⎭,则22224b a a b C a b ab π+⎛⎫+==+ ⎪⎝⎭,0C π<<,5444C πππ∴<+<,当42C ππ+=时,即当4C π时,b aa b+取得最大值由基本不等式可得2b a a b +≥=,当且仅当a b =时,等号成立, 因此,a bb a+的取值范围是2,⎡⎣.故答案为:2,⎡⎣.【点睛】本题考查三角形中代数式的取值范围的求解,考查了余弦定理、三角形的面积公式、基本不等式以及正弦函数有界性的应用,考查计算能力,属于中等题.19.【分析】先利用求出再利用时可知是首项为1公差为1的等差数列即可求出【详解】当时解得当时整理可得是首项为1公差为1的等差数列是正项数列故答案为:【点睛】本题考查等差数列的判断考查和的关系属于中档题【分析】先利用11a S =求出1S ,再利用2n ≥时1n n n a S S -=-可知{}2n S 是首项为1,公差为1的等差数列,即可求出10S . 【详解】 当1n =时,1111112S a a a ,解得11a =,11S = 当2n ≥时,11112nn n n nS S S S S ,整理可得2211n n S S --=,2n S 是首项为1,公差为1的等差数列, 2111n S n n ,{}n a 是正项数列,n S ∴=1010S .【点睛】本题考查等差数列的判断,考查n a 和n S 的关系,属于中档题.20.【分析】首先利用与的关系式得到求得公比首项和第二项再通过赋值求的值【详解】当时两式相减得即并且数列是等比数列所以当时解得故答案为:【点睛】关键点点睛:本题的关键是利用数列和的关系式求数列的通项解析:34-【分析】首先利用1n a +与n S 的关系式,得到14n n a a +=,求得公比,首项和第二项,再通过赋值2n =求λ的值. 【详解】当2n ≥时,1133n nnn a S a S λλ+-+=⎧⎨+=⎩,两式相减得()1133n n n n n a a S S a +--=-=,即14n n a a +=,并且数列{}n a 是等比数列, 所以4q =,312a =,2133,4a a ∴==, 当2n =时,()321233a S a a λ+==+, 解得34λ=-. 故答案为:34- 【点睛】关键点点睛:本题的关键是利用数列n a 和n S 的关系式,求数列的通项.三、解答题21.(1)501010y x=--,(0,5)x ∈;(2)75-【分析】(1)由题意得10AB CD x ==-,则10CP x y =--,根据ADP Rt CBP ≌,可得DP BP y ==,所以222+(10)y x x y =--,化简整理,即可求得y 与x 的关系,根据AB AD >,即可求得x 的范围,即可得答案;(2)由(1)可得501010y x=--,(0,5)x ∈,则ADP △的面积12505(10)75210S xy x x ==-++-,根据x 的范围,结合基本不等式,即可求得答案.【详解】(1)由题意得:10AB CD x ==-,则10CP x y =--,因为在Rt ADP 和Rt CBP 中,,APD CPB AD BC ∠==, 所以ADP Rt CBP ≌,即DP BP y ==, 所以在Rt CBP 中,222+(10)y x x y =--,所以2222+10020202y x x y x y xy =++--+, 化简可得501010y x=--, 因为AB AD >,所以100x x ->>,解得05x <<, 所以501010y x=--,(0,5)x ∈; (2)由(1)可得501010y x=--,(0,5)x ∈, 所以ADP △面积115025250(10)55(10)7522101010x S xy x x x x x x ==⋅-=-=-++---, 因为(0,5)x ∈,所以100x -<,所以2502505(10)[5(10)]1010x x x x -+=--+≤-=---当且仅当2505(10)10x x-=-,即10x =-时等号成立,此时面积250[5(10)]757510S x x=--++≤--即ADP △面积最大值为75-【点睛】解题的关键是根据条件,表示出各个边长,根据三角形全等,结合勾股定理,进行求解,易错点为:利用基本不等式求解时,需满足“①正”,“②定”,“③相等”,注意检验取等条件是否成立,考查分析理解,计算化简的能力,属中档题.22.(1)25()50902f n n n =-+-,3年;(2)第二种方案更合适,理由见解析.【分析】(1)利用n 年的销售收入减去成本,求得()f n 的表达式,由()0f n >,解一元二次不等式求得从第3年开始盈利.(2)方案一:利用配方法求得总盈利额的最大值,进而求得总利润;方案二:利用基本不等式求得6n =时年平均利润额达到最大值,进而求得总利润. 比较两个方案获利情况,作出合理的处理方案. 【详解】 (1)由题意得:2255()5590(5)509022f n n n n n n =--+=-+-由()0f n >得25509002n n -+->即220360n n -+<,解得218n <<由n ∈+N ,设备企业从第3年开始盈利(2) 方案一总盈利额25()(10)1602f n n =--+,当10n =时,max ()160f n =故方案一共总利润16010170+=,此时10n = 方案二:每年平均利润()536550()502022f n n n n =-+-⨯≤,当且仅当6n =时等号成立 故方案二总利润62050170⨯+=,此时6n =比较两种方案,获利都是170万元,但由于第一种方案只需要10年,而第二种方案需要6年,故选择第二种方案更合适. 【点睛】本小题主要考查一元二次不等式的解法,考查基本不等式求最值,属于中档题. 23.(12;(3. 【分析】(1)确定B 锐角,求得cos B ,由余弦定理求得b ,再由正弦定理得sin A ; (2)在ABD △中由余弦定理求得中线AD ,(3)确定A 是锐角,求得cos A ,由二倍角公式求得sin 2,cos 2A A ,然后由两角和的正弦公式求值. 【详解】(1)在ABC 中,因为a b >,故由3sin 5B =,可得cos 45B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b = 由正弦定理sin sin a b A B =,得sin sin 13a B Ab ==. 所以,bsin A的值为13(2)设BC 边的中点为D ,在ABD △中,cos 45B = 由余弦定理得:AD ===, (3)由(1)及a c <,得cos 13A =,所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 【点睛】关键点点睛:本题考查正弦定理、余弦定理解三角形,解题时根据已知条件选用正弦定理或余弦定理求解,注意在用平方关系求得角的余弦时,先确定角的范围,然后计算. 24.条件选择见解析;ABC【分析】选择①,用余弦定理求得B 角,选择②,用正弦定理化边为角后求得B 角,选择③用两角和的正弦公式变形后求得B 角,然后利用正弦定理求得a ,再由诱导公式与两角和的正弦公式求得sin C ,最后由面积公式计算出面积. 【详解】解:(1)若选择①,222b a c =+由余弦定理,222cos 222a cb B ac ac +-===, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭所以113sin 2244ABC S ab C +===△. (2)若选择②cos sin a B b A =,则sin cos sin sin A B B A =, 因为sin 0A ≠,所以sin cos B B =, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以113sin2244ABCS ab C+===△.(3)若选择③sin cosB B+=4Bπ⎛⎫+=⎪⎝⎭sin14Bπ⎛⎫+=⎪⎝⎭,因为()0,Bπ∈,所以5,444Bπππ⎛⎫+∈ ⎪⎝⎭,所以42Bππ+=,所以4Bπ=;由正弦定理sin sina bA B=,得sinsinsinb AaBπ===因为3Aπ=,4Bπ=,所以53412Cππππ=--=,所以5sin sin sin sin cos cos sin124646464Cπππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin22ABCS ab C===△.【点睛】关键点点睛:本题考查正弦定理、余弦定理、三角形的面积公式,解题中要注意条件与结论之间的联系,确定选用的公式与顺序.用正弦定理进行边角转换是一种重要技巧,它的目的是边角分离,公式应用明确.本题是求三角形面积,一般要知道两边和夹角的正弦,在已知一角和一边情况下还需要求得一条边长及两边夹角,这样我们可以采取先求B角,再求a边和sin C,从而得面积.25.(1)2nna=;(2)2332n nnT+=-.【分析】(1)当2n≥时,112211222nnaa an--+++=-与已知条件两式相减可得2nna=,再令1n=,计算1a即可求解;(2)由(1)得2nna=,所以22211nnn na--=,再利用乘公比错位相见即可求和.【详解】(1)数列{}n a满足122222nnaa an+++=当2n≥时,112211222nnaa an--+++=-两式作差有12nn a =,所以2n n a = 当1n =时,12a =,上式也成立所以2nn a =(2)22211n n n n a --= 则211113(21)222nn T n ⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪⎝⎭⎝⎭,231111113(21)2222n n T n +⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()2311111111111111131421221221231222222222212n n n n n n T n n n ++-+⎛⎫- ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⨯+++⋯+--⨯=+⨯--=-+⨯⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-所以2332n nn T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.26.(1)2nn a =;(2)选择①:332n n +-;选择②:332nn +-. 【分析】(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2n T n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解. 【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥, 因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d , 若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n n A n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯, 两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--,所以332n n n A +=-; 若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =, 所以8187728362T b d d ⨯==+=,解得12b d ==, 所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯,()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯. 两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n nn A +=-. 【点睛】 关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用; (2)要明确错位相减法的适用条件和使用方法,细心运算.。

北师大版高中数学必修五期末综合测试卷.doc

北师大版高中数学必修五期末综合测试卷.doc

、选择题:1 .在数49 2.A.D.3.5.必修5期末综合测试卷本大题共有10小题,每小题5分,列a n 中,a12,2a n 1 2a n 150 51共50分.则a101的值为D. 52x > 0, y > 0, 与b的大小关已知{a n}等比数列, a n>0,B.a2a4 2玄3玄 525,那么a3 a5 =A. 5B. 10C. 15D. 20x、y>0, x + y=1. 恒成立,a的最小值为已知在△B. 2ABC中, sin A : sin B : sin C= 3 :5 :7,那么这个三角形的最大角是(9 .6 .设a 、a + 1、a + 2为钝角三角形的边,则A. 135B. 90° C . 120°D. 150 O v a v 3 B 3 v a v 4C 1 v a v 3D 4 v a v 6 7 .数列中"8,4右 ( )、八 刖项的和为A.c.1 n2 n 2n 21 n2 n 2n 1 2bx 2 5x a 0的解( )A x3或 x 2B 1十 1 x 或x - 23C 11Cx23D3x2已知不等式ax 2 5xb 0的解集是{x| 3xx 4y 3 0目标函数z 2x y ,变量x, y 满足3x 5y 25 ,则有x 1a 的取值范围是2},则不等式A.z max12,Z min B. Z max12, Z 无最小值10. 等差数列厲},叫的前n项和分别为盼丁”,若辛启,则簣( )二、填空题:共5小题,每小题5分,共25 分.11. _________________________________________________ 若x>0, y>0,且--1,贝S x+y 的最小值是 _______________________x y14. △ ABC 中,若sin 2 A sin 2B sin 2 C sinAsinC 那么角 B= ______________15. 若方程x 2 2x |g(2a 2 a) 0有一个正根和一个负根,则实数a 的 取值范围是 ___________________三、解答题:本大题共6小题,共75分。

【北师大版】高中数学必修五期末试题带答案(1)

【北师大版】高中数学必修五期末试题带答案(1)

一、选择题1.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .32.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .73.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( ) A .2B .1CD .4.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-5.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC的面积S =根据此公式,若cos (2)cos 0a B b c A +-=,且2224b c a ,则ABC 的面积为( ) AB.CD.6.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC边上的中线BD =△ABC 的周长为( ) A .15B .14C .16D .127.在ABC 中,60A ∠=︒,4AC =,BC =ABC 的面积为 A.B .4C.D8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( ) A.BC .32D9.已知{}n a 是公比为整数的等比数列,设212n nn na ab a -+=,n ∈+N ,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( )A .11B .10C .9D .810.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏11.已知{}n a 是等比数列,且2222212345123451060a a a a a a a a a a ++++=++++=,,则24a a +=( )A .2B .3C .4D .512.已知数列{}n a 中,11a =,又()1,1n a a +=,()21,1n b a =+,若//a b ,则4a =( ) A .7B .9C .15D .17二、填空题13.已知2xy x =+,则42x y+的最小值为_________14.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.15.在△ABC 中,∠ABC 为直角,点M 在线段BA 上,满足BM =2MA =2,记∠ACM =θ,若对于给定的θ,这样的△ABC 是唯一确定的,则BC =_____.16.设角,,A B C 是ABC ∆的三个内角,已知向量()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥.则角C 的大小为_____________.17.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4a =,2c =,60B =︒,则b = ,C = .18.已知点(3,A ,O 是坐标原点,点(),Px y的坐标满足0200y x y -≤+≥⎨⎪≥⎪⎩,设z 为OA 在OP 上的投影,则z 的取值范围是__________.19.已知数列{}n a ,11a =,12n n a a n +=+,则4a =_____.20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.某位病人为了维持身体的健康状态,需要长期服用药物类营养液以补充食物难以提供的两种微量元素α和β.根据医学建议:病人每天微量元素α的摄入量应控制在[]300,330(单位:微克),微量元素β的摄入量应控制在[]250,280(单位:微克).目前,市面上可供选择的营养液主要是A 和B .已知1毫升营养液A 中含微量元素α是30微克,含微量元素β是10微克,每毫升费用5元;1毫升营养液B 中含微量元素α是15微克,含微量元素β是20微克,每毫升费用4元.(1)若该病人每天只吃单价较便宜的营养液B ,判断他的两种微量元素的摄入量能否同时符合医学建议,并说明理由;(2)如果你是医生,为了使得该病人两种微量元素的摄入量同时符合医学建议,且每天所需的费用最低,应该推荐病人每天服用营养液A 和营养液B 各多少毫升?该病人每天所需的营养液最低费用是多少元?22.已知函数f (x )=ax 2﹣(4a +1)x +4(a ∈R ).(1)若关于x 的不等式f (x )≥b 的解集为{x |1≤x ≤2},求实数a ,b 的值; (2)解关于x 的不等式f (x )>0.23.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且22cos b c a C -=. (1)求A ;(2)若ABC 为锐角三角形,2c =,求b 的取值范围.24.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin a S A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分. 25.已知{}n a 为等差数列,数列{}n b 的前n 和为1128,22,10n S a b a a ==+=,___________.在①112n n S b =-,②2n a n b λ=这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分).(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 26.已知数列{}n a 满足1*111,33().n n n a a a n ++==+∈N(1)求证:数列{}3nn a 是等差数列. (2)求数列{}n a 的通项公式.(3)设数列{}n a 的前n 项和为,n S 求证:37.324n n S n >-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.D解析:D【解析】分析:根据基本不等式的性质求出2a+b+c的最小值即可.详解:由题得:因为a2+ac+ab+bc=2,∴(a+b)(a+c)=2,又a,b,c均为正实数,∴2a+b+c=(a+b)+(a+c)()()a b a c++2,当且仅当a+b=a+c时,即b=c取等号.故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.4.A解析:A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.5.C解析:C 【分析】首先根据正弦定理化简已知,求得1cos 2A =,再根据余弦定理求bc ,最后代入面积公式求解. 【详解】由正弦定理边角互化可知cos (2)cos 0a B b c A +-=化简为()sin cos sin 2sin cos 0A B B C A +-=,sin cos sin cos 2sin cos A B B A C A +=即()sin sin 2sin cos A B C C A +==sin 0C ≠,1cos 2A ∴=, 222141cos 2222b c a A bc bc +-==⇔=,解得:4bc =,根据面积公式可知S === 故选:C 【点睛】关键点点睛,本题考查数学文化,理解面积公式,对于面积公式可变形为S =6.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =,故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.7.C解析:C 【分析】利用三角形中的正弦定理求出角B ,利用三角形内角和求出角C ,再利用三角形的面积公式求出三角形的面积,求得结果. 【详解】因为ABC ∆中,60A ∠=︒,4AC =,BC = 由正弦定理得:sin sin BC ACA B=,所以4sin 60sin B︒=,所以sin 1B =, 所以90,30B C ︒︒∠=∠=,所以14sin 302ABC S ︒∆=⨯⨯= C. 【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得sin 1B =,从而求得90,30B C ︒︒∠=∠=,之后应用三角形面积公式求得结果.8.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c ≥ac ≤6.当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 62222ABCSac B =≤⨯⨯=, ∴△ABC故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.9.B解析:B 【分析】设{}n a 是公比为q ,根据已知条件有1n n n b qq -=+求得2q,数列{}n b 的前n 项和为3(21)n n S =-即2020n S ≥可求n 的最小值【详解】令{}n a 是公比为q ,由212n nn na ab a -+=,n ∈+N ∴1n n n b qq -=+,又113072b =即10113072q q +=,又q Z ∈,知:2q∵{}n b 的前n 项和为n S ,则3(21)nn S =-∴2020n S ≥时,3(21)2020n -≥,n ∈+N 解得10n ≥ 故选:B 【点睛】本题考查了数列,由数列的递推关系及已知条件求公比,进而根据新数列的前n 项和及不等式条件求n 的最小值10.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=.故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.11.A解析:A 【分析】首先根据题意,利用等比数列求和公式,得到5112345(1)101a q a a a a a q -++++==-,222222101521234(1)601a q q a a a a a -=-++=++,两式相除得到51(1)61a q q+=+,即5112345(1)61a q a a a a a q+-+-+==+,与1234510a a a a a ++++=联立求得结果.【详解】设数列{}n a 的公比为q ,且1q ≠,则5112345(1)101a q a a a a a q -++++==-, 222222101521234(1)601a q q a a a a a -=-++=++,两式相除得210551112(1)(1)(1)6111a q a q a q q q q --+÷==--+, 所以5112345(1)61a q a a a a a q+-+-+==+, 又123123452445)()2()104(6a a a a a a a a a a a a --+-+=+=++-+=+, 所以242a a +=, 故选:A. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的求和公式,这题思维的应用,属于中档题目.12.C解析:C 【分析】利用向量平行的坐标运算公式得出121n n a a +=+,可得出1121n n a a ++=+,所以数列{}1n a +是以2为首项,公比为2的等比数列,然后求解4a . 【详解】因为//a b ,所以121n n a a +=+,则()112221n n n a a a ++=+=+,即1121n n a a ++=+, 又11a =,所以112a +=,所以数列{}1n a +是以2为首项,公比为2的等比数列, 所以441216a +==,得415a =.故选:C.【点睛】本题考查向量的平行,考查数列的通项公式求解及应用,难度一般. 一般地,若{}n a 满足()10,1,0n n a pa q p p q +=+≠≠≠,则只需构造()1n n a x p a x ++=+,其中1q x p =-,然后转化为等比数列求通项. 二、填空题13.【分析】依题意可得再利用基本不等式计算可得;【详解】解:因为所以所以所以所以所以所以所以当且仅当即时取等号;故答案为:【点睛】在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正解析:【分析】依题意可得21x y +=,再利用基本不等式计算可得;【详解】解:因为2xy x =+,2x xy =+-,所以()()()()2222221(1)42222x y x xy x x xy x y ⎡⎤+-+=+-=+-++⎣⎦, 所以2242144x y y x xy +-+=-,所以()()222210x y x y +-++=,所以()2210x y +-=,所以21x y +=,所以42x y +≥=42x y =,即14x =,12y=时取等号; 故答案为:【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. 14.2【分析】据题意由于MN 为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三 解析:2【分析】据题意,由于M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MNa ⋅≤(当且仅当MN 与a 共线同向时等号成立)从而求得最大值.【详解】由0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图 由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立),即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离. 22(31)(11)2-+-=,故答案为:2【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题.15.【分析】由题意利用直角三角形中的边角关系求出的值再利用两角差的正切公式求得从而求出的值【详解】解:设则为锐角∴∴依题意若对于给定的是唯一的确定的可得解得即的值为故答案为:【点睛】本题主要考查直角三角解析:6【分析】由题意利用直角三角形中的边角关系求出tan ACB∠、tan NCB∠的值,再利用两角差的正切公式求得tan tan()ACB MCBθ=∠-∠,从而求出BC的值.【详解】解:设BC x=,ACMθ∠=,则θ为锐角,∴3tan ACBx∠=,2tan MCBx∠=,∴tan tan()ACB MCBθ=∠-∠232132661xx xx xx x x-===+++,依题意,若对于给定的ACM∠,ABC∆是唯一的确定的,可得6xx=,解得6x=BC6,6.【点睛】本题主要考查直角三角形中的边角关系,两角差的正切公式,属于中档题.16.【分析】先利用得到三角正弦之间的关系再根据正余弦定理求出即得角【详解】因为且所以即根据正弦定理得故根据余弦定理知又因为得故答案为:【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用是常考的综合题解析:3π【分析】先利用0m n⋅=得到三角正弦之间的关系,再根据正、余弦定理求出cos C,即得角C.【详解】因为()sin sin,sin sinm A C B A=+-,()sin sin,sinn A C B=-,且m n⊥所以()()()sin sin sin sin sin sin sin 0m n A C A C B A B ⋅=+-+-=即222sin sin sin sin sin A B C A B +-=根据正弦定理得222a b c ab +-= 故根据余弦定理知222cos 122a b c C ab +-==,又因为()0,C π∈ 得3C π= 故答案为:3π. 【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用,是常考的综合题,属于中档题. 17.【分析】由余弦定理直接进行计算即可得的值根据正弦定理可求结合大边对大角可求的值【详解】解:由余弦定理得:则由正弦定理可得:为锐角故答案为:【点睛】本题主要考查正弦定理余弦定理在解三角形中的应用考查计解析:6π 【分析】由余弦定理直接进行计算即可得b 的值,根据正弦定理可求sin C ,结合大边对大角可求C 的值.【详解】解:4a =,2c =,60B =︒,∴由余弦定理得:22212cos 164242208122b ac ac B =+-=+-⨯⨯⨯=-=,则b = ∴由正弦定理sin sin b c B C=,可得:2·sin 1sin 2c B C b ===, c a <,C 为锐角,6C π∴=.故答案为:6π. 【点睛】本题主要考查正弦定理,余弦定理在解三角形中的应用,考查计算能力.18.【分析】作出可行域根据投影的定义得数形结合求出的取值范围即求z 的取值范围【详解】作出可行域如图所示∴当时;当时的取值范围是故答案为:【点睛】本题考查简单的线性规划和向量的投影属于中档题解析:[]3,3-【分析】作出可行域.根据投影的定义得23cos z AOP =∠,数形结合求出AOP ∠的取值范围,即求z 的取值范围.【详解】作出可行域,如图所示cos 3OA OPz OA AOP AOP OP ⋅==⋅∠=∠.5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦,∴当6AOP π∠=时,max 2336z π==;当56AOP π∠=时,min 52336z π==-,z ∴的取值范围是[]3,3-. 故答案为:[]3,3-.【点睛】本题考查简单的线性规划和向量的投影,属于中档题. 19.【分析】由已知递推关系式利用累加法和等差数列前项和公式可求出通项即可得【详解】故答案为:【点睛】本题主要考查了累加法以及等差数列前项和公式求通项公式求数列中的项属于中档题解析:13【分析】由已知递推关系式12n n a a n +-=,利用累加法和等差数列前n 项和公式,可求出{}n a 通项,即可得4a .【详解】12n n a a n +-=,∴2121a a -=⨯ ,3222a a -=⨯,4323a a -=⨯,12(1)n n a a n --=⨯-,∴ []1(11)(1)2123(1)2(1)2n n n a a n n n +---=++++-=⨯=- , ∴ 21n a n n =-+ , 2444113a ∴=-+= ,故答案为:13【点睛】本题主要考查了累加法以及等差数列前n 项和公式求通项公式,求数列中的项,属于中档题.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+.故答案为:1m +【点睛】 本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)不符合,理由见解析;(2)推荐病人每天服用5毫升营养液A ,服用10毫升营养液B ,既能符合医学建议又能使每天的营养液费用最少.病人每天服用营养液的最低费用为65元.【分析】(1)根据题意,由微量元素α的摄入量控制在[]300,330计算营养液B 的服用量必须控制在[]20,22,此时β的摄入量在[]400,440,不符合;(2)根据题意,建立线性规划模型:54z x y =+,其中,x y 满足300301533025010202800,0x y x y x y ≤+≤⎧⎪≤+≤⎨⎪≥≥⎩,利用线性规划求最值.【详解】解:(1)若该病人每天只吃单价较便宜的营养液B ,则为了将微量元素α的摄入量控制在[]300,330(单位:微克),营养液B 的服用量必须控制在[]20,22(单位:毫升),此时相应微量元素β的摄入量在[]400,440(单位:微克),不符合医学建议. 另解:“若该病人每天只吃单价较便宜的营养液B ,则为了将微量元素β的摄入量控制在[]250,280(单位:微克),营养液B 的服用量必须控制在[]12.5,14(单位:毫升),此时相应微量元素α的摄入量在[]187.5,210(单位:微克),不符合医学建议” (2)设该病人每天需服用x 毫升营养液A ,y 毫升营养液B ,则每天的营养液费用为54z x y =+,由题意,x y 满足300301533025010202800,0x y x y x y ≤+≤⎧⎪≤+≤⎨⎪≥≥⎩,即20222252280,0x y x y x y ≤+≤⎧⎪≤+≤⎨⎪≥≥⎩可行域如下图所示把54z x y =+变形为4415y x z =-+,得到斜率为54-,在y 轴上截距为14z 的一族平行直线.由图可以看出,当直线4415y x z =-+经过直线220x y +=和直线225x y +=的交点M 时,截距14z 最 小,此时z 最小.解方程组220225x y x y +=⎧⎨+=⎩,得点M 为()5,10,∴min 545541065z x y =+=⨯+⨯=元,答:推荐病人每天服用5毫升营养液A ,服用10毫升营养液B ,既能符合医学建议又能使每天的营养液费用最少.病人每天服用营养液的最低费用为65元.【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;(2)线性规划型应用性问题解题的关键是正确的建立线性规划模型.22.(1)-1,6;(2)答案见详解【分析】(1)由f (x )≥b 的解集为{x |1≤x ≤2}结合韦达定理即可求解参数a ,b 的值;(2)原式可因式分解为()()()14f x ax x =--,再分类讨论即可0,0,0a a a =<>,对0a >再细分为111,0,,,444a a a ⎛⎫⎛⎫=∈∈+∞ ⎪ ⎪⎝⎭⎝⎭即可求解. 【详解】(1)由f (x )≥b 得()24140ax a x b -++-≥,因为f (x )≥b 的解集为{x |1≤x ≤2},故满足4112a a ++=,412b a-⨯=,解得1,6a b =-=; (2)原式因式分解可得()()14f x a x x a ⎛⎫=-- ⎪⎝⎭, 当0a =时,()40f x x =-+>,解得(),4x ∈-∞;当0a <时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为1,4x a ⎛⎫∈ ⎪⎝⎭; 当0a >时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭, ①若14a =,即14a =,则()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为4x ≠; ②若14a <,即14a >时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭; ③若14a >,即104a <<时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭. 【点睛】本题考查由一元二次不等式的解求解参数,分类讨论求解一元二次不等式,属于中档题. 23.(1)π3;(2)()1,4. 【分析】(1)利用正弦定理和三角恒等变换化简已知即得解;(2)先求出ππ62C <<,再利用正弦定理求出1tan b C=+,即得解. 【详解】 (1)因为22cos b c a C -=,由正弦定理得2sin sin 2sin cos B C A C -=,又()()sin sin πsin B A C A C =-+⎡=⎤⎦+⎣,所以()2sin cos cos sin sin 2sin cos A C A C C A C +-=,所以2cos sin sin 0A C C -=.因为0πC <<,所以sin 0C ≠,所以1cos 2A =. 因为()0,πA ∈, 所以π3A =. (2)由(1)得π3A =, 根据题意得π0,2ππ,32C C ⎧<<⎪⎪⎨⎪+>⎪⎩,解得ππ62C <<. 在ABC 中,由正弦定理得sin sin c b C B=,所以π2sin sin sin 31sin sin sin tan C c B C C b C C C C⎛⎫+ ⎪+⎝⎭====+. 因为ππ62C <<,所以tan C ⎫∈+∞⎪⎝⎭,所以()0,3tan C ∈,所以()11,4tan C+∈. 故b 的取值范围为()1,4.【点睛】易错点睛:本题求b 的取值范围,利用的是函数的方法,学生容易把C 的范围求错,简单认为(0,)2C π∈,解不等式π0,2ππ,32C C ⎧<<⎪⎪⎨⎪+>⎪⎩得到的才是正确范围. 24.2+【分析】利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长.【详解】 由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A =因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =, 又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴= 由正弦定理得sin sin sin a b c A B C==代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C = 又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=. 由正弦定理得:sin sin sin a b c A B C ==,代入1,b c ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键. 25.条件选择见解析;(1)n a n =,2n n b =;(2)212222n n n n T +=-++. 【分析】选①(1)由等差数列的基本量法求出公差d 后可得通项公式n a ,再利用1(2)n n n b S S n -=-≥确定数列{}n b 是等比数列,从而得出通项公式n b ;(2)用分组(并项)求和法求和.选②(1)由等差数列的基本量法求出公差d 后可得通项公式,由112a b λ=求得λ,从而得通项公式n b ,并并确定其是等比数列;(2)用分组(并项)求和法求和.【详解】解:选①解:(1)设等差数列{}n a 的公差为d , 1281122,10,2810,1,1a a a a d a d =+=∴+=∴==,1(1)1n a n n ∴=+-⨯=, 由112n n S b =-,得()21n n S b =-, 当2n ≥时,()()112121n n n n n b S S b b --=-=---,即12n n b b -=,所以{}n b 是一个以2为首项,2为公比的等比数列.1222n n n b -∴=⨯=.(2)由(1)知2n n n a b n +=+,()()()1212222n n T n ∴=++++++, ()12(12)222n n T n =+++++++, ()21212(1)2221222n n n n n n n T +-+∴=+=-++-. 选②解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==,1(1)1n a n n ∴=+-⨯=.112,1,2n a n b a b λ===,令1n =,得112a b λ=,即22,1λλ=∴=, 22n a n n b ∴==.(2)解法同选①的第(2)问解法相同.【点睛】方法点睛:本题考查求等差数列和等比数列的通项公式,考查分组(并项)求和法. 数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 26.(1)证明见解析;(2)233n n a n ⎫⎛=-⋅ ⎪⎝⎭;(3)证明见解析. 【分析】(1)利用已知条件通分计算或者直接整理,证明11133n n n n a a ++-=,即证结论; (2)利用(1)求得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,即求得{}n a 的通项公式; (3)结合(2)的结果,利用错位相减法求得n S ,并计算整理3n n S ,根据7043n >⨯即证得结论.【详解】解:(1)解法1:由()1*133n n n a a n N ++=+∈,得111111333313333n n n n n n n n n n n a a a a a a ++++++-+--===. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列. 解法2:由()1*133n n n a a n N ++=+∈,得11133n n n n a a ++=+,即11133n n n n a a ++-=. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列. (2)由(1)得()111133n n a n =+-⨯,*N n ∈, 即233n n a n =-,故233n n a n ⎫⎛=-⋅ ⎪⎝⎭; (3)由(2)可知()121222213231333333n n n S n n -⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭① ()2312222313231333333n n n S n n +⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭② 由①②得1112397723133262n n n n S n n +++-⎫⎫⎛⎛=-⨯--=-⨯+ ⎪ ⎪⎝⎝⎭⎭故17732124n n n S +⎫⎛=-⨯+ ⎪⎝⎭,从而1737377372123343244324n n n n n n n S n n +⎫⎛-⨯ ⎪⎫⎛⎝⎭=+=-+>- ⎪⨯⨯⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:利用等差数列和等比数列前n 项和公式进行计算即可;(2)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法;(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(4)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(5)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(6)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1n n a f n =-类型,可采用两项合并求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修5期末综合测试卷一、选择题:本大题共有10小题,每小题5分,共50分.1.在数列{}n a 中,122,211=-=+n n a a a ,则101a 的值为 ()A .49B .50C .51D .522.设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11, a 与b 的大小关系( )A .a >bB .a <bC .a ≤bD .a ≥b3. 已知{a n }等比数列,且a n >0, ,252645342=++a a a a a a 那么53a a += ( )A. 5B. 10C. 15D. 20 4.x 、y >0, x +y =1, 且 y x +≤a 恒成立, 则a 的最小值为( ) A2 C .2 D .25.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是 ( )A .135°B .90°C .120°D .1506.设a 、a +1、a +2为钝角三角形的边,则a 的取值范围是 ( )A 0<a <3B 3<a <4C 1<a <3D 4<a <6 7.数列Λ,1614,813,412,211前n 项的和为 ( )A .2212n n n ++B .12212+++-nn nC .2212nn n ++-D . 22121nn n -+-+8.已知不等式250ax x b -+>的解集是{|32}x x -<<-,则不等式250bx x a -+>的解是 ( ) A 32x x <->-或 B 12x <-或13x >- C 1123x -<<- D 32x -<<- 9.目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有 ( )A .3,12min max ==z zB .,12max =z z 无最小值C .z z ,3min =无最大值D .z 既无最大值,也无最小值10.等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n na b = ( ) A23 B 2131n n -- C 2131n n ++ D 2134n n -+ 二、填空题:共5小题,每小题5分,共25分. 11.若x>0,y>0,且191=+yx ,则x+y 的最小值是___________ 12.不等式组6003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域的面积是13.已知数列{}n a 中,1a =-1,1+n a ·n a =n n a a -+1,则数列通项n a =___________ 14.ΔABC 中,若C A C B A sin sin sin sin sin 222=+-那么角B=___________15.若方程x x a a 22220-+-=lg()有一个正根和一个负根,则实数a 的取值范围是_________________三、解答题:本大题共6小题,共75分。

解答应写出文字说明,或演算步骤。

16.(本小题满分12分)如图,在四边形ABCD 中,已知AD CD ,AD =10,AB =14,BDA =60,BCD =135 .求BC 的长. 17.(本小题满分12分)设)(,)2()(x f x x a xx f =+=有唯一解,,,2,1,)(,10021)(10Λ===-n x x f x f n n (1)问数列}1{nx 是否是等差数列?(2)求2003x 的值.18.(本小题满分12分)已知集合A=)]13()[2({+--a x x x }0<,集合B=⎭⎬⎫⎩⎨⎧<+--0)1(22a x ax x 。

(1) 当a =2时,求B A I ; (2) 当a 31>时,求使A B ⊆的实数a 的取值范围。

19.(本小题满分12分)在∆ABC 中,内角A ,B ,C 对边的边长分别是,,,c b a 已知c =2,C=3π. (1)若∆ABC 的面积等于3,求b a ,;(2)若sin (A +C )=2sinA,求∆ABC 的面积.20.(本小题满分13分)某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大? 21.(本小题满分14分)已知1a =2,点(1,+n n a a )在函数x x x f 2)(2+=的图像上,其中n =Λ,3,2,1. (1)证明:数列)1{lg(n a +}是等比数列;(2)设)1()1)(1(21n n a a a T +⋅⋅++=Λ,求n T 及数列{n a }的通项公式; (3)记211++=n n n a a b ,求数列{n b }的前n 项和n S ,并证明1132=-+n n T S . 高中数学必修5期末综合测试卷参考答案一、选择题:(本大题共10小题,每小题5分,共50分)1-10:DBADC CBCCB 二、填空题:(本大题共5小题,每小题5分,共25分) 11.16;12.36;13.n 1-;14.3π;15 )1,21()0,21(Y -三、解答题:(本大题共75小题。

解答应写出文字说明,或演算步骤) 16.(本小题满分12分) 解:在△ABD 中,设BD=x则BDA AD BD AD BD BA ∠⋅⋅-+=cos 2222即ο60cos 1021014222⋅⋅-+=x x整理得:096102=--x x 解之:161=x ,62-=x (舍去) 由余弦定理:BCD BD CDB BC ∠=∠sin sin ∴2830sin 135sin 16=⋅=οοBC 17.(本小题满分12分) (1)由210)2(-==⇒+=ax x x a x x 或,所以由题知2121==-a a . 211122)(,22)(1111=-⇒+==∴+=----n n n n n n x x x x x f x x x x f又因为10021,10021)(101===x x f x 所以.所以数列}1{nx 是首项为1002,公差等于21的等差数列.(2)由(1)知20031,200321)12003(11200312003=∴=⋅-+=x x x18.(本小题满分12分)解:(1)当2=a 时,}54{}54{},72{<<=∴<<=<<=x x B A x x B x x A I (2)}12{0)1(21222+<<=∴≥-=-+a x a x B a a a Θ 当31>a 时,}132{,213+<<=∴>+a x x A a 22,≥∴⊆a A B Θ且1312+≤+a a 31≤≤∴a ∴使A B ⊆的实数a 的取值范围为[]3,119.(本小题满分12分)(1)由余弦定理ab b a c 2222-+=cosC 得422=-+ab b a 又ABC ∆Θ的面积等于3,4,3sin 21=∴=∴ab C ab 得2==b a (2)a b A B A C A 2sin 2sin sin 2)sin(=⇒=⇒=+由a b ab b a 2,422==-+得334,332==b a 332sin 21==∴∆C ab S ABC 20.(本小题满分13分)分析:将已知数据列成下表: 解:设生产甲、乙两种棉纱分别为x 吨、y 吨,利润总额为z 元, 那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0025022y x y x y x z =600x +900y . ⎩⎨⎧=+=+25023002y x y x ,得M 的坐标为x =3350≈117,y =3200≈67. 答:应生产甲种棉纱117吨,乙种棉纱6721.(本小题满分14分)(1)证明:由已知n n n a a a 221+=+,21)1(1+=+∴+n n a a11,21>+∴=n a a Θ 两边取对数得+=++1lg(2)1lg(1n a )n a ,即2)1lg()1lg(1=+++n n a a)}1{lg(n a +∴是公比为2的等比数列。

(2)解:由(1)知121113lg 3lg 2)1lg(2)1lg(-=⋅=+⋅=+--n n n n a a1231-=+∴n n a 123-=∴n n a 1-)1()1)(1(21n n a a a T +⋅⋅++=∴Λ=1222212222120333333121-++++==⋅⋅⋅⋅--nn n ΛΛ(3)2(,2121+=∴+=++n n n n n n a a a a a a Θ112121),211(211++-=+∴+-=∴n n n n n n a a a a a a ),11(22111+-=∴++=n n n n n n a a b a a b )11(2)111111(2111322121++-=-++-+-=+++=∴n n n n n a a a a a a a a b b b S ΛΛ 1321,13,2,13221121--=∴-==-=+-nnn n n n S a a a Θ又1132,312=-+∴=-n n n T S T n。

相关文档
最新文档