实验五图像分割及目标检测

合集下载

图像处理有关的课程设计

图像处理有关的课程设计

图像处理有关的课程设计一、教学目标本课程的学习目标主要包括知识目标、技能目标和情感态度价值观目标。

通过本课程的学习,学生将掌握图像处理的基本原理、方法和技巧,包括图像的表示、图像增强、图像滤波、边缘检测和图像分割等。

同时,学生将能够运用所学的知识解决实际问题,提高图像处理的实践能力。

此外,学生将培养对图像处理的兴趣和热情,增强创新意识和团队合作精神。

二、教学内容根据课程目标,本课程的教学内容主要包括图像处理的基本概念、图像的表示和运算、图像增强、图像滤波、边缘检测和图像分割等。

具体包括以下几个方面的内容:1.图像处理的基本概念:图像处理的目的、方法和应用领域。

2.图像的表示和运算:图像的数学模型、图像的像素运算和图像的坐标变换。

3.图像增强:图像增强的目的、方法和算法,包括直方图均衡化、对比度增强和锐化等。

4.图像滤波:图像滤波的目的、方法和算法,包括线性滤波、非线性滤波和高斯滤波等。

5.边缘检测:边缘检测的目的、方法和算法,包括Sobel算法、Canny算法和Prewitt算法等。

6.图像分割:图像分割的目的、方法和算法,包括阈值分割、区域增长和边缘追踪等。

三、教学方法为了实现课程目标,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。

通过这些教学方法的综合运用,将激发学生的学习兴趣和主动性,提高学生的学习效果和实践能力。

1.讲授法:通过教师的讲解和演示,向学生传授图像处理的基本原理、方法和技巧。

2.讨论法:通过小组讨论和课堂讨论,引导学生主动思考和探索图像处理的问题和解决方案。

3.案例分析法:通过分析典型的图像处理案例,让学生了解图像处理在实际应用中的作用和效果。

4.实验法:通过实验操作和数据分析,培养学生动手能力和实际解决问题的能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备适当的教学资源。

教学资源包括教材、参考书、多媒体资料和实验设备等。

图形图像处理实验

图形图像处理实验
G=[1 1 1 1。1 1 -1 -1。1 -1 -1 1。1 -1 1 -1]。
W=(1/16>*G*f*G
实验结果:
W =
3.1875 0.0625 -0.8125 0.0625
0.0625 -0.0625 0.0625 -0.0625
0.1875 0.0625 -0.8125 0.0625
0.0625 -0.0625 0.0625 -0.0625
C1=dct2(I>。
C2=fftshift(C1>。
subplot(122>。imshow(log(abs(C2>>+1,[0 10]>。
实验结果:
原始图像 DCT系数
3.3 已知二维数字图像矩阵f,求此图像的二维DWT,并反求f。
f=[2 5 5 2。3 3 3 3。3 3 3 3。2 5 5 1]。
len=28。
theta=14。
PSF=fspecial('motion' , len , theta>。
wnr1 = deconvwnr(blurred,PSF>。 %维娜滤波复原图像
figure, imshow(wnr1>。
------------- %读入有噪声模糊图像并命名为blurrednoisy
reg2=deconvreg(Edged,PSF,NP*1.2>。
subplot(2,2,2>, imshow(reg2>。 %大NP
subplot(1,2,1>,imshow(J>。
N=numel(J>。
pr = imhist(J>/N。
kБайду номын сангаас0:255。

图像处理技术在目标检测中的使用方法研究

图像处理技术在目标检测中的使用方法研究

图像处理技术在目标检测中的使用方法研究概述:目标检测是计算机视觉领域中的一个重要研究方向,旨在从图像或视频中准确地识别出特定的目标。

近年来,随着深度学习的发展,图像处理技术在目标检测中的应用呈现出了越来越广阔的前景。

本文将通过研究目标检测中常用的图像处理技术,探讨其使用方法及效果。

一、图像预处理对于目标检测任务来说,图像预处理是一个关键的步骤,其目的是通过一系列的处理操作,尽可能地提取出目标的关键特征,从而提高检测的准确性和稳定性。

常用的图像预处理技术包括:1. 图像尺寸调整:将图像调整为固定的尺寸,确保输入的图像在尺寸上具有一致性。

2. 图像增强:通过增强图像的对比度、色彩、清晰度等方面,使目标在图像中更加显著、容易被检测到。

3. 去噪处理:通过降低图像的噪声水平,减少目标检测时可能出现的误检情况。

二、特征提取在目标检测中,特征提取是一个不可或缺的步骤,用于从图像中提取出具有代表性的特征来描述目标。

常见的特征提取方法包括:1. 基于颜色特征:通过提取目标的颜色信息,例如颜色直方图、颜色矩阵等,来描述目标的特征。

2. 基于纹理特征:利用纹理信息,如灰度共生矩阵、小波变换等,描述目标的纹理特性。

3. 基于形状特征:通过提取目标的几何形状、轮廓等特征,来描述目标的形状特性。

三、目标检测算法1. 传统的目标检测算法传统的目标检测算法主要包括基于模板匹配的方法、基于特征的方法和基于统计的方法等。

这些方法依赖于事先定义的特征或模型,对目标的检测效果受限。

2. 基于深度学习的目标检测算法深度学习的兴起为目标检测带来了革命性的变化,其中最有代表性的算法是基于卷积神经网络(Convolutional Neural Network,简称CNN)的方法,如Faster R-CNN、YOLO、SSD等。

这些方法通过在大规模数据集上进行训练,能够自动地学习到图像中目标的特征,并实现准确、高效的目标检测。

四、图像分割技术图像分割是目标检测中的一个重要环节,其目的是将图像分割成若干个具有相似特征的子区域。

基于matlab的图像处理课程设计

基于matlab的图像处理课程设计

基于matlab的图像处理课程设计一、课程目标知识目标:1. 学生能理解图像处理的基本概念,掌握图像的数字化表示方法。

2. 学生能掌握Matlab软件的基本操作,运用其图像处理工具箱进行图像的读取、显示和保存。

3. 学生能掌握图像处理的基本算法,如灰度变换、图像滤波、边缘检测等,并理解其原理。

技能目标:1. 学生能运用Matlab进行图像处理操作,解决实际问题。

2. 学生能通过编程实现图像处理算法,具备一定的程序调试和优化能力。

3. 学生能运用所学知识,结合实际问题,设计简单的图像处理程序。

情感态度价值观目标:1. 学生通过学习图像处理,培养对计算机视觉和人工智能领域的兴趣,激发创新意识。

2. 学生在课程实践中,培养团队协作精神,提高沟通与表达能力。

3. 学生能认识到图像处理技术在生活中的广泛应用,增强学以致用的意识。

分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握基本图像处理知识的基础上,通过Matlab软件的实践操作,培养其编程能力和解决实际问题的能力。

同时,注重培养学生的团队协作和情感态度,使其在学习过程中获得成就感,激发学习兴趣。

课程目标将具体分解为学习成果,以便后续教学设计和评估。

二、教学内容1. 图像处理基础理论:- 数字图像概念及表示方法- 图像处理的基本操作:读取、显示、保存- 像素运算与邻域处理2. Matlab基础操作:- Matlab软件安装与界面介绍- 数据类型与基本运算- 矩阵运算与函数编写3. 图像处理算法:- 灰度变换与直方图处理- 图像滤波:低通滤波、高通滤波- 边缘检测:Sobel算子、Canny算子4. 实践项目:- 图像增强与去噪- 图像分割与特征提取- 目标检测与跟踪5. 教学大纲:- 第一周:图像处理基础理论,Matlab基础操作- 第二周:灰度变换与直方图处理,图像滤波- 第三周:边缘检测,实践项目一- 第四周:图像分割与特征提取,实践项目二- 第五周:目标检测与跟踪,课程总结与展示教学内容根据课程目标,结合教材章节进行选择和组织,确保科学性和系统性。

计算机视觉实习报告

计算机视觉实习报告

一、实习背景随着科技的不断发展,计算机视觉技术在各行各业中的应用越来越广泛。

为了深入了解计算机视觉领域,提升自己的专业技能,我于2021年7月至9月参加了为期两个月的计算机视觉实习。

实习期间,我参与了图像处理、目标检测、图像分割等项目的研发,对计算机视觉技术有了更深入的了解。

二、实习内容1. 图像处理在实习期间,我首先学习了图像处理的基本知识,包括图像的像素、分辨率、颜色模型等。

通过学习OpenCV库,掌握了图像的读取、显示、变换、滤波、边缘检测等操作。

具体实习内容包括:(1)图像读取与显示:使用OpenCV读取图像文件,并显示图像。

(2)图像变换:对图像进行平移、旋转、缩放等变换。

(3)图像滤波:使用均值滤波、高斯滤波等算法对图像进行平滑处理。

(4)边缘检测:使用Canny算子、Sobel算子等算法对图像进行边缘检测。

2. 目标检测目标检测是计算机视觉领域的一个重要研究方向。

在实习期间,我学习了目标检测的基本原理,并使用OpenCV和TensorFlow等工具进行目标检测实验。

具体实习内容包括:(1)目标检测算法:学习SSD、YOLO、Faster R-CNN等目标检测算法。

(2)数据集准备:对目标检测数据集进行预处理,包括图像缩放、旋转、裁剪等。

(3)模型训练与优化:使用TensorFlow框架训练目标检测模型,并对模型进行优化。

3. 图像分割图像分割是将图像分割成若干个互不重叠的区域,每个区域对应图像中的某个对象。

在实习期间,我学习了图像分割的基本原理,并使用OpenCV和深度学习技术进行图像分割实验。

具体实习内容包括:(1)图像分割算法:学习基于区域生长、基于边缘、基于深度学习的图像分割算法。

(2)数据集准备:对图像分割数据集进行预处理,包括图像缩放、旋转、裁剪等。

(3)模型训练与优化:使用深度学习框架(如TensorFlow、PyTorch)训练图像分割模型,并对模型进行优化。

三、实习成果1. 完成了图像处理、目标检测、图像分割等项目的研发,积累了丰富的实践经验。

《数字图像处理》实验教案

《数字图像处理》实验教案

《数字图像处理》实验教案一、实验目的与要求1. 实验目的(1) 理解数字图像处理的基本概念和原理;(2) 掌握常用的数字图像处理方法和技术;(3) 能够运用数字图像处理软件进行图像处理和分析。

2. 实验要求(1) 熟悉计算机操作和图像处理软件的使用;(2) 能够阅读和理解图像处理相关的文献资料;二、实验内容与步骤1. 实验内容(1) 图像读取与显示;(2) 图像的基本处理方法:灰度化、二值化、滤波;(3) 图像的增强与复原;(4) 图像的分割与描述;(5) 图像的压缩与编码。

2. 实验步骤(1) 打开图像处理软件,导入实验所需的图像;(2) 进行图像的基本处理,观察处理前后的效果;(3) 应用图像的增强与复原方法,改善图像的质量;(4) 使用图像的分割与描述技术,提取图像中的目标区域;(5) 对图像进行压缩与编码,观察压缩后的效果。

三、实验注意事项1. 实验前请确保已经安装了图像处理软件,并熟悉其基本操作;3. 在进行图像分割与描述时,请合理选择阈值和算法,确保目标区域的准确提取;四、实验报告要求1. 实验报告应包括实验目的、实验内容、实验步骤、实验结果和实验总结;2. 实验报告中应详细描述实验过程中遇到的问题及解决方法;3. 实验报告应有清晰的图像处理结果展示,并附上相关图像的处理参数和效果对比;五、实验评分标准1. 实验目的与要求(20分):是否达到实验目的,是否符合实验要求;2. 实验内容与步骤(30分):是否完成实验内容,是否遵循实验步骤;3. 实验注意事项(20分):是否注意实验注意事项,处理过程中是否出现错误;4. 实验报告要求(30分):报告结构是否完整,描述是否清晰,图像处理结果是否合理,总结是否到位。

评分总分:100分。

六、实验一:图像读取与显示1. 实验目的(1) 学习如何使用图像处理软件读取和显示图像。

2. 实验步骤(1) 打开图像处理软件。

(2) 导入实验所需的图像文件。

关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】实训报告总结:图形图像处理实训图形图像处理实训是计算机科学与技术专业的基础课程之一。

通过本次实训课程,我深入了解了图形图像处理的基本概念、方法和技术,并通过实际操作来提升了自己的实践能力。

下面是对本次实训的九篇报告总结:1. 实验一:图像读取与显示本次实验主要是学习如何读取和显示图像,以及使用Matplotlib库进行图像展示。

通过实验,我掌握了图像读取和显示的基本方法,并学会了基本的图像处理操作。

2. 实验二:图像的灰度变换实验二主要是学习图像的灰度变换,包括线性变换和非线性变换。

我学会了如何使用不同的灰度变换函数来调整图像的亮度和对比度,进一步提升图像的质量。

3. 实验三:图像的空间域滤波本次实验主要是学习图像的空间域滤波技术,包括均值滤波、中值滤波和高斯滤波等。

通过实验,我掌握了不同滤波方法的原理和实现方式,并学会了如何选择合适的滤波方法来降噪和模糊图像。

4. 实验四:图像的频域滤波实验四主要是学习图像的频域滤波技术,包括傅里叶变换和频域滤波等。

通过实验,我了解了傅里叶变换的原理和应用,并学会了如何使用频域滤波来实现图像的锐化和平滑。

5. 实验五:图像的形态学处理本次实验主要是学习图像的形态学处理技术,包括腐蚀、膨胀、开运算和闭运算等。

通过实验,我学会了如何使用形态学操作来改变图像的形状和结构,进一步改善图像的质量。

6. 实验六:图像的边缘检测实验六主要是学习图像的边缘检测技术,包括Sobel算子、Laplacian算子和Canny算子等。

通过实验,我了解了不同边缘检测方法的原理和应用,并学会了如何使用边缘检测来提取图像的轮廓和特征。

7. 实验七:图像的分割与聚类本次实验主要是学习图像的分割与聚类技术,包括阈值分割、区域生长和K均值聚类等。

通过实验,我掌握了不同分割与聚类方法的原理和应用,并学会了如何使用分割与聚类来识别和分析图像中的目标和区域。

8. 实验八:图像的特征提取与描述子实验八主要是学习图像的特征提取和描述子技术,包括尺度不变特征变换(SIFT)和方向梯度直方图(HOG)等。

基于深度强化学习的图像分割和物体检测研究

基于深度强化学习的图像分割和物体检测研究

基于深度强化学习的图像分割和物体检测研究摘要:图像分割和物体检测是计算机视觉领域中重要且具有挑战性的问题。

传统的方法往往需要手动设计特征和规则,限制了算法的性能。

近年来,深度学习技术的兴起为图像分割和物体检测带来了革命性的变化。

本文将研究基于深度强化学习的图像分割和物体检测方法,并探索其在实际应用中的潜力。

第一章引言1.1 研究背景图像分割和物体检测是计算机视觉领域中的经典问题,对于实现智能视觉系统具有重要意义。

传统的方式依赖于人工设计特征和规则,存在着许多限制。

随着深度学习技术的快速发展,基于深度学习的方法在图像分割和物体检测方面取得了显著成果。

1.2 研究目的和意义本文旨在研究基于深度强化学习的图像分割和物体检测方法,探索其在实际应用中的潜力。

通过分析现有的研究成果和方法,提出一种高效、准确的图像分割和物体检测算法,为计算机视觉领域的发展做出贡献。

第二章相关技术介绍2.1 图像分割技术介绍图像分割的基本概念和常用方法,包括传统算法和基于深度学习的方法。

重点介绍卷积神经网络和全卷积网络在图像分割中的应用。

2.2 物体检测技术介绍物体检测的基本概念和常用方法,包括传统算法和基于深度学习的方法。

重点介绍目标检测中的区域提议和卷积神经网络的结合应用。

第三章基于深度强化学习的图像分割方法3.1 强化学习简介介绍强化学习的基本概念和原理,包括马尔可夫决策过程和深度强化学习算法。

重点介绍强化学习在图像分割中的应用。

3.2 图像分割的强化学习方法提出一种基于深度强化学习的图像分割方法,结合卷积神经网络和强化学习算法。

通过构建一个能够自适应地选择分割区域的网络模型,实现高效准确的图像分割。

第四章基于深度强化学习的物体检测方法4.1 基于强化学习的物体检测框架引入强化学习方法进行物体检测的框架设计,包括目标检测和策略优化两个阶段。

通过融合深度学习中的目标检测算法和强化学习算法,实现准确、高效的物体检测。

4.2 强化学习在物体检测中的应用介绍强化学习在物体检测中的应用场景和方法,包括针对不同任务的适配和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子科技大学




学生姓名:
学号:
指导教师:彭真明
日期: 2014 年 5 月 20 日
一、实验名称:图像分割及目标检测
二、实验目的:
1、了解图像边缘检测及图像区域分割的目的、意义和手段。

2、熟悉各种经典的边缘检测算子、图像分割方法及其基本原理。

3、熟悉各种图像特征表示与描述的方法及基本原理。

4、熟练掌握利用matlab 工具实现各种边缘检测的代码实现。

5、熟练掌握利用matlab 工具实现基本阈值分割的代码实现。

6、通过编程和仿真实验,进一步理解图像边缘检测、图像分割及其在目标检测、目标识别及跟踪测量应用中的重要性。

三、实验原理及步骤:
1、利用Soble算子进行图像的边缘检测
(1)原理与步骤
数字图像的边缘一般利用一阶/二阶差分算子进行检测。

常用的差分算子包括:Roberts 算子(交叉对角算子),Prewitt 算子(一阶),Sobel 算子(一阶),Laplacian 算子(二阶),LoG 算子(二阶)及Canny 边缘检测算法等。

其中,Soble 算子为常见的一类梯度算子(一阶梯度算子)。

其x, y 方向的梯度算子分别为:
一幅数字图像I(如图1)与Sx 和Sy 分别做卷积运算后(可采用多种方式,如conv2,filter2 及imfilter),可以求得x,y 两个方向的梯度图像Dx,Dy,然后,可以计算得到原图像的梯度幅度,即
或:
(2)进一步执行梯度图像D 的二值化处理(建议采用Otsu 阈值,也可考虑其他阈值分割),检测图像的二值化边缘。

(3)对于与步骤同样的输入图像I,利用matlab 工具的edge(I,’soble’)函数进行处理。

试比较处理结果与步骤(2)的得到的结果的差异,并分析存在差异的原因。

(4)画出原图像、原图像的Dx, Dy 图,幅度图(D)及最后的二值化边缘检测结果图。

2、数字图像中目标区域的形心计算
(1)按如下公式计算原图像(图 2)的质心。

(2)对图 2 中的黑色形状目标进行阈值分割,得到二值化的图像;
图2 原始图像(240*240)
(3)计算目标形状的面积(以像素表示);
(4)计算图中黑色形状目标的形心位置,并在原图上进行位置标记(可用红色小圆圈)。

其中,M,N 为图像尺寸。

x,y 为像素图像平面上的坐标。

(5)画出原图像、原图上叠加质心标记图;分割后的二值化图及分割图上叠加形心标记图。

四、程序框图
五、程序源代码:
1、利用Soble算子进行图像的边缘检测
clc;clf;clear all;
I=imread('C:\Users\Cancer_5kai\Desktop\'); I=double(I);
Sx=[-1 0 1
-2 0 2
-1 0 1];
Sy=[-1 -2 -1
0 0 0
1 2 1];
Dx=conv2(I,double(Sx),'same');
Dy=conv2(I,double(Sy),'same');
[m,n]=size(I);
D=sqrt(Dx.^2+Dy.^2);
T=graythresh(D);
T=T*255;
for i=1:m
for j=1:n
if D(i,j)>T
D1(i,j)=1;
else
D1(i,j)=0;
end
end
end
BW2=edge(I,'sobel');
subplot(231),imshow(I,[]);title('原图像')
subplot(232),imshow(Dx,[]);title('Dx图')
subplot(233),imshow(Dy,[]);title('Dy图')
subplot(234),imshow(D,[]);title('幅度图')
subplot(235),imshow(D1,[]);title('二值化边缘检测结果图') subplot(236),imshow(BW2,[]);title('sobel边缘检测结果图') 2、数字图像中目标区域的形心计算
clc,clf,clear all;
A=imread('C:\Users\Cancer_5kai\Desktop\'); subplot(221),imshow(A);title('原图像');
A=double(A);
[m,n]=size(A);
for j=1:n
for i=1:m
Xc(i,j)=i*A(i,j);
Yc(i,j)=j*A(i,j);
end
end
Xc=sum(sum(Xc))/sum(sum(A));
Yc=sum(sum(Yc))/sum(sum(A));
subplot(222),imshow(A,[]);hold on;
plot(Yc,Xc,'or');title('原图上叠加质心标记图'); T=graythresh(A)*255;
S=0
for i=1:m
for j=1:n
if A(i,j)>T
A1(i,j)=1;
else
A1(i,j)=0;
S=S+1;
end
end
end
S
subplot(223),imshow(A1,[]);title('分割后的二值化图'); A2=1-A1;
for i=1:m
for j=1:n
x1(i,j)=i*A2(i,j);
y1(i,j)=j*A2(i,j);
end
end
xc=sum(sum(x1))/sum(sum(A2));
yc=sum(sum(y1))/sum(sum(A2));
subplot(224),imshow(A1,[]);hold on;
plot(yc,xc,'or');title('分割图上叠加形心标记图');
六、实验结果:
1、利用Soble算子进行图像的边缘检测
如图可看出:二值化边缘检测比soble边缘检测图像轮廓更清晰些
2、数字图像中目标区域的形心计算
目标形状的面积为:7850个像素
七、思考题
1、利用梯度算子与图像进行卷积运算后,为什么还需要给定阈值进行二值化处理?
答:利用梯度算子与图像进行卷积运算后得到的只是图像像素灰度变化的梯度图,经过二值化处理后才能提取出有用的图像边界。

2、Laplacian 算子检测边缘为什么会产生双边效果?为什么不能检测出边的方向。

答:Laplacian 算子实际是对图像求二阶导数,二阶导数在灰度斜坡和灰度台阶过渡处产生双边效应。

3、相对其他边缘检测算子,Canny 边缘检测算法的主要优势体现在哪里?
答:(1)低失误概率、(2)高位置精度、(3)对每个边缘有唯一的响应。

八、总结及心得体会
通过学习实践,了解了图像边缘检测及图像区域分割的目的、意义和手段,熟悉了各种经典的边缘检测算子、图像分割方法及其基本原理,熟悉了各种图像特征表示与描述的方法及基本原理,掌握了利用matlab 工具实现各种边缘检测和基本阈值分割的的代码实现,通过编程和仿真实验,进一步理解了图像边缘检测、图像分割及其在目标检测、目标识别及跟踪测量应用中的重要性。

相关文档
最新文档