集合的概念及表示练习题及答案
集合考试题及答案

集合考试题及答案集合是数学中的一个基本概念,它在各个领域都有着广泛的应用。
以下是一些集合考试题及其答案,供参考:题目一:定义集合A={x | x是自然数,且1≤x≤10},集合B={y |y是偶数}。
求A∩B。
答案:集合A包含自然数1到10,即A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。
集合B包含所有的偶数。
A与B的交集是同时属于A和B的元素,即A∩B={2, 4, 6, 8, 10}。
题目二:集合C={x | x是整数,且-5≤x≤5},集合D={y | y是正整数}。
求C∪D。
答案:集合C包含从-5到5的所有整数,即C={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
集合D包含所有的正整数,即D={1, 2, 3, ...}。
C与D的并集是包含C和D所有元素的集合,但去除重复元素。
因此,C∪D包含了从-5到无穷大的所有整数,由于题目限制,我们只列出到5,即C∪D={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
题目三:集合E={x | x是奇数},集合F={y | y是3的倍数}。
求E∩F。
答案:集合E包含所有的奇数,集合F包含所有3的倍数。
E与F的交集是同时满足奇数和3的倍数的元素。
这些元素是3的奇数倍,即E∩F={3, 9, 15, ...},但题目中没有指定范围,我们只列出前三个元素。
题目四:集合G={x | x²=1},求G。
答案:集合G包含满足x²=1的所有x值。
解这个方程,我们得到x=1或x=-1。
因此,G={1, -1}。
题目五:集合H={x | x²-4=0},求H。
答案:集合H包含满足x²-4=0的所有x值。
解这个方程,我们得到x²=4,所以x=2或x=-2。
因此,H={2, -2}。
总结:集合论是数学的基础之一,它涉及到元素与集合之间的关系,包括交集、并集、补集等概念。
集合简单练习题及答案

集合简单练习题及答案集合是数学中的一个基本概念,它描述了一组对象的全体。
以下是一些集合的简单练习题及答案,适合初学者进行练习。
练习题1:确定以下集合的元素。
集合A = {x | x是小于10的正整数}答案: A = {1, 2, 3, 4, 5, 6, 7, 8, 9}练习题2:判断以下两个集合是否相等。
集合B = {x | x是偶数}集合C = {2, 4, 6, 8, 10, 12, ...}答案: B和C是相等的,因为集合B包含了所有偶数,而集合C也是所有偶数的集合。
练习题3:找出集合A和集合B的交集。
集合A = {1, 3, 5, 7, 9}集合B = {2, 4, 6, 8, 10}答案: A和B没有交集,即A ∩ B = ∅。
练习题4:找出集合A和集合B的并集。
集合A = {1, 3, 5, 7, 9}集合B = {2, 4, 6, 8, 10}答案: A和B的并集是A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。
练习题5:确定集合A的补集,假设全集U包含所有小于等于10的整数。
集合A = {1, 3, 5, 7, 9}全集U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}答案: A的补集是A' = {0, 2, 4, 6, 8, 10}。
练习题6:如果集合D = {x | x是A和B的元素},求D。
集合A = {1, 2, 3}集合B = {2, 3, 4}答案: D = {2, 3}。
练习题7:如果集合E = {x | x不属于A且不属于B},求E。
集合A = {1, 2, 3}集合B = {2, 3, 4}答案: E = {1, 4}。
练习题8:确定集合A和集合B的差集。
集合A = {1, 2, 3, 4, 5}集合B = {3, 4, 5, 6}答案: A和B的差集是A - B = {1, 2}。
练习题9:假设集合F = {x | x是A的元素且不是B的元素},求F。
集合简单练习题及答案

集合简单练习题及答案集合是数学中一个非常重要的概念,它描述了一组元素的总体。
下面是一些集合的简单练习题以及它们的答案。
练习题1:判断下列集合是否相等。
A = {1, 2, 3}B = {3, 2, 1}C = {1, 2, 1}答案1:集合A和集合B相等,因为集合中的元素是无序的,只考虑元素的种类和数量。
集合C和A不相等,因为集合中的元素不允许重复。
练习题2:求集合A和集合B的并集。
A = {1, 2, 3}B = {2, 3, 4}答案2: A和B的并集是A ∪ B = {1, 2, 3, 4}。
练习题3:求集合A和集合B的交集。
A = {1, 2, 3}B = {2, 3, 4}答案3: A和B的交集是A ∩ B = {2, 3}。
练习题4:求集合A和集合B的差集。
A = {1, 2, 3, 4}B = {2, 3}答案4: A和B的差集是A - B = {1, 4}。
练习题5:判断下列集合是否为子集。
A = {1, 2}B = {1, 2, 3, 4}答案5:集合A是集合B的子集,因为A中的所有元素都在B中。
练习题6:求集合A和集合B的补集。
A = {1, 2, 3}B = {2, 3, 4}假设全集U = {1, 2, 3, 4, 5}答案6: A的补集是A' = {4, 5},B的补集是B' = {1, 5}。
练习题7:判断下列集合是否为幂集。
A = {1}B = {1, 2}C = {1, 2, 3}答案7:集合A的幂集是{∅, {1}}。
集合B的幂集是{∅, {1}, {2}, {1, 2}}。
集合C的幂集包含更多的子集,包括空集和所有可能的元素组合。
练习题8:求集合A和集合B的笛卡尔积。
A = {1, 2}B = {3, 4}答案8: A和B的笛卡尔积是A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}。
练习题9:求集合A的对称差集与集合B。
1.1.1 集合的概念与表示(北师大版2019必修第一册)分册训练解析版

1.1.1集合的概念与表示分层练习基础巩固一、单选题1.已知M 是由1,2,3三个元素构成的集合,则集合M 可表示为( ) A .{x |x =1} B .{x |x =2} C .{1,2} D .{1,2,3}【答案】D 【解析】 【分析】根据集合的知识确定正确选项. 【详解】由于集合M 是由1,2,3三个元素构成, 所以{}1,2,3M =. 故选:D2.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学 B .长寿的人 C .π的近似值D .倒数等于它本身的数【答案】D 【解析】 【分析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合; 对于C ,π 的近似值没有明确近似到小数点后面几位, 不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.3.已知集合{}0,1A =,则集合{},B x y x A y A =-∈∈中元素的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】C 【解析】 【分析】根据,x A x B ∈∈,所以x y -可取1,0,1-,即可得解. 【详解】由集合{}0,1A =,{},B x y x A y A =-∈∈, 根据,x A y B ∈∈, 所以1,0,1x y -=-, 所以B 中元素的个数是3. 故选:C4.已知集合()(){}110A x x x x =-+=,则A =( ) A . {}0,1 B . {}1,0-C .{}0,1,2D .{}1,0,1-【答案】D 【解析】 【分析】通过解方程进行求解即可. 【详解】因为(1)(1)00x x x x -+=⇒=,或1x =-,或1x =, 所以{}1,0,1A =-, 故选:D5.给出下列四个关系:π∈R , 0∉Q ,0.7∈N , 0∈∅,其中正确的关系个数为( ) A .4 B .3C .2D .1【答案】D 【解析】 【分析】根据自然数集、有理数集、空集的含义判断数与集合的关系. 【详解】∵R 表示实数集,Q 表示有理数集,N 表示自然数集,∅表示空集, ∴π∈R ,0∈Q ,0.7∉N ,0∉∅, ∴正确的个数为1 . 故选:D .6.已知{1}A x x m =∈-<Z ∣,若集合A 中恰好有5个元素,则实数m 的取值范围为( )A .4<m ≤5B .4≤m<5C .3≤m<4D .3<m ≤4【答案】D 【解析】 【分析】由已知求出集合A ,进一步得到m 的范围. 【详解】由题意可知{}1,0,1,2,3A =-,可得3<m ≤4. 故选:D 二、多选题7.给出下列说法,其中正确的有( ) A .中国的所有直辖市可以构成一个集合;B .高一(1)班较胖的同学可以构成一个集合;C .正偶数的全体可以构成一个集合;D .大于2 011且小于2 016的所有整数不能构成集合. 【答案】AC 【解析】 【分析】根据集合的确定性依次判断每个选项得到答案. 【详解】中国的所有直辖市可以构成一个集合,A 正确;高一(1)班较胖的同学不具有确定性,不能构成集合,B 错误; 正偶数的全体可以构成一个集合,C 正确;大于2 011且小于2 016的所有整数能构成集合,D 错误. 故选:AC.8.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值可能是( )A .98B .1C .0D .23【答案】AC 【解析】 【分析】对a 进行分类讨论,结合A 有且只有一个元素求得a 的值. 【详解】当0a =时,{}2|3203A x x ⎧⎫=-+==⎨⎬⎩⎭,符合题意.当0a ≠时,9980,8a a ∆=-==,符合题意.故选:AC 三、填空题9.用符号∈或∉填空:3.1___N ,3.1___Z , 3.1____*N ,3.1____Q ,3.1___R . 【答案】 ∉ ∉ ∉ ∈ ∈ 【解析】 【分析】由元素与集合的关系求解即可 【详解】因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数, 所以有:3.1N ∉;3.1Z ∉;*3.1N ∉;3.1Q ∈;3.1R ∈. 故答案为:∉,∉,∉,∈,∈.10.设集合{}1A x xy xy =-,,,其中x ∈Z ,y Z ∈且0y ≠,若0A ∈,则A 中的元素之和为_____. 【答案】0 【解析】 【分析】根据元素与集合间的关系,列方程求解. 【详解】因为0A ∈,所以若0x =,则集合{}0,0,1A =-不成立.所以0x ≠. 若因为0y ≠,所以0xy ≠,所以必有0xy -1=,所以1xy =. 因为x ∈Z ,y Z ∈,所以1x y ==或1x y ==-. 若1x y ==,此时{}1,1,0A =不成立,舍去.若1x y ==-,则{}1,1,0A =-,成立.所以元素之和为1100-+=. 故答案为:0. 四、解答题11.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B . 【答案】B ={0,7,3,1}. 【解析】 【分析】解方程2427a a ++=即得解. 【详解】解:由题得2427a a ++=, 解得1a =或5a =-. 因为0a >,所以1a =. 当1a =时, B ={0,7,3,1}. 故集合B ={0,7,3,1}.12.判断下列各组对象能否构成集合.若能构成集合,指出是有限集还是无限集;若不能构成集合,试说明理由. (1)北京各区县的名称; (2)尾数是5的自然数;(3)我们班身高大于1.7m 的同学. 【答案】(1)能;有限集; (2)能;无限集; (3)能;有限集. 【解析】 【分析】根据集合的基本概念即得. (1)因为北京各区县的名称是确定的,故北京各区县的名称能构成集合;因为北京各区县是有限的,故该集合为有限集; (2)因为尾数是5的自然数是确定的,故尾数是5的自然数能构成集合;因为尾数是5的自然数是无限的,故该集合为无限集; (3)因为我们班身高大于1.7m 的同学是确定的,故我们班身高大于1.7m 的同学能构成集合;因为我们班身高大于1.7m 的同学是有限的,故该集合为有限集.培优提升一、单选题1.定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据集合的新定义确定集合中的元素. 【详解】因为2{|,,}A B x x a b a A b B ⊗==-∈∈,{}1,0A =-,{}1,2B =, 所以{0,1,2}A B ⊗=--, 故集合A B ⊗中的元素个数为3, 故选:C.2.若{}22,a a a ∈-,则a 的值为( )A .0B .2C .0或2D .2-【答案】A 【解析】 【分析】分别令2a =和2a a a =-,根据集合中元素的互异性可确定结果. 【详解】若2a =,则22a a -=,不符合集合元素的互异性;若2a a a =-,则0a =或2a =(舍),此时{}{}22,2,0a a -=,符合题意;综上所述:0a =. 故选:A.3.已知x ,y ,z 为非零实数,代数式||||||||x y z xyz x y z xyz +++的值所组成的集合是M ,则下列判断正确的是( ) A .4∈M B .2M ∈ C .0M ∉ D .4M -∉【答案】A 【解析】【分析】分别对x ,y ,z 的符号进行讨论,计算出集合M 的所有元素,再进行判断. 【详解】根据题意,分4种情况讨论;①、x y 、、z 全部为负数时,则xyz 也为负数,则4||||||||x y z xyz x y z xyz +++=-; ②、x y 、、z 中有一个为负数时,则xyz 为负数,则0||||||||x y z xyz x y z xyz +++=; ③、x y 、、z 中有两个为负数时,则xyz 为正数,则0||||||||x y z xyz x y z xyz +++=; ④、x y 、、z 全部为正数时,则xyz 也正数,则4||||||||x y z xyz x y z xyz +++=; 则{4,0,4}M =-;分析选项可得A 符合. 故选:A. 二、填空题4.集合12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,的元素个数为_________. 【答案】12 【解析】 【分析】根据集合得表示可知:3x + 是12的因数,即可求解. 【详解】由12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,可知,3x + 是12的因数,故31,2,3,4,6,12x +=±±±±±± ,进而可得x 可取0,1,3,9,1,2,4,5,6,7,9,15--------,故答案为:125.若集合{}2210A xax x =-+=∣有且只有一个元素,则a 的取值集合为__________. 【答案】{}0,1##{}1,0 【解析】 【分析】讨论集合A 中的条件2210ax x -+=属于一次方程还是二次方程即可求解. 【详解】①若0a =,则210x -+=,解得12x =,满足集合A 中只有一个元素,所以0a =符合题意;②若0a =/,则2210ax x -+=为二次方程,集合A 有且只有一个元素等价于2=(2)410a --⨯⨯=∆,解得1a =.故答案为:{}0,1. 三、解答题6.已知{}2|20,R M x ax x x =-+=∈.根据下列条件,求实数a 的值构成的集合.(1)当M =∅;(2)当M 是单元素集(只含有一个元素的集合); (3)当M 是两个元素的集合. 【答案】(1)1,8⎛⎫+∞ ⎪⎝⎭(2)1,08⎧⎫⎨⎬⎩⎭(3)1,08a a a ⎧⎫<≠⎨⎬⎩⎭【解析】 【分析】(1)由判别式小于0可得(方程为一元二次方程); (2)由二次项系数为0或一元二次方程的判别式为0柯得; (3)由方程为一元二次方程,且判别式大于0可得. (1)M =∅,180a ∆=-<,18a >,所以a 的范围是1(,)8+∞;(2)0a =时,{2}M =,满足题意,180a ∆=-=,18a =,此时{4}M =,满足题意,(3)由题意方程有两个不等实根,0a ≠且0∆>,解得18a <且0a ≠,所以a 的范围是1{|8a a <,0}a ≠.拓展创新1.已知集合2{,}A m m =,若1A ∈,则实数m 的值是__________ 【答案】1-【解析】 【分析】由1A ∈,分1m =,21m =两种情况讨论,结合集合中元素的互异性分析,即得解 【详解】 由题意,1A ∈(1)若1m =,则{1,1}A =,和集合中元素的互异性矛盾,不成立; (2)若21m =,则1m =±,由(1)1m ≠ 若1m =-,则{1,1}A =-,1A ∈,成立 故实数m 的值是1- 故答案为:1- 2.已知*k N ∈,记集合{1101100112222,1,,,,01}k k k k k k k A x x a a a a a a a a ---==⨯+⨯++⨯+⨯==或,例如{{}110102,1,01}2,3A x x a a a a ==+===或,….现有一款名称为“解数学题获取软件激活码”网络游戏,它的激活码为集合A 2的各元素之和,则该游戏的激活码为________. 【答案】22 【解析】 【分析】由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1,由此求得集合{}24,5,6,7A =,故而可得答案. 【详解】解:由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1, 所以当100a a ==时,41+0+04x =⨯=; 当1010a a ==,时,41+21+06x =⨯⨯=; 当1001a a ==,时,41+20+115x =⨯⨯⨯=, 当1011a a ==,时,41+21+117x =⨯⨯⨯=,所以{}24,5,6,7A =,该游戏的激活码为4+5+6+722=, 故答案为:22.3.已知集合{}0,2A =,()()(){}21110B x ax x x ax =---+=,用符号A 表示非空集合A中元素的个数,定义,,A B A BA B B A A B ⎧-≥=⎨-<⎩※,若1A B =※,则实数a 的所有可能取值构成集合P ,则P =______.(请用列举法表示) 【答案】{}0,1,2- 【解析】 【分析】由集合的新定义结合题意求出a 的值,再用列举法表示即可 【详解】∵2A =,1A B =※, ∴1B =或3B =, 当1B =时,0a =或1a =.当3B =时,()()()21110ax x x ax ---+=有3个解,所以210x ax -+=只有一个解不为1和1a, 则240a ∆=-=,解得2a =±,当2a =时,2210x x -+=,则此时1x =,不符合题意; 当2a =-时,2210x x ++=,则此时1x =-,符合题意; 所以2a =-,11,,12B ⎧⎫=--⎨⎬⎩⎭,故{}0,1,2P =-. 故答案为:{}0,1,2-.4.用()C A 表示非空集合A 中元素的个数:定义()(),()()*()(),()()C A C B C A C B A B C B C A C B C A -≥⎧=⎨->⎩,若{1,2}A =,{}22()(2)0,B x x ax x ax x R =+++=∈,且*1A B =,设实数a 的所有可能取值构成集合S ,S =__________; 【答案】{0,22,2}- 【解析】 【分析】根据新定义得出集合B 中元素个数,再由方程根的个数分析求解. 【详解】由已知()2C A =,而*1A B =,则()1C B =或3,试卷第11页,共11页 11显然22()(2)0x ax x ax +++=的一个解是0x =, 若()1C B =,则0a =,满足题意;若()3C B =,则0a ≠,方程已有两个根0x =和x a =-,220x ax ++=有两个相等的实根且不为0和a -,280a ∆=-=,22a =±22a =220x ax ++=的解为342x x ==- 22a =-220x ax ++=的解为342x x ==.均满足题意. 综上{0,2,22}S =-. 故答案为:{0,2,2}-.12 试卷第12页,共1页。
数学集合练习题答案

数学集合练习题答案一、选择题1. 答案:C解析:集合的定义是由若干个确定的元素组成,可以用大写字母表示。
2. 答案:B解析:空集是不包含任何元素的集合。
3. 答案:A解析:一个集合除了包含自身的元素外,也可以包含其他集合。
4. 答案:D解析:一个集合的子集是指该集合中的元素组成的一个集合。
5. 答案:B解析:并集是指两个集合中所有的元素的集合。
二、填空题1. 答案:{1, 2, 3, 4, 5}解析:按照集合的定义,列举出所有的元素即可。
2. 答案:{1, 2, 3, 4}解析:按照集合的定义,列举出所有满足条件的元素即可。
3. 答案:{1, 2, 3}解析:按照集合的定义,列举出所有满足条件的元素即可。
4. 答案:{3, 4}解析:按照集合的定义,列举出所有满足条件的元素即可。
5. 答案:{1, 2, 3, 4, 5}解析:按照集合的定义,列举出所有满足条件的元素即可。
三、解答题1. 答案:集合A的元素个数为7个。
解析:集合A中的元素有1, 2, 3, 4, 5, 6, 7,共7个元素。
2. 答案:集合B的元素个数为8个。
解析:集合B中的元素有1, 2, 3, 4, 5, 6, 7, 8,共8个元素。
3. 答案:集合A与集合B的交集为{2, 4, 6}。
解析:集合A与集合B的交集为两个集合中共有的元素组成的集合。
4. 答案:集合A与集合B的并集为{1, 2, 3, 4, 5, 6, 7, 8}。
解析:集合A与集合B的并集是指两个集合中所有的元素的集合。
5. 答案:集合A与集合B的差集为{1, 3, 5, 7}。
解析:集合A与集合B的差集是指在集合A中但不在集合B中的元素组成的集合。
总结:通过本次数学集合练习题,我们复习了集合的基本概念和运算。
集合是由若干个确定的元素组成,可以用大写字母表示。
空集是不包含任何元素的集合。
一个集合的子集是指该集合中的元素组成的一个集合。
并集是指两个集合中所有的元素的集合。
1.1 集合的概念(答案版)

1.集合与元素 一般地,把研究对象称为元素,通常用小写拉丁字母a,b,c,...表示;把一些元素组成的总体叫做集合,简称集,通常用大写拉丁字母A,B,C,...表示。
2.集合的特征(1)集合元素的特征:确定性、互异性、无序性.(2)元素与集合的关系:属于(∈),a∈A ;不属于(),a∈A .(3)自然数集:N ;正整数集:N *或N +;整数集:Z ;有理数集:Q ;实数集:R.(4)集合的表示方法:自然语言表示法、字母表示法、列举法、描述法、Venn 图图示法.3.集合的基本关系集合与集合:包含关系(子集),或B A ⊆(A 包含于A B ⊇B ,B 含于A ,A>B )(2)子集个数结论:∈含有n 个元素的集合有2n 个子集;∈含有n 个元素的集合有2n -1个真子集;∈含有n 个元素的集合有2n -2个非空真子集.例1:用适当的方法表示下列集合.(1)“BRICS”中所有字母组成的集合;(2)绝对值等于6的数组成的集合;(3)所有三角形组成的集合;(4)直线y =x 上去掉原点的点组成的集合;(5)大于2且小于5的有理数组成的集合;(6)24的所有正因数组成的集合;1.1集合的概念知识讲解典型例题(7)平面直角坐标系内与坐标轴距离相等的点的集合.解:(1)用列举法表示为{B ,R ,I ,C ,S}.(2)因为绝对值等于6的数是±6,所以用列举法表示为{-6,6}.(3)用描述法表示为{x |x 是三角形}或{三角形}.(4)用描述法表示为{(x ,y )|y =x ,x ≠0}.(5)用描述法表示为{x |2<x <5,且x ∈Q }.(6)用列举法表示为{1,2,3,4,6,8,12,24}.(7)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |到y 轴的距离为|x |所以该集合用描述法表示为{(x ,y )||y |=|x |}.例2:下列各组集合中表示同一集合的是( )A .,B .,C .,D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合;对于B ,,,根据集合的无序性,集合表示同一集合;对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,,集合的元素是点,集合不表示同一集合.一、选择题1.下列各组对象中能构成集合的是( C )AB .数学成绩比较好的同学C .小于20的所有自然数D .未来世界的高科技产品2. 下列命题中正确的是( C ){(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 同步练习∈0与{0}表示同一个集合;∈由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};∈方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};∈集合{x |4<x <5}可以用列举法表示.A .∈和∈B .∈和∈C .∈D .∈和∈解析:选C ∈中的0不是集合,故∈错;由集合中元素的无序性知∈正确;由集合中元素的互异性知∈错;因为集合{x |4<x <5}表示无限集,它不可以用列举法表示,故∈错.3.下列各组中的M 、P 表示同一集合的是( C )∈M ={3,-1},P ={(3,-1)} ∈M ={(3,1)},P ={(1,3)} ∈M ={y |y =x 2-1},P ={t |t =x 2-1}∈M ={y |y =x 2-1},P ={(x ,y )|y =x 2-1}A .∈B .∈C .∈D .∈解析:选C 在∈中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故∈错误;在∈中,M ={(3,1)},P ={(1,3)}表示的不是同一个点,故∈错误;在∈中,M ={y |y =x 2-1}=[-1,+∞),P ={t |t =x 2-1}=[-1,+∞),二者表示同一集合,故∈正确;在∈中,M ={y |y =x 2-1}表示数集,P ={(x ,y )|y =x 2-1}表示一条抛物线上的点的集合,故∈错误,故选C.4.集合⎩⎨⎧⎭⎬⎫3,52,73,94,…用描述法可表示为( ) A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +12n ,n ∈N * B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +3n ,n ∈N *C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n -1n ,n ∈N *D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +1n ,n ∈N * 解析:选D 由3,52,73,94,即31,52,73,94,从中发现规律,x =2n +1n ,n ∈N *,故可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +1n ,n ∈N *. 5.集合{x |x 2-6x +9=0}中的所有元素之和为( )A .0B .3C .6D .9解析:选B ∈{x |x 2-6x +9=0}={3},故元素之和为3.6.已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为( B )A .1或-1B .1或3C .-1或3D .1,-1或37.已知M ={(x ,y )|2x +3y =10,x ,y ∈N },N ={(x ,y )|4x -3y =1,x ,y ∈R },则( B )A .M 是有限集,N 是有限集B .M 是有限集,N 是无限集C .M 是无限集,N 是无限集D .M 是无限集,N 是有限集解析:选B 因为M ={(x ,y )|2x +3y =10,x ,y ∈N }={(2,2),(5,0)},所以M 为有限集.N ={(x ,y )|4x -3y =1,x ,y ∈R }中有无限多个点满足4x -3y =1,故N 为无限集.8.下列集合中,是空集的是( B )A .B .C .D . {}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y y x x y =-∈R【答案】B 【解析】对于A 选项,,不是空集,对于B 选项,没有实数根,故为空集,对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集.9.集合中的不能取的值的个数是( )A .B .C .D . 【答案】B 【解析】由题意可知,且且,故集合中的不能取的值的个数是个.二、填空题1.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________.【答案】{4,9,16} [由A ={-2,2,3,4},B ={x |x =t 2,t ∈A },得B ={4,9,16}.]2. 以下五个写法中:∈{0}∈{0,1,2};∈∈∈{1,2};∈{0,1,2}={2,0,1};∈0∈∈;∈A∩∈=A ,正确的个数有 2 个。
集合练习题及答案

集合练习题及答案集合是数学中的一个重要概念,它描述了一组对象的全体,这些对象被称为集合的元素。
下面是一些集合的练习题以及它们的答案。
练习题1:确定下列集合的元素:- A = {x | x 是一个正整数,且x ≤ 10}- B = {x | x 是一个偶数}答案1:- A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}- B = {..., -4, -2, 0, 2, 4, 6, 8, ...}练习题2:判断以下两个集合是否相等:- C = {x | x 是一个质数}- D = {2, 3, 5, 7, 11, 13, ...}答案2:C 和D 是相等的,因为 D 中列出的所有元素都是质数,且质数集合是无限的,所以用省略号表示。
练习题3:找出集合 A 和集合 B 的交集:- A = {1, 3, 5, 7, 9}- B = {2, 4, 6, 8, 10}答案3:A ∩B = {}(空集,因为 A 和 B 中没有共同的元素)练习题4:找出集合 A 和集合 B 的并集:- A = {1, 2, 3}- B = {3, 4, 5}答案4:A ∪B = {1, 2, 3, 4, 5}练习题5:找出集合 A 的补集(设全集 U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}):- A = {1, 2, 3, 4}答案5:A' = {5, 6, 7, 8, 9, 10}练习题6:判断以下命题的真假:- 如果x ∈ A 且y ∈ A,则 x = y。
答案6:这个命题是假的。
因为集合中的元素是互不相同的,如果 x 和 y 都是 A 的元素,它们不一定相等。
练习题7:给定集合 E = {x | x 是一个小于 20 的正整数},找出 E 的子集数量。
答案7:E 有 2^19 - 1 个子集,因为每个元素可以选择包含或不包含在子集中,有 19 个元素,所以有 2^19 种可能的组合,但全包含和全不包含是同一个集合,所以要减去 1。
专题1 集合的含义与表示(解析版)

专题1 集合的含义与表示题组1 集合的概念1.对于以下说法:①接近于0的数的全体构成一个集合;②长方体的全体构成一个集合;③高科技产品构成一个集合;④不大于3的所有自然数构成一个集合;⑤0,0.5,,组成的集合含有四个元素.其中正确的是()A.①②④B.②③⑤C.③④⑤D.②④【答案】D【解析】①③中的元素不能确定,⑤中的集合含有3个元素,②④中的元素是确定的,所以②④能构成集合.故选D.2.下列各组对象可以组成集合的是()A.数学必修1课本中所有的难题B.小于8的所有素数C.直角坐标平面内第一象限的一些点D.所有小的正数【答案】B【解析】A中“难题”的标准不确定,不能构成集合;B能构成集合;C中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;D中没有明确的标准,所以不能构成集合.3.下列说法中正确的是()A.班上爱好足球的同学,可以组成集合B.方程x(x-2)2=0的解集是{2,0,2}C.集合{1,2,3,4}是有限集D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是含有相同元素的集合【答案】C【解析】班上爱好足球的同学是不确定的,所以构不成集合,选项A不正确;方程x(x-2)2=0的所有解的集合可表示为{0,2},由集合中元素的互异性知,选项B不正确;集合{1,2,3,4}中有4个元素,所以集合{1,2,3,4}是有限集,选项C正确;集合{x2+5x+6=0}不符合集合的表示形式,既不是列举法,也不是描述法,表示形式错误,选项D不正确.故选C.4.下列各组中集合P与Q,表示同一个集合的是()A.P是由元素1,,π构成的集合,Q是由元素π,1,|-|构成的集合B.P是由π构成的集合,Q是由3.14159构成的集合C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集【答案】A【解析】由于A中P、Q元素完全相同,所以P与Q表示同一个集合,而B、C、D中元素不相同,所以P与Q不能表示同一个集合.故选A.题组2 集合中元素的特征5.数集{x2+x,2x}中,x的取值范围是()A.(-∞,+∞)B.(-∞,0)∪(0,+∞)C.(-∞,1)∪(1,+∞)D.(-∞,0)∪(0,1)∪(1,+∞)【答案】D【解析】根据题意,由集合中元素的互异性,可得集合{x2+x,2x}中,x2+x≠2x,即x≠0,x≠1,则x的取值范围是(-∞,0)∪(0,1)∪(1,+∞).故选D.6.数集{1,2,x2-3}中的x不能取的数值的集合是()A.{2,}B.{-2,-}C.{±2,±}D.{2,-}【答案】C【解析】由x2-3≠1解得x≠±2.由x2-3≠2解得x≠±.∴x不能取得值的集合为{±2,±}.故选C.7.若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a等于()A.4B.2C.0D.0或4【答案】A【解析】当a=0时,方程为1=0不成立,不满足条件;当a≠0时,Δ=a2-4a=0,解得a=4.故选A.8.若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k的值为()A.1B.0C.0或1D.以上答案都不对【答案】C【解析】k=0时,适合题意;k≠0,由Δ=0,可得k=1.9.由实数x,-x,|x|,,-所组成的集合,最多含()A.2个元素B.3个元素C.4个元素D.5个元素【答案】A【解析】由于|x|=±x,=|x|,-=-x,并且x,-x,|x|之中总有两个相等,所以最多含2个元素.10.设集合A={-1,1,2,-2},B={0,3,-3},M={x|x=ab,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6【答案】C【解析】由集合中元素的互异性,可知集合M={0,-3,3,6,-6},所以集合M中共有5个元素.题组3 元素与集合的关系11.由不超过5的实数组成集合A,a=+,则()A.a∈AB.a2∈AC.∉AD.a+1∉A【答案】A【解析】a=+<+=4<5,∴a∈A.a+1<++1=5,∴a+1∈A.a2=()2+2·+()2=5+2>5.∴a2∉A.===-<5.∴∈A.故选A.12.已知集合M={x|x=3m+1,m∈Z},N={y|y=3n+2,n∈Z},若x0∈M,y0∈N,则x0y0与集合M,N的关系是()A.x0y0∈M但x0y0∉NB.x0y0∉M且x0y0∉NC.x0y0∈N但x0y0∉MD.x0y0∈M且x0y0∈N【答案】C【解析】设x0=3m+1,y0=3n+2,m,n∈Z,则x0y0=(3m+1)(3n+2)=9mn+6m+3n+2=3(3mn+2m+n)+2,∴x0y0∈N但x0y0∉M,故选C.13.集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},且a∈P,b ∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈RD.a+b不属于P、Q、R中的任意一个【答案】B【解析】由P={x|x=2k,k∈Z}可知P表示偶数集;由Q={x|x=2k+1,k∈Z}可知Q表示奇数集;由R={x|x=4k+1,k∈Z}可知R表示所有被4除余1的整数;当a∈P,b∈Q,则a为偶数,b为奇数,则a+b一定为奇数,故选B.14.若集合A={x|0<x<7,x∈N*},则B=中元素的个数为()A.3B.4C.1D.2【答案】B【解析】A={x|0<x<7,x∈N*}={1,2,3,4,5,6},B={1,2,3,6},∵A∩B=B,∴B=中元素的个数为4.15.定义集合A、B的一种运算:A*B={x|x=x1·x2,其中x1∈A,x2∈B},若A={1,2},B={1,2},则A*B中的所有元素数字之和为()A.7B.9C.5D.6【答案】A【解析】∵A*B={x|x=x1·x2,其中x1∈A,x2∈B},且A={1,2},B={1,2},∴A*B={1,2,4},则A*B中的所有元素数字之和为1+2+4=7,故选A.16.(1)设A表示集合{2,3,a2+2a-3),B表示集合{|a+3|,2},若5∈A,且5∉B,求实数a 的值;(2)已知集合A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},若(2,3)∈A,且(2,3)∉B,试求m,n的取值范围.【答案】(1)∵5∈A,且5∉B,∴即解得a=-4.(2)∵(2,3)∈A,∴2×2-3+m>0,∴m>-1.∵(2,3)∉B,∴2+3-n>0,∴n<5.∴所求m,n的取值范围分别是{m|m>-1},{n|n<5}.17.已知集合S中的元素是正整数,且满足命题“如果x∈S,则(6-x)∈S”时回答下列问题:(1)试写出元素个数为2的全部集合S;(2)试写出满足条件的全部集合S.【答案】(1)∵S中有两个元素,且x∈S,6-x∈S,∴这两个元素的和为6,∴S可能为{1,5},{2,4}.(2)当6-x=x时,x=3,∴S可能为{3},{1,5},{2,4},{1,5,3},{2,4,3},{1,5,2,4},{1,5,2,4,3}.题组4 常用的数集及表示18.下列关系中正确的个数为()①∈R;②0∈N*;③{-5}⊆Z.A.0B.1C.2D.3【答案】C【解析】①③正确.19.下列四个说法中正确的个数是()①集合N中的最小数为1;②若a∈N,则-a∉N;③若a∈N,b∈N,则a+b的最小值为2;④所有小的正数组成一个集合;⑤π∈Q;⑥0∉N;⑦-3∈Z;⑧∈R.A.0B.1C.2D.3【答案】C【解析】①错,因为N中最小数是0;②错,因为0∈N,而-0∈N;③错,当a=1,b=0时,a+b=1;④错,小的正数是不确定的;⑤错,因为π不是有理数;⑥错,因为0是自然数;⑦正确,因为-3是整数;⑧正确,因为是实数.题组5 用列举法表示集合20.用列举法表示集合{x|x-2<3,x∈N*}为()A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}【答案】B【解析】∵x-2<3,∴x<5.又x∈N*,∴x=1,2,3,4,故选B.21.方程组的解构成的集合是()A.{(1,1)}B.{1,1}C.(1,1)D.{1}【答案】A【解析】由得即方程组的解构成的集合为{(1,1)},故选A.22.下列集合不等于由所有奇数构成的集合的是()A.{x|x=4k-1,k∈Z}B.{x|x=2k-1,k∈Z}C.{x|x=2k+1,k∈Z}D.{x|x=2k+3,k∈Z}【答案】A题组6 用描述法表示集合23.下列集合不等于由所有奇数构成的集合的是()A.{x|x=4k-1,k∈Z}B.{x|x=2k-1,k∈Z}C.{x|x=2k+1,k∈Z}D.{x|x=2k+3,k∈Z}【答案】A24.用描述法表示一元二次方程的全体,应是()A.{x|ax2+bx+c=0,a,b,c∈R}B.{x|ax2+bx+c=0,a,b,c∈R,且a≠0}C.{ax2+bx+c=0|a,b,c∈R}D.{ax2+bx+c=0|a,b,c∈R,且a≠0}【答案】D【解析】∵一元二次方程的一般形式是ax2+bx+c=0,a,b,c∈R,且a≠0.则描述法表示一元二次方程的全体构成的集合为:{ax2+bx+c=0|a,b,c∈R,且a≠0}.故选D.25.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合【答案】D【解析】集合{(x,y)|y=2x-1}中的元素为有序实数对(x,y),表示点,所以集合{(x,y)|y=2x-1}表示函数y=2x-1图象上的所有点组成的集合.故选D.26.第一象限的点组成的集合可以表示为()A.{(x,y)|xy>0}B.{(x,y)|xy≥0}C.{(x,y)|x>0且y>0}D.{(x,y)|x>0或y>0}【答案】C27.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]=,k=0,1,2,3,4,给出如下四个结论:①2 016∈[1];②-3∈[3];③若整数a,b属于同一“类”,则a-b∈[0];④若a-b∈[0],则整数a,b属于同一“类”.其中,正确结论的个数是()A.1B.2C.3D.4【答案】C【解析】由于[k]=,对于①,2 016除以5等于403余1,∴2 016∈[1],∴①正确;对于②,-3=-5+2,被5除余2,∴②错误;对于③,∵a,b是同一“类”,可设a=5n1+k,b=5n2+k,则a-b=5(n1-n2)能被5整除,∴a-b∈[0],∴③正确;对于④,若a-b∈[0],则可设a-b=5n,n∈Z,即a=5n+b,n∈Z,不妨令b=5m+k,m ∈Z,k=0,1,2,3,4,则a=5n+5m+k=5(m+n)+k,m∈Z,n∈Z,∴a,b属于同一“类”,∴④正确,则正确的有①③④,共3个.28.已知集合M={x|x=+,k∈Z},N={x|x=+,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定【答案】A【解析】M={x|x=,k∈Z},N={x|x=,k∈Z},∵2k+1(k∈Z)是一个奇数,k+2(k∈Z)是一个整数,∴x0∈M时,一定有x0∈N,故选A.题组7 集合的表示综合29.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n =m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,则在此定义下,集合M ={(a,b)|a※b=16}中的元素个数是()A.18B.17C.16D.15【答案】B【解析】因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M中的元素是有序数对(a,b),所以集合M中的元素共有17个,故选B.30.用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5且x∈Z};(4){(x,y)|x+y=6,x,y均为正整数};(5){-3,-1,1,3,5}.【答案】(1){-2,-1,0,1,2};(2){3,6,9};(3){0,1,2,3,4};(4){(1,5),(2,4),(3,3),(4,2),(5,1)};(5){x|x=2k-1,-1≤k≤3,k∈Z}.11/ 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的概念及表示练习
题及答案
Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8
新课标 集合的含义及其表示
姓名:_________
一、选择题:
1.下面四个命题:(1)集合N 中的最小元素是1:(2)若a N -∉,则a N ∈
(3)244x x +=的解集为{2,2};(4)Q ∈,其中不正确命题的个数为 ( )
A. 0
B. 1
C.2
2.下列各组集合中,表示同一集合的是 ( )
A.(){}(){}3,2,2,3M N =
B.{}{}3,2,2,3M N ==
C.(){},1M x y x y =+=,{}1N y x y =+=
D. {}(){}1,2, 1.2M N ==
3.下列方程的实数解的集合为12,23⎧⎫-⎨⎬⎩⎭
的个数为 ( ) (1)224941250x y x y +-++=;(2)2620x x +-=;
(3) ()()221320x x -+=;(4) 2620x x --=
.2 C
4.集合{}(){}
2210,6100A x x x B x N x x x =++==∈++=,{}450C x Q x =∈+<,{}2D x x =为小于的质数 ,其中时空集的有 ( )
A. 1个个 个 个
5. 下列关系中表述正确的是 ( )
A.{}200x ∈=
B.(){}00,0∈
C. 0∈∅
D.0N ∈
6. 下列表述正确的是( )
A.{}0=∅
B.{}{}1,22,1=
C.{}∅=∅
D.0N ∉
7. 下面四个命题:(1)集合N 中的最小元素是1:(2)方
()()()3
1250x x x -+-=的解集含有3个元素;(3)0∈∅(4)满足1x x +>的实数的全体形成的集合。
其中正确命题的个数是 ( )
B. 1
C. 2
二.填空题: 8.用列举法表示不等式组240121
x x x +>⎧⎨+≥-⎩的整数解集合为
9.已知集合12,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭
用列举法表示集合A 为 10.已知集合241x A a x a ⎧⎫-⎪⎪==⎨⎬+⎪⎪⎩⎭
有惟一解,又列举法表示集合A 为 三、解答题:
11.已知{}{}2A=1,a,b ,,,B a a ab =,且A=B ,求实数a,b ;
12. 已知集合{}2210,A x ax x x R =++=∈,a 为实数
(1)若A 是空集,求a 的取值范围(2)若A 是单元素集,求a 的值
(3)若A 中至多只有一个元素,求a 的取值范围
13. 设集合{}
22,M a a x y a Z ==-∈
(1)请推断任意奇数与集合M 的关系 (2)关于集合M ,你还可以得到一些什么样的结论
参考答案:DBBBDBC
8.{}1,0,1,2- 9{}0,2,3,4,5;10,17224⎧⎫--⎨⎬⎩⎭,,11,a= -1,b=0;12,(1)a>1(2)a=0or1(3)a=0 or a ≥113(1)任意奇数都是集合M 的元素(2)略。