一次函数优秀教学设计

合集下载

一次函数教学设计一等奖

一次函数教学设计一等奖

一次函数教学设计一等奖
x
本文旨在提供一份一次函数教学设计计划,以便在有限的时间内,在一次函数的教学中能达到最佳效果。

一、教学目标
1. 能认知函数的定义及特点;
2. 掌握一次函数的性质以及求解方法;
3. 能熟练掌握一次函数的图像,利用画图法解决相关问题;
4. 了解一元二次方程及其解法,能够解决一般的实际问题。

二、教学内容
1. 介绍函数的定义及特点;
2. 介绍一次函数的定义及求解;
3. 讨论一次函数的图像及其特点;
4. 对比一次函数和二次函数;
5. 讨论一元二次方程以及解法;
6. 讨论如何解决实际问题。

三、教学方法
1. 讲解法:以叙述为主,结合具体例子,使学生理解一次函数
的性质及求解方法,掌握一次函数图像的特点,以及一元二次方程的解法;
2. 研究法:让学生尝试着自己对一个函数进行求解,锻炼他们
的解题能力;
3. 讨论法:让学生分组讨论,彼此之间进行知识交流。

四、教学评价
1. 开展课内检测,根据学生在课堂学习上的表现进行评价,了解学生的掌握情况;
2. 开展期末考试,检验学生对一次函数的掌握情况;
3. 开展小组性讨论,及时收集学生的反馈意见;
4. 开展竞赛活动,丰富学生的学习体验,提高学生的学习效率。

八年级《一次函数》教学设计

八年级《一次函数》教学设计

课堂总结,发展潜能篇一1.y=k某+b(k,b是常数,k≠0)是一次函数.2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例一次函数的概念优秀教学设计篇二教学目标1、了解正比例函数y=k某的图象的特点。

2、会作正比例函数的图象。

3、理解一次函数及其图象的有关性质。

4、能熟练地作出一次函数的图象教学重点正比例函数的图象的特点。

教学难点一次函数的图象的性质。

教学过程:1、新课导入上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。

经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。

本节课我们进一步来研究一次函数的图象的其他性质。

2、讲授新课(1)首先我们来研究一次函数的特例,正比例函数有关性质。

请大家在同一坐标系内作出正比例函数y=某,y=某,y=3某,y=-2某的图象。

如图:3、议一议(1)正比例函数y=k某的图象有什么特点?(都经过原点)(2)你作正比例函数y=k某的图象时描了几个点?(至少两点)(3)直线y=某,y=某,y=3某中,哪一个与某轴正方向所成的锐角最大?哪一与某轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。

(2)作正比例函数y=k某的图象时,除原点外,还需找一点,一般找(1,k)点。

(3)在正比例函数y=k某图象中,当k>0时,k的值越大,函数图象与某轴正方向所成的锐角越大。

(4)在正比例函数y=k某的图象中,当k>0时,y的值随某值的增大而增大;当k<0时,y的值随某值的增大而减小。

5、做一做在同一直角坐标系内作出一次函数y=2某+6,y=-某,y=-某+6,y=5某的图象。

一次函数y=k某+b的图象的特点:分析:在函数y=2某+6中,k>0,y的值随某值的增大而增大;在函数y=-某+6中,y的值随某值的增大而减小。

《一次函数的图象和性质》教学设计优秀8篇

《一次函数的图象和性质》教学设计优秀8篇

《一次函数的图象和性质》教学设计优秀8篇一次函数篇一11.2 一次函数§11.2.1正比例函数教学目标1.认识正比例函数的意义。

2.掌握正比例函数解析式特点。

3.理解正比例函数图象性质及特点。

4.能利用所学知识解决相关实际问题。

教学重点1.理解正比例函数意义及解析式特点。

2.掌握正比例函数图象的性质特点。

3.能根据要求完成转化,解决问题。

教学难点正比例函数图象性质特点的掌握。

教学过程ⅰ.提出问题,创设情境一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环。

4个月零1周后人们在2.56万千米外的澳大利亚发现了它。

1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30某4+7)≈200(km)若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数。

函数解析式为:y=200x(0≤x≤127)这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值。

即y=200某45=9000(km)以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画。

尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型。

类似于y=200x这种形式的函数在现实世界中还有很多。

它们都具备什么样的特征呢?我们这节课就来学习。

ⅱ.导入新课首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长l随半径r的大小变化而变化。

3.铁块的质量m(g)随它的体积v(cm3)的大小变化而变化。

.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化。

4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度t(℃)随冷冻时间t(分)的变化而变化。

初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。

2、直线y = — 2X — 2 不经过第象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。

5、过点(0,2)且与直线y=3x平行的直线是:。

6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。

7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。

8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

北师大版八年级数学上册4.4.3一次函数的应用教学设计

北师大版八年级数学上册4.4.3一次函数的应用教学设计
2.教学过程:
-导入新课:通过生活中的实例,引出一次函数的概念,激发学生的学习兴趣。
-新知探究:引导学生通过绘制一次函数图像,观察和分析图像特征,理解斜率和y轴截距的意义。
-应用拓展:设计一些实际问题,让学生尝试建立一次函数模型,解决具体问题,培养学生的建模能力和解决问题的能力。
-巩固提高:通过设置不同层次的练习题,巩固学生对一次函数的理解,提高其运用能力。
教师在批改作业时,应关注学生的解题过程和思路,及时给予反馈和指导,帮助学生发现并改正错误,提高学生对一次函数的理解和应用能力。同时,教师应鼓励学生在课堂上分享作业成果,促进生生之间的交流与学习。
(四)课堂练习
1.教学内容ቤተ መጻሕፍቲ ባይዱ设计不同难度的练习题,让学生巩固一次函数的应用知识。
2.教学方法:采用个别指导和小组讨论相结合的方式,关注学生的个体差异。
3.教学步骤:
-步骤1:教师发放练习题,学生独立完成。
-步骤2:教师针对学生答题情况进行个别指导,帮助学生解决疑问。
-步骤3:组织学生进行小组讨论,共同解决难题。
1.学生在图像识别和分析方面的能力,引导他们通过图像直观地理解一次函数的性质,从而加深对一次函数的理解。
2.学生在解决实际问题时,往往难以将问题转化为数学模型,教师应引导学生学会从实际问题中抽象出一次函数关系,培养学生的建模能力。
3.针对学生个体差异,教师应设计不同难度的练习题,使每个学生都能在原有基础上得到提高,增强学生的学习成就感。
-结合现实生活中的问题,设计一个一次函数的应用案例,要求原创性,并在课堂上分享。
作业要求:
1.学生需认真完成作业,确保作业质量。
2.对于必做题,要求学生在课后自主完成,巩固课堂所学知识。

《一次函数》数学教案

《一次函数》数学教案

《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。

2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。

3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。

二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。

2. 重点:一次函数的概念、图象和性质。

3. 难点:一次函数的应用。

三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。

2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。

3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。

4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。

四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。

2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。

3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。

五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。

2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。

六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。

你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。

(2)、能够用图像法解一元一次不等式。

(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。

积极思考,尝试回答问题,导出本节课题。

阅读学习目标,明确探究方向。

从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。

问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。

《一次函数的图象和性质》教学设计(优秀7篇)

《一次函数的图象和性质》教学设计(优秀7篇)

《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解。

教学难点:根据具体条件求与正比例函数的解析式。

教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。

教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。

)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。

一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。

特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。

能够用一次函数的知识解决实际问题。

过程与方法:掌握用待定系数法求函数解析式的一般方法。

情感态度与价值观:继续渗透数形结合的数学思想。

教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。

难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数优秀教学设计
函数是近代数学最基本的概念之一,在数学发展过程中起着十分重要的作用,许多数学分支(如代数、三角、解析几何、微积分、实变函数、复变函数等)都是以函数为中心展开研究的。

14.1.1变量
教学目标
1.知识与技能
了解变量的概念,会区别常量与变量.
2.过程与方法
经历探索变量的过程,感受常量与变量的意义.
3.情感、态度与价值观
培养学生良好的变化与对应意识,体会数形结合的思想.重、难点与关键
1.重点:理解变化与对应的内涵.
2.难点:理解变化与对应的内涵.
3.关键:从实际问题出发,引入变量,由具体到抽象的认识事物.
教学方法
采用“情境教学法”进行教学,让学生在熟悉的背景中认知常量与变量.
教学过程
一、创设情境,揭示课题
【情境思考1】
汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t
s.
【教师活动】提出问题,引导学生思考问题,提问个别学生.
【学生活动】先独立思考后再与同伴交流,填出表格中问题:s:60千米,?120千米,180千米,240千米,300千米.推出含t的等式为s=60t(t≥0).
【情境思考2】
每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,?晚场售出票310张,三场电影的票房收入各多少元?设一场电影售出票x张,票房收入为y元,?怎样用含x的式子表示
y?
【教师活动】引导学生思索,然后从学生中推荐好的方法.
【学生活动】分四人小组合作交流,通过交流,部分学生上讲台演示:早、中、晚三场电影的票房收入各为:1500元、2050元、3100元;含x的式子表示y为:y=10x.
【情境思考3】
在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(单位:kg)的式子表示受力后的弹簧长度L(单位:cm)?
【教师活动】启发诱导,并让出讲台,请学生上台板演.
【学生活动】观察图形,先独立思考后再与同桌交流,得到关系式为L=10+0.5x(x表示悬挂
重物的重量).
【情境思考4】
要画一个面积为10cm2的圆,圆的半径应取多少?圆面积为
20cm2呢?怎样用含圆面积S的式子表示圆半径r?
【教师活动】巡视、观察学生的思考,并及时加以启发,请一位学生上讲台演示.
【学生活动】独立思考,把问题解决.根据圆的面积公式S=?r2,得出面积为10cm2
;面积为20cm2时,
;关系式
【情境思考5】
如课本图14.1-1所示,用10m长的绳子围成长方形,试改变长方形的长度,?观察长方形的面积怎样变化,记录不同的长方形长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?
【教师活动】引导学生做实验.
【学生活动】拿出准备好的线,按要求进行实践、记录、计算、寻找规律,得到S与x的关系式为S=x(5-x).
二、操作观察,获取新知
【形成概念】在某一变化过程中,我们称数值发生变化的量为变量,有些量的数值始终不变,我们称它们为常量.
【拓展延伸】请同学们具体指出上面的各问题中,哪些是变量,哪些量是常量?
【学生活动】通过小组合作交流,得到常量为:60、10、5、?、0.5等,变量为:x、y、r、S、t、L等.
【教学形式】生生互动,畅所欲言.
三、随堂练习,巩固深化
课本P95练习.
四、课堂总结,发展潜能
1.什么叫做变量?什么叫做常量?它们之间有何区别?
2.本节课中,通过实际事例,你对变量的概念以及实际意义有怎样的感受?
五、布臵作业,专题突破
课本P106第1,6题.
教学反思
本节前5个问题中含有变量之间的单位对应关系,?是为后面引出变量间的单位对应关系进而学习函数定义作了铺垫.对于函数概念的学习,需要从具体到抽象,关键是认识变量之间的单位对应关系.。

相关文档
最新文档