机械原理凸轮设计

合集下载

机械原理第九章凸轮机构及其设计

机械原理第九章凸轮机构及其设计

凸轮的设计和参数选择
设计原则
凸轮的设计应考虑载荷、速度 和精度等因素,并满足运动学 和强度学的要求。
参数选择
凸轮的参数包括凸轮半径、凸 轮轴角度和凸轮顶点位置等, 应根据具体需求进行选择。
优化方法
通过数学模型和仿真分析,可 以优化凸轮的形状和参数,以 提高凸轮机构的性能。
凸轮机构的运动分析
1
转动运动
通过凸轮的旋转,实现机构的直线或曲线运动。
2
滑动运动
随着凸轮轮廓的变化,机构的接触点会产生水平或竖直方向的滑动运动。
3
摇摆运动
凸轮的摇杆或滚柱可以实现机构的摇摆运动。
凸轮机构的布置和设计原则
1 布置方式
根据机构的运动要求和空间限制,选择合适 的凸轮布置方式,如列状、行状或环状。
2 设计原则
在凸轮机构的设计过程中,要考虑机构的刚 度、强度和稳定性等因素,以提高机构的性 能。
凸轮机构的应用案例
发动机气门机构
凸轮机构用于控制发动机气门的 开闭,保证发动机的正常运行。
印刷机印版定位
凸轮机构用于实现印刷机印版的 准确定位,提高印刷质量。
纸张折叠机构
凸轮机构用于纸张折叠机构,实 现精确的折叠操作。
小结和要点
1 2 3 4
5
6
凸轮机构是一种常见的机械传动机构。 凸轮机构具有多种分类和特点。 凸轮的设计和参数选择需要考虑多个因素。 凸轮机构的运动分析可以通过几何和动力学方法 实现。 凸轮机构的布置和设计应根据具体要求进行选择。
凸轮机构在多个领域都有广泛应用。

凸轮机构是机械工程中常见的一种机构,用于将轮系运动转化为直线或曲线 的机械动作。它具有简单可靠的特点,广泛应用于各个领域。

机械原理与设计之凸轮机构概述

机械原理与设计之凸轮机构概述

机械原理与设计之凸轮机构概述摘要本文介绍了机械原理与设计中的凸轮机构。

凸轮机构是一种常用于工程和机械设计中的传动机构,能够将旋转运动转化为直线运动。

本文将详细介绍凸轮机构的基本原理、构造和应用领域,并讨论凸轮机构的设计要点和优缺点。

引言凸轮机构是一种基于凸轮的传动机构,其通过凸轮与从动件之间的接触,将旋转运动转化为直线运动。

凸轮机构广泛应用于机械制造领域和工程设计中,例如发动机、工具机和自动化装置等。

熟悉凸轮机构的工作原理和设计方法对于机械工程师和设计师来说至关重要。

一、凸轮机构的基本原理凸轮机构的基本原理是利用凸轮的几何形状,通过其与从动件的接触来实现运动转换。

凸轮通常是一个圆柱体,其几何形状决定了从动件的运动规律。

当凸轮旋转时,凸轮上的凸起与从动件相互作用,驱动从动件做直线运动。

凸轮的几何形状可以根据特定的运动要求进行设计和调整。

二、凸轮机构的构造凸轮机构由凸轮、从动件和传动组成。

凸轮是凸轮机构的核心部件,其几何形状决定了从动件的运动规律。

从动件与凸轮相互作用,通过凸轮的旋转实现直线运动。

传动装置用于传递动力和控制凸轮的旋转。

凸轮机构的构造可以基于具体的应用需求进行设计和调整。

凸轮机构广泛应用于许多机械设备和自动化系统中。

它们常见的应用领域包括: - 发动机:凸轮机构用于控制气门的开启和关闭,调节进气和排气过程; - 工具机:凸轮机构用于控制工具的运动,例如车床的进给机构和转塔机床的换刀装置; - 自动化装置:凸轮机构用于实现复杂的运动路径和动作,例如自动化流水线和机器人系统。

四、凸轮机构的设计要点设计凸轮机构时,需要考虑以下要点: 1. 凸轮的几何形状:凸轮的形状应根据需要的从动件运动规律进行设计。

2. 从动件的类型:根据不同的运动要求,选择合适的从动件类型,如销轴、滑块或摇杆等。

3. 传动装置:选择合适的传动装置,以传递动力和控制凸轮的旋转。

4. 动力和扭矩:确定凸轮机构所需的动力和扭矩,以确保正常运行。

机械原理课程教案—凸轮机构及其设计

机械原理课程教案—凸轮机构及其设计

机械原理课程教案一凸轮机构及其设计一、教学目标及基本要求1了解凸轮机构的基本结构特点、类型及应用,学会根据工作要求和使用场合选择凸轮机构。

2.了解凸轮机构的设计过程,对凸轮机构的运动学、动力学参数有明确的概念。

3.掌握从动件常用运动规律的特点及适用场合,了解不同运动规律位移曲线的拼接原则与方法。

4.掌握凸轮机构基本尺寸设计的原则,学会根据这些原则确定移动滚子从动件盘形凸轮机构的基圆半径、滚子半径和偏置方向,摆动从动件盘形凸轮机构的摆杆长、中心距以及移动平底从动件平底宽度。

5.熟练掌握应用反转法原理设计平面凸轮廓线,学会凸轮机构的计算机辅助设计方法。

二、教学内容及学时分配第一节概述第二节凸轮机构基本运动参数设计第三节凸轮机构基本尺寸设计(第一、二、三节共2学时)第四节凸轮轮廓曲线设计(15学时)第五节凸轮机构从动件设计(1学时)第六节凸轮机构的计算机辅助设计(0.5学时)三、教学内容的重点和难点重点:1.凸轮机构的型式选择。

2.从动件运动规律的选择及设计。

3.盘形凸轮机构基本尺寸的设计,凸轮轮廓曲线设计的图解法和解析法。

4.从动件的设计,包括高副元素形状选择,滚子半径和平底宽度的确定。

难点:凸轮轮廓曲线设计的图解法四、教学内容的深化与拓宽空间凸轮机构与高速凸轮机构简介。

五、教学方式与手段及教学过程中应注意的问题充分利用多媒体教学手段,围绕教学基本要求进行教学。

在教学过程中应强调凸轮机构的运动学参数与结构参数的概念及其选用设计;应用反转法原理进行凸轮轮廓曲线的图解法设计时凸轮转角的分度,要注意从动件反转方向;正确确定偏置移动从动件凸轮机构在反转过程中从动件所依次占据的位置线;滚子从动件凸轮机构理论轮廓曲线与实际轮廓曲线的联系和区别等。

要注意突出重点,多采用启发式教学以及教师和学生的互动。

六、主要参考书目1黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2010 2申永胜主编.机械原理教程(第2版).北京:清华大学出版社,20053孙桓,陈作模、葛文杰主编.机械原理(第七版).北京:高等教育出版社,20064石永刚,徐振华.凸轮机构设计.上海:上海科学技术出版社,1995七、相关的实践性环节凸轮机构运动参数测试实验。

机械原理9凸轮机构设计

机械原理9凸轮机构设计

δ0
ω
作者:潘存云教授
φ
工件
2.选择运动规律 选择原则: 2) 机器的工作过程对推杆运动有要求,则应严格按工 作要求的运动规律来设计凸轮廓线。如刀架进给凸轮。
ω δ0
作者:潘存云教授
h
3) 对高速凸轮,要求有较好的动力特性,除了避 免出现刚性或柔性冲击外,还应当考虑Vmax和 amax。
高速重载凸轮要选Vmax和amax比较小的理由:
a=2πhω2 sin(2πδ/δ0)/δ20
12 θ=2πδ/δ0
34
δ0
5
回程:
v
vmax=2hω/δ0
s=h[1-δ/δ’0+sin(2πδ/δ’0)/2π]
v=hω[cos(2πδ/δ’0)-1]/δ’0 a=-2πhω2 sin(2πδ/δ’0)/δ’20 a amax=6.28hω2/δ02
第九章 凸轮机构及其设计
§9-1 凸轮机构的应用和分类 §9-2 推杆的运动规律
§9-3 凸轮轮廓曲线的设计
§9-4 凸轮机构基本尺寸的确定
§9-1 凸轮机构的应用和分类
结构:三个构件、盘(柱)状曲线轮廓、从动件呈杆状。
作用:将连续回转 => 从动件直线移动或摆动。
优点:可精确实现任意运动规律,简单紧凑。 实例 缺点:高副,线接触,易磨损,传力不大。 比较
s =h-2hδ2/δ’20 v =-4hωδ/δ’20 a =-4hω2/δ’20
回程等减速段运动方程为:
s =2h(δ’0-δ)2/δ’20 v =-4hω(δ’0-δ)/δ’20 a =4hω2/δ’20
(3)五次多项式运动规律
一般表达式:
s =C0+ C1δ+ C2δ2+ C3δ3+ C4δ4+C5δ5 v =ds/dt = C1ω+ 2C2ωδ+ 3C3ωδ2+ 4C4ωδ3+ 5C5ωδ4 a =dv/dt = 2C2ω2+ 6C3ω2δ+12C4ω2δ2+20C5ω2δ3

机械原理大作业凸轮机构设计

机械原理大作业凸轮机构设计

机械原理大作业凸轮机构设计一、凸轮机构概述凸轮机构是一种常见的传动机构,它通过凸轮的旋转运动,带动相应零件做直线或曲线运动。

凸轮机构具有结构简单、运动平稳、传递力矩大等优点,在各种机械设备中得到广泛应用。

二、凸轮基本结构1. 凸轮凸轮是凸起的圆柱体,通常安装在主轴上。

其表面通常为圆弧形或其他曲线形状,以便实现所需的运动规律。

2. 跟随件跟随件是与凸轮配合的零件,它们通过接触面与凸轮相互作用,并沿着规定的路径做直线或曲线运动。

跟随件可以是滑块、滚子、摇臂等。

3. 连杆连杆连接跟随件和被驱动部件,将跟随件的运动转化为被驱动部件所需的运动。

连杆可以是直杆、摇杆等。

三、凸轮机构设计要点1. 几何参数设计设计时需要确定凸轮半径、角度和曲率半径等参数,这些参数的选择将直接影响凸轮机构的运动规律和性能。

2. 运动规律设计根据被驱动部件的运动要求,选择合适的凸轮曲线形状,以实现所需的运动规律。

3. 稳定性设计在设计凸轮机构时,需要考虑其稳定性。

例如,在高速旋转时,可能会发生跟随件脱离凸轮或者产生振动等问题,因此需要采取相应措施提高稳定性。

4. 材料和制造工艺设计在材料和制造工艺方面,需要考虑凸轮机构所承受的载荷和工作环境等因素,选择合适的材料和制造工艺。

四、几种常见凸轮机构及其应用1. 摇臂式凸轮机构摇臂式凸轮机构由摇臂、连杆和被驱动部件组成。

它通常用于实现直线运动或旋转运动,并且具有结构简单、运动平稳等优点。

摇臂式凸轮机构广泛应用于各种机械设备中,如发动机气门控制系统、纺织设备等。

2. 滑块式凸轮机构滑块式凸轮机构由凸轮、滑块、连杆和被驱动部件组成。

它通常用于实现直线运动,并且具有结构简单、运动平稳等优点。

滑块式凸轮机构广泛应用于各种机械设备中,如冲压设备、印刷设备等。

3. 滚子式凸轮机构滚子式凸轮机构由凸轮、滚子、连杆和被驱动部件组成。

它通常用于实现圆弧形运动,并且具有运动平稳、传递力矩大等优点。

滚子式凸轮机构广泛应用于各种机械设备中,如汽车发动机气门控制系统等。

机械原理凸轮轮廓曲线设计

机械原理凸轮轮廓曲线设计
② 等分位移曲线及反向等分各运动角,确定反转后对应于各等分点的从动件的位置。
3
4
5
6
7
8
1
8
7
6
5
4
3
2
10
11
9
12
13
14
14
13
12
11
10
9
15
③ 确定反转后从动件尖顶在各等分点占据的位置。
设计步骤
④ 将各尖顶点连接成一条光滑曲线。
④ 将各尖顶点连接成一条光滑曲线。
0
l
d
δ
1
2
3
4
5
6
7
8
6 小结
应用反转法时应注意: 要能正确理解凸轮实际廓线和理论廓线的关系 要正确确定推杆的反转方向 正确确定推杆在反转运动中占据的位置 直动推杆:推杆在反转前后两位置线的夹角应等于凸轮的转角 摆动推杆:反转前后推杆摆动中心和凸轮轴心的两连线之间的夹角应等于凸轮的转角 正确确定推杆的位移或摆角 直动推杆:位移等于推杆所在位置与理论廓线的交点和与基圆交点之间的距离。 摆动推杆:角位移等于推杆所在位置与推杆起始位置之间的夹角。
O
s
1
3
5
7
8
60º
120º
90º
90º
60º
120º
1
2
90º
A
90º
9
11
13
151357 89
11
13
12
14
10
二、 用作图法设计凸轮廓线 1. 对心尖顶移动从动件盘形凸轮廓线的设计
已知凸轮的基圆半径r0,凸轮角速度和从动件的运动规律,设计该凸轮轮廓曲线。

机械原理第9章凸轮机构及其设计

机械原理第9章凸轮机构及其设计

第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。

机械原理课程设计凸轮机构

机械原理课程设计凸轮机构

目录(一)机械原理课程设计的目的和任务 (2)(二)从动件(摆杆)及滚子尺寸的确定 (4)(三) .............................. 原始数据分析5(四) ............. 摆杆的运动规律及凸轮轮廓线方程6(五) ................................ 程序方框图8(六) .............................. 计算机源程序9(七) ....................... 程序计算结果及其分析14(八) .......................... 凸轮机构示意简图16(九) .................................. 心得体会16(十)参考书籍 (18)(一)机械原理课程设计的目的和任务一、机械原理课程设计的目的:1、机械原理课程设计是一个重要实践性教学环节。

其目的在于:进一步巩固和加深所学知识;2、培养学生运用理论知识独立分析问题、解决问题的能力;3、使学生在机械的运动学和动力分析方面初步建立一个完整的概念;4、进一步提高学生计算和制图能力,及运用电子计算机的运算能力。

二、机械原理课程设计的任务:1、摆动从动件杆盘型凸轮机构2、采用图解法设计:凸轮中心到摆杆中心A的距离为160mm,凸轮以顺时针方向等速回转,摆杆的运动规律如表:3、设计要求:①确定合适摆杆长度②合理选择滚子半径rr③选择适当比例,用几何作图法绘制从动件位移曲线并画于图纸上;④用反转法绘制凸轮理论廓线和实际廓线,并标注全部尺寸(用A2图纸)⑤将机构简图、原始数据、尺寸综合方法写入说明书4、用解析法设计该凸轮轮廓,原始数据条件不变,要写出数学模型,编制程序并打印出结果备注:1、尖底(滚子)摆动从动件盘形凸轮机构压力角:临f[acos*M)—I]tan:asin伴°十屮)在推程中,当主从动件角速度方向不同时取“-”号,相同时取“ +” 号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械原理课程设计
说明书
设计题目:盘形凸轮写字机构D 工程机械 xxxxxxxxxxxxxxxxx 设计者:xxxxxxxx
学号:xxxxxxxxxxx
指导教师:xxxxxxxxxxx
2015 年 1 月 23 日
一.设计任务 (1)
二.原始数据设计及设计要求 (1)
三.设计方案分析 (1)
四.设计内容 (2)
五.设计小结 (6)
六.参考文献 (7)
一.设计任务
设计能写出英文字母D的凸轮写字机构。

且该机构由两凸轮连续回转的协调配合及相应的连杆,控制绘图部件画出英文字母D。

二.原始数据设计及设计要求
1.D字高60mm(y方向)。

2.D字宽30mm(x方向)。

3.机构体积小,质量轻,工作可靠,启动或停顿时冲击小。

三.设计方案分析
1.方案一:两对心直动尖顶推杆盘形凸轮写字机构。

尖顶推杆虽然构造简单,但易磨损,且启动或
停顿时冲击大。

2.方案二:两对心直动滚子推杆盘形凸轮写字机构。

滚子与凸轮间为滚动摩擦,磨损小,传动精度
高,冲击小。

3.方案选择:通过对上述两种方案分析比较,选用方案二。

Φ
/°0 10 20 30 40 50 60 70 80 90 100 110 120 X/mm 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 Φ
/°130 140 150 160 170 180 190 200 210 220 230 240 250 X/mm 50.0 50.0 50.0 50.0 50.0 50.0 55.2 60.3 65.0 69.3 73.0 76.0 78.2 Φ
/°260 270 280 290 300 310 320 330 340 350 360
X/mm 79.5 80.0 79.5 78.2 76.0 73.0 69.3 65.0 60.3 55.2 50.0
凸轮A的理论廓线如图所示
取滚子半径r=3mm得凸轮A的实际廓线
Φ
/°0 10 20 30 40 50 60 70 80 90 100 110 120 Y/mm 50.0 53.3 56.7 60.0 63.3 66.7 70.0 73.3 76.7 80.0 83.3 86.7 90.0 Φ
/°130 140 150 160 170 180 190 200 210 220 230 240 250 Y/mm 93.3 96.7 100.0 103.3 106.7 110.0 109.5 108.5 105.9 102.9 99.3 95.0 90.3 Φ
/°260 270 280 290 300 310 320 330 340 350 360
Y/mm 85.2 80.0 74.8 69.7 65.0 60.7 57.0 54.0 51.8 50.4 50.0
凸轮B的理论廓线如图所示
取滚子半径r=3mm得凸轮B的实际廓线
得到机构示意图如下图所示
五.设计小结
在本次机械原理课程设计中,我的任务是设计一个可以写出英文字母D的写字机构。

在开始设计前,我把课本上的相关知识又看了一遍,熟悉了绘制凸轮轮廓线的方法,同时也了解了机械产品设计的过程。

我认为,这次设计的难点在于曲线轨迹的设计。

而选取正确、恰当的方程是关键。

这就又用到了数学方面的知识。

我深刻体会到课程设计不仅是各学科的综合应用,更是我们专业课程知识的实践训练。

而作为一名设计者,一定要有过硬的专业知识和耐心。

所以在今后的学习过程中,要尽可能多地将课本上的知识运用于实践当中。

六.参考文献
[1] 孙恒陈作模葛文杰.《机械原理》(第八版)
北京:高等教育出版社 2013.5
[2] 戴娟. 《机械原理课程设计指导书》
北京:高等教育出版社 2011.1。

相关文档
最新文档