专题:确定不等式(组)中待定系数的取值范围(或值)问题

合集下载

不等式中参数范围的求法

不等式中参数范围的求法

不等式中参数范围的求法不等式是数学中常见的一种基本关系式,可以用来表示数、代数式或几何图形大小关系。

参数范围的求法是指在不等式中的未知数所满足的取值范围的确定。

一、一元一次不等式的参数范围求法对于一元一次不等式 ax+b<0 (或ax+b>0)中,参数a和b的取值范围可以通过以下步骤来确定:1.当a>0时,不等式解集为x<-b/a,所以b/a的取值范围是(-∞,0);2.当a<0时,不等式解集为x>-b/a,所以b/a的取值范围是(0,+∞);3. 当a=0时,不等式变为 bx<0(或bx>0),此时b=0,解集为全体实数。

二、一元二次不等式的参数范围求法对于一元二次不等式ax²+bx+c<0 (或ax²+bx+c>0)中,参数a、b和c的取值范围可以通过以下步骤来确定:1.当a>0时,不等式解集为x∈(x₁,x₂),其中x₁和x₂为二次函数的两个根,可由二次方程求根公式或配方法求得;2.当a<0时,不等式解集为x∈(-∞,x₁)∪(x₂,+∞),所以x的取值范围为(-∞,x₁)∪(x₂,+∞);3. 当a=0时,不等式变为 bx+c<0(或bx+c>0),此时b=0,解集为cx<0(或cx>0),则c=0,解集为全体实数。

三、多元一次不等式的参数范围求法对于多元一次不等式的参数范围求法,通常需要对每个未知数进行讨论。

以二元一次不等式ax+by+c<0为例,可以通过以下步骤来确定参数a、b和c的取值范围:1.当a>0时,不等式解集与y的取值无关,所以b和c的取值范围没有限制;2. 当a=0时,不等式变为 by+c<0(或by+c>0),此时b=0,解集为cy<0(或cy>0),则c=0,解集为全体实数;3.当a<0时,不等式解集与y的取值无关,所以b和c的取值范围没有限制。

中考数学考点:专题(50)函数的应用(含答案)

中考数学考点:专题(50)函数的应用(含答案)

专题50 函数的应用 聚焦考点☆温习理解1.函数的应用主要涉及到经济决策、市场经济等方面的应用.2.利用函数知识解应用题的一般步骤: (1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案.3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.名师点睛☆典例分类考点典例一、一次函数相关应用题【例1】 (2015.陕西省,第21题,7分)(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。

假设组团参加甲、乙两家旅行社两日游的人数均为x 人。

(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。

【答案】(1)甲旅行社:x 85.0640y ⨯==x 544.乙旅行社:当20x ≤时,x 9.0640y ⨯==x 576.当x>20时,20)-x 0.75640209.0640y (⨯+⨯⨯==1920x 480+.(2)胡老师选择乙旅行社.【解析】×人数;乙总费用y=20个人九折的费用+超过的人数×报价×打折率,列出y关于x的函数关系式,(2)根据人数计算出甲乙两家的费用再比较大小,哪家小就选择哪家.考点:一次函数的应用、分类思想的应用.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.【举一反三】(2015·黑龙江哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。

专题07 不等式(组)(专项训练)(解析版)

专题07 不等式(组)(专项训练)(解析版)

专题07 不等式(组)一、单选题1.(2021·沙坪坝区·重庆八中九年级)若数a使关于x的不等式组3124(2)53x xx a-≤-⎧⎨-<⎩有且仅有4个整数解,且使关于y的分式方程31222y ay y++--=1有正整数解,则满足条件的a的个数是()A.0个B.1个C.2个D.3个【答案】B【分析】不等式组变形后,根据有且仅有四个整数解确定出a的范围,再表示出分式方程的解,由分式方程有整数解,确定出满足条件a的值.【详解】解:解不等式组3124(2) 53x xx a-≤-⎧⎨-<⎩,解得:435xax≥-⎧⎪+⎨<⎪⎩,∵不等式组3124(2)53x xx a-≤-⎧⎨-<⎩有且仅有4个整数解,∵﹣1<35a+≤0,∵﹣8<a≤﹣3.解分式方程31222y ay y++--=1,得y=102a+,∵y=102a+≠2为整数,∵a≠﹣6,∵所有满足条件的只有﹣4,故选:B.【点睛】本题考查了解分式方程,解一元一次不等式组,熟练掌握解分式方程和一元一次不等式组的方法是解题的关键.2.(2021·珠海市九洲中学九年级)不等式组2131x xx+≤+⎧⎨>⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2x+1≤x+3,得:x≤2,∵不等式组的解集为1<x≤2,故答案选D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2021·重庆北碚·西南大学附中九年级)若关于x的二次函数21y x ax=-+,当2x-≤时,y随着x的增大而减小,且关于x的分式方程11222axx x-=+--有正数解,那么所有满足条件的整数a的值有()A.6个B.5个C.4个D.3个【答案】B【分析】先解分式方程求出22xa=-,关于x的分式方程有正数解满足2﹣a>0利用二次函数21y x ax=-+,当x≤﹣2时,y随x的增大而减小,求出对称轴x=﹣-2a≥﹣2,求出a的范围﹣4≤a<2,且a≠1即可.【详解】解:∵112 22axx x--= --∵1+1﹣a x=2(2﹣x)∵(2﹣a)x=2∵22xa =-关于x的分式方程有正数解∵22a->0∵2﹣a>0∵a<2但该分式方程当x=2时显然是增根,故当a=1时不符合题意,舍去.∵二次函数21y x ax=-+,当x≤﹣2时,y随x的增大而减小∵其对称轴x=﹣-2a≥﹣2∵a≥﹣4∵﹣4≤a<2,且a≠1符合条件的整数a的值有﹣4、﹣3、﹣2、﹣1、0,共5个故选B.【点睛】本题考查分式方程的解法,抛物线的增减性,不等式的解法,掌握分式方程的解法,抛物线的性质,会求抛物线的对称轴,会利用分式方程的解为正数构造不等式,结合函数的增减性解决问题.4.(2021·陕西师大附中)已知一次函数y=(3﹣2k)x+6(k为常数)的图象经过A(x1,y1),B(x2,y2),若x1>x2,y1<y2,则k的值可能是()A.﹣1B.0C.1D.2【答案】D【分析】利用一次函数y随x的增大而减小的性质,得3﹣2k<0,通过求解一元一次不等式,即可得到答案.【详解】∵一次函数y=(3﹣2k)x+6(k为常数)的图象经过A(x1,y1),B(x2,y2),若x1>x2,y1<y2,∵3﹣2k<0,解得k>32,∵A、B、C不符合题意,D符合题意故选:D.【点睛】本题考查了一次函数、一元一次不等式的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.5.(2021·山东日照·中考真题)若不等式组643x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( ) A .3m >B .3m ≥C .3m ≤D .3m <【答案】C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式643x x +<-,得:3x >,x m >且不等式组的解集为3x >,3m ∴, 故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2021·辽宁鞍山·)不等式32x x -的解集在数轴上表示正确的是( )A .B .C .D .【答案】B【分析】 求出不等式的解集,将解集在数轴上表示出来.【详解】解:∵32x x -≤,∵23x x --≤-,∵33x -≤-,解得:1≥x ,∵不等式的解集为:1≥x ,表示在数轴上如图:故选B .【点睛】本题主要考查了解一元一次不等式,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解.7.(2021·辽宁朝阳·中考真题)不等式﹣4x ﹣1≥﹣2x +1的解集,在数轴上表示正确的是( ) A .B .C .D .【答案】D【分析】不等式移项,合并,把x 系数化为1,求出解集,表示在数轴上即可.【详解】解:不等式﹣4x ﹣1≥﹣2x +1,移项得:﹣4x +2x ≥1+1,合并得:﹣2x ≥2,解得:x ≤﹣1,数轴表示,如图所示:故选:D .【点睛】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键. 8.(2021·山东滨州·中考真题)把不等式组622154x x x x -<⎧⎪+-⎨≥⎪⎩中每个不等式的解集在同一条数轴上表示出来,正确的为( )A .B .C .D .【答案】B【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在数轴上表示出每一个不等式的解集即可.【详解】 解:622154x x x x -<⎧⎪⎨+-≥⎪⎩①②,解不等式∵,得:x >-6,解不等式∵,得:x ≤13,故原不等式组的解集是-6<x ≤13,其解集在数轴上表示如下:故选:B .【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.9.(2021·贵州遵义·)小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x 支签字笔,则下列不等关系正确的是( ) A .5×2+2x ≥30B .5×2+2x ≤30C .2×2+2x ≥30D .2×2+5x ≤30【答案】D【分析】设小明还能买x 支签字笔,则小明购物的总数为22+5x ⨯元,再列不等式即可.【详解】解:设小明还能买x 支签字笔,则:22530,x ⨯+≤故选:.D【点睛】本题考查的是一元一次不等式的应用,确定购物的总金额不大于所带钱的数额这个不等关系是解题的关键.10.(2021·湖南湘潭·中考真题)不等式组12480xx+≥⎧⎨-<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】先解不等式组,再按照大于向右拐,小于向左拐,有等于号用实心点表示,没有用空心圈表示,画好图即可.【详解】解:12 480 xx+≥⎧⎨-<⎩①②由∵得:1,x≥由∵得:4x<8,解得:x<2,所以不等式组的解集在数轴上表示如下:所以不等式组的解集为:1x≤<2,故选:.D【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,注意实心点与空心圈的使用是解本题的易错点.二、填空题11.(2021·辽宁盘锦·)从不等式组3(2)42213x xxx--≤⎧⎪+⎨≥-⎪⎩的所有整数解中任取一个数,它是偶数的概率是________【答案】2 5【分析】首先求得不等式组3(2)42213x xxx--≤⎧⎪+⎨≥-⎪⎩的所有整数解,然后由概率公式求得答案.【详解】解:∵3(2)42213x xxx--≤⎧⎪⎨+≥-⎪⎩①②,由∵得:x≥1,由∵得:x≤5,∵不等式组的解集为:1≤x≤5,∵整数解有:1,2,3,4,5;∵它是偶数的概率是25.故答案为:25.【点睛】此题考查了概率公式的应用以及不等式组的解集.用到的知识点为:概率=所求情况数与总情况数之比.12.(2021·湖北荆门·)如果关于x的不等式组()31213x axx--<⎧⎪+⎨-⎪⎩恰有2个整数解,则a的取值范围是________.【答案】56a <【分析】求出不等式组的解集,得到其取值范围,再根据不等式组有整数解解答.【详解】解:()31213x axx--<⎧⎪⎨+-⎪⎩①②,由∵得,x>a-3;由∵得,x≤4;∵关于x的不等式组恰有2个整数解,∵整数解为3,4,∵2≤a-3<3;∵56a<.故答案为:56a<【点睛】本题考查了一元一次不等式组的整数解,根据x的取值范围,得出x的整数解,然后解不等式即可解出a 的值.13.(2021·湖南常德·中考真题)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个.【答案】20【分析】设弹珠的总数为x个, 蓝珠有y个,根据总数不超过50个列出不等式求解即可.【详解】解:设弹珠的总数为x个, 蓝珠有y个,根据题意得,{16x+14x+8+y=x①x≤50②,由∵得,x=96+12y7,结合∵得,96+12y7≤50解得,y≤2116,又因为总的弹珠数量、红珠数量和绿珠数量都是整数,所以,刘凯的蓝珠最多有20个.故答案为:20.【点睛】此题主要考查了一元一次不等式的应用,能够找出不等关系是解答此题的关键.14.(2021·辽宁丹东·中考真题)不等式组213xx m-<⎧⎨>⎩无解,则m的取值范围_________.【答案】2m≥【分析】先求出每个不等式的解集,再根据已知得出关于m的不等式,求出不等式的解集即可.【详解】解:213 xx m-<⎧⎨>⎩①②解不等式∵得:2x<由∵式知:x m>∵不等式组无解∵2m≥故答案为:2m≥【点睛】本题主要考查了解一元一次不等式组,能够根据不等式的解集和已知得出关于m的不等式是解题的关键.15.(2021·贵州黔东南·中考真题)不等式组()5231131722x xx x⎧+>-⎪⎨-≤-⎪⎩的解集是__________.【答案】54 2x-<≤【分析】分别求出各不等式的解集,再求出其公共解集.【详解】解:解不等式5x+2>3(x﹣1),得:x52>-,解不等式131722x x-≤-,得:4x≤,则不等式组的解集为542x-<≤,故答案为542x-<≤.【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题16.(2021·山东济南·中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【分析】(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m个甲种粽子,则购进乙种粽子为(200-m)个,然后根据(1)及题意可列不等式进行求解.【详解】解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,由题意得:1200800+=,502x x解得:4x=,经检验4x=是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m个甲种粽子,则购进乙种粽子为(200-m)个,由(1)及题意得:()+-≤,m m842001150解得:87.5m≤,∵m为正整数,∵m的最大值为87;答:最多购进87个甲种粽子.【点睛】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.17.(2021·西宁市教育科学研究院中考真题)城乡学校集团化办学已成为西宁教育的一张名片.“五四”期间,西宁市某集团校计划组织乡村学校初二年级200名师生到集团总校共同举办“十四岁集体生日”.现需租用A,B两种型号的客车共10辆,两种型号客车的载客量(不包括司机)和租金信息如下表:若设租用A 型客车x 辆,租车总费用为y 元.(1)请写出y 与x 的函数关系式(不要求写自变量取值范围);(2)据资金预算,本次租车总费用不超过11800元,则A 型客车至少需租几辆?(3)在(2)的条件下,要保证全体师生都有座位,问有哪几种租车方案?请选出最省钱的租车方案. 【答案】(1)30012000y x =-+;(2)1辆;(3)租车方案有3种:方案一:A 型客车租1辆,B 型客车租9辆;方案二:A 型客车租2辆,B 型客车租8辆;方案三:A 型客车租3辆,B 型客车租7辆;最省钱的租车方案是A 型客车租3辆,B 型客车租7辆 【分析】(1)根据租车总费用=每辆A 型号客车的租金单价×租车辆数+每辆B 型号客车的租金单价×租车辆数,即可得出y 与x 之间的函数解析式,再由全校共200名师生需要坐车及x ≤10可求出x 的取值范围; (2)由租车总费用不超过11800元,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,取其中的整数即可找出各租车方程,再利用一次函数的性质即可找出最省钱的租车方案; (3)由题意得出()162210200x x +-≥,求出x 的取值范围,分析得出即可. 【详解】解:(1)()90012001030012000y x x x =+-=-+, ∵30012000y x =-+;(2)根据题意,得:3001200011800x -+≤, 解得23x ≥, ∵x 应为正整数, ∵1≥x∵A 型客车至少需租1辆;(3)根据题意,得()162210200x x +-≥, 解得103x, 结合(2)的条件,21033x , ∵x 应为正整数,∵x 取1,2,3, ∵租车方案有3种:方案一:A 型客车租1辆,B 型客车租9辆; 方案二:A 型客车租2辆,B 型客车租8辆;方案三:A 型客车租3辆,B 型客车租7辆. ∵30012000y x =-+,0k < ∵y 随x 的增大而减小, ∵当3x =时,函数值y 最小,∵最省钱的租车方案是A 型客车租3辆,B 型客车租7辆 【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.18.(2021·广西河池·)在平面直角坐标系中,抛物线()214y x =--+与x 轴交于A ,B 两点(A 在B 的右侧),与y 轴交于点C .(1)求直线CA 的解析式;(2)如图,直线x m =与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F ,DG CA ⊥于点G ,若E 为GA 的中点,求m 的值.(3)直线y nx n =+与抛物线交于()11,M x y ,()22,N x y 两点,其中12x x <.若213x x ->且210y y ->,结合函数图象,探究n 的取值范围.【答案】(1)3y x =-+;(2)2m =;(3)01n <<或7n >. 【分析】(1)由()214y x =--+中,得()3,0A ,()1,0B -,()0,3C ,利用待定系数法即可得,直线CA 的解析式为3y x =-+;(2)根据直线x m =与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F ,可得()()2,14D m m --+,且03m <<,(),3E m m -+,(),0F m ,从而3AF m =-,23DE m m =-+,而EAF △是等腰直角三角形,可得AE =,DEG △是等腰直角三角形,即可列)23m m -+=,解得m =2或m =3(舍去);(3)由()214y nx ny x =+⎧⎪⎨=--+⎪⎩得:10x y =-⎧⎨=⎩或234x n y n n =-⎧⎨=-+⎩,∵若31n ->-,即4n <,根据213x x ->且210y y ->,可得()313n --->,且2400n n -+->,即解得01n <<;∵若31n -<-,即4n >,可得:()133n --->且()2040n n --+>,即解得7n >,综合可得结果.【详解】解:(1)在()214y x =--+中, 令0x =得3y =,令0y =得11x =-或23x =, ∵()3,0A ,()1,0B -,()0,3C ,设直线CA 的解析式为y kx b =+,则033k bb =+⎧⎨=⎩,解得13k b =-⎧⎨=⎩,∵直线CA 的解析式为3y x =-+;(2)∵直线x =m 与抛物线在第一象限交于点D ,交CA 于点E ,交x 轴于点F , ∵()()2,14D m m --+,且03m <<,(),3E m m -+,(),0F m , ∵3AF m =-,()()221433DE m m m m =--+--+=-+, ∵()3,0A ,()0,3C ,∵45EAF ∠=︒,EAF △是等腰直角三角形,∵AE ==,45DEG AEF ∠=∠=︒, ∵DEG △是等腰直角三角形, ∵DE =, ∵E 为GA 的中点, ∵GE AE ==,∵)23m m -+=,解得2m =或3m =,∵3m =时,D 与A 重合,舍去, ∵2m =;(3)由()214y nx ny x =+⎧⎪⎨=--+⎪⎩得:10x y =-⎧⎨=⎩或234x n y n n =-⎧⎨=-+⎩, ∵若31n ->-,即4n <, ∵213x x ->且210y y ->,∵()313n --->,且2400n n -+->, 解得01n <<;∵若31n -<-,即4n >,可得:()133n --->且()2040n n --+>,解得7n >.综上所述,n 的取值范围是01n <<或7n >.【点睛】本题考查二次函数综合应用,涉及待定系数法、等腰三角形性质等知识,用含m 的代数式表示相关点坐标和相关线段的长度及分类讨论思想的应用是解题的关键.19.(2021·广西河池·)为庆祝中国共产党成立100周年,某校组织九年级全体师生前往广西农民运动讲习所旧址列宁岩参加“学党史、感党恩、听党话、跟党走”的主题活动,需要租用甲、乙两种客车共6辆.已知甲、乙两种客车的租金分别为450元/辆和300元/辆,设租用乙种客车x 辆,租车费用为y 元. (1)求y 与x 之间的函数关系式(写出自变量的取值范围);(2)若租用乙种客车的数量少于甲种客车的数量,租用乙种客车多少辆时,租车费用最少?最少费用是多少元?【答案】(1)1502700y x =-+(06)x ≤≤;(2)乙种客车2辆时, 租车费用2400 【分析】(1)根据题意列出函数表达式即可; (2)根据一次函数的性质,求得最值. 【详解】(1)设租用乙种客车x 辆,租车费用为y 元, 甲、乙两种客车共6辆,∴租用甲种客车(6)x -辆,60x -≥,0x ≥,06x ∴≤≤,(6)4503001502700y x x x ∴=-⨯+=-+,∴1502700y x =-+(06)x ≤≤;(2) 租用乙种客车的数量少于甲种客车的数量, 即6x x <-, 解得3x <,x 是正整数,x 最大为2,1502700y x =-+,1500-<,∴y 随x 的增大而减小,当x 取最大值时候,y 取得最小值. ∴当2x =时,租车费用最少为150227002400y =-⨯+=.答:租用乙种客车2辆时,租车费用最少,费用为2400元. 【点睛】本题考查了一次函数的应用,一次函数的性质,掌握一次函数的性质是解题的关键.20.(2021·建昌县教师进修学校九年级)某加工厂甲、乙两人加工机器零件,已知甲每天加工的数量是乙每天加工数量的1.2倍,甲加工900个这种零件比乙加工500个这种零件多用10天. (1)求甲、乙每天各加工多少个机器零件?(2)甲、乙两人每天加工这种机器零件的加工费分别是160元和120元,现有1500个这种零件的加工任务,若工厂要求总加工费用不超过7500元,求乙至少加工多少天(取整数).【答案】(1)甲每天加工30个机器零件,乙每天加工25个机器零件;(2)乙至少加工38天 【分析】(1)设乙每天加工x 个零件,则甲每天加工1.2x 个零件,根据甲加工900个这种零件比乙加工500个这种零件多用10天,列分式方程求解; (2)设乙加工m 天,乙加工了15002530m-天,根据加工费分别是160元和120元,总加工费不超过7500元,列不等式,求解即可. 【详解】解:(1)设乙每天加工x 个机器零件,则 900500101.2x x-=, 解方程得25x =经检验,25x =是原方程的解,这时1.230x =答:甲每天加工30个机器零件,乙每天加工25个机器零件 (2)设乙加工m 天,则 15002512016030mm -+⨯≤7500, 解得m ≥1372∵m 取整数,∵m 最小值为38(或m ≥38) 答:乙至少加工38天 【点睛】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大. 21.(2021·银川市第三中学)解不等式组:()2732131234x x x x ⎧+≥-⎪⎨---<⎪⎩【答案】513x -<≤. 【分析】分别解出两个不等式的解集,再将解集表示在数轴上,找到公共解集即可. 【详解】解不等式组:()2732,1312.34x x x x ⎧+≥-⎪⎨---<⎪⎩解:()2732,1312.34x x x x ⎧+≥-⎪⎨---<⎪⎩①② 解不等式∵得13x ≤,解不等式∵得5x >-,将不等式的解集表示在数轴上:所以不等式组的解集为513x -<≤. 【点睛】本题考查解一元一次方程组、将不等式的解集表示在数轴上,是重要考点,掌握相关知识是解题关键. 22.(2021·沙坪坝区·重庆八中九年级)某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价1元.销售量就减少20件. (1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m %,但售价比9月份在(1)的条件下的最高售价减少215m %.结果10月份利润达到3168元,求m 的值. 【答案】(1)售价应不高于15元;(2)60 【分析】(1)设售价应为x 元,根据不等关系:该文具店在9月份销售量不低于1100件,列出不等式求解即可; (2)先求出10月份的进价,再根据等量关系:10月份利润达到3168元,列出方程求解即可. 【详解】解:(1)设售价应为x 元,依题意有 1160﹣20(x ﹣12)≥1100, 解得:x ≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元), 由题意得:1100(1+m %)[15(1﹣215m %)﹣12]=3168,设m%=t,化简得50t2﹣25t﹣3=0,解得:t1=0.6,t2=﹣0.1(舍去),所以m=60.答:m的值为60.【点睛】此题考查了一元一次不等式的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.23.(2021·重庆实验外国语学校九年级)永川黄瓜山,林场万亩、环境优美,山势雄伟、地貌奇特,现已成为全国面积最大的南方早熟梨基地,品种以黄花梨为主,还有黄冠、圆黄、红梨、鄂梨2号等.永川梨香甜,脆嫩,皮薄,多汁.2020年,永川梨入选第一批全国名特优新农产品名录.(1)某水果经销商第一批购进黄花梨5000千克,黄冠梨2000千克,黄冠梨每千克的进价比黄花梨的进价每千克多2元,经销商所花费的费用不超过60000元,求黄花梨每千克进价最多为多少元?(2)在第(1)问最高进价的基础上,随着梨大量成熟,该水果经销商第二批购进的黄花梨的数量比第一批的数量增加了2a%,第二批购进的黄冠梨的数量不变,黄花梨的进价减少了12a%,黄冠梨的进价减少了2a%,第二批购进梨的总成本与第一批购进梨的总成本相同,求a的值.【答案】(1)8元;(2)50【分析】(1) 设黄花梨的进价每千克x元,黄冠梨每千克的进价为(x+2)元,由经销商所花费的费用不超过60000元,得出不等式求解即可;(2)根据题意列出方程式15000(12%)8(1%)200010(12%)600002a a a+⨯-+⨯-=求解即可.【详解】解:(1)设黄花梨的进价每千克x元,黄冠梨每千克的进价为(x+2)元,所以5000x+2000(x+2)≤60000,解得:x≤8,答:黄花梨每千克进价最多为8元;(2)由(1)得:15000(12%)8(1%)200010(12%)600002a a a+⨯-+⨯-=,解得:a=50,(0a=舍去)答:a得值为50.【点睛】本题考查了一元一次不等式得实际应用,一元二次方程得实际应用问题,掌握一元二次方程的实际应用是解题的关键.。

2023年中考数学重点知识专题----已知不等式解集求参数值或参数范围(含答案解析)

2023年中考数学重点知识专题----已知不等式解集求参数值或参数范围(含答案解析)

2023年中考数学重点知识专题----已知不等式解集求参数值或参数范围(含答案解析)◆ 题型一:已知不等式确定的解集,求参数值或者范围几种常见考法: ① {若我们计算的结果为a <x <b 而题中给的结果为1<x 2,因为不等(组)的解集是确定的,则{a =1b =2② {若我们计算到ax <a ,因为未知a 的正负,无法下一步运算而题中给的结果为x <1,根据不等式的性质,则a >0③ {若我们计算的结果为{x <bx <2而题中给的结果为x <2,根据不等式解集的取法,“同小取小”,则b ≥2④ {若我们计算的结果为{x <bx <2而题中给的结果为x <b ,根据不等式解集的取法,“同小取小”,则b ≤2⑤ {若我们计算的结果为{x >b x >2而题中给的结果为x >2,根据不等式解集的取法,“同大取大”,则b ≤2⑥ {若我们计算的结果为{x >b x >2而题中给的结果为x >b ,根据不等式解集的取法,“同大取大”,则b ≥21. (2022·河北·模拟预测)已知a 是自然数,如果关于x 的不等式(a -3) x >a -3的解集为x <1,那么a 的值为( )A .1,2B .1,2, 3C .0,1, 2D .2,3【答案】C【分析】根据不等式(a -3)x >a -3的解集为x <1,得a -3<0,即可求解. 【详解】解:∵(a -3)x >a -3,当不等式两边同时除以a -3,若a -3>0,不等式化为x >1, 若a -3<0,则不等式化为x <1, ∴a -3<0,即a <3,符合条件的自然数有0,1,2. 故选:C .【点睛】本题考查根据不等式解集求参数,熟练掌握根据不等式解集确定系数符号是解题的关键.2. (2022·四川成都·模拟预测)关于x 的不等式组{3x −1>4(x −1)x <m 的解集为3x <,那么m 的取值范围是( )A .m ≥3B .m >3C .m <3D .m =3【答案】A【分析】先解出第一个不等式的解集,再由不等式组的解集为3x <,即可求解. 【详解】解:{3x −1>4(x −1)①x <m ②,解不等式①得:3x <, ∵不等式组的解集为3x <, ∴m ≥3. 故选:A【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.1.(2022·重庆市第三十七中学校二模)若数a 既使得关于x 的不等式组{x−a 2+1≤x+a 3x −2a >6无解,又使得关于y的分式方程5y−2−a−y2−y =1的解不小于1,则满足条件的所有整数a 的和为( ) A .−4 B .−3 C .−2 D .−52.(2022·重庆·模拟预测)若关于x 的不等式组{3<0x −4>3(x −2)的解集为x <1,且关于x 的分式方程x+2x−1+m 1−x=3有非负整数解,则符合条件的m 的所有值的和是( )A .6B .8C .11D .143.(2022·重庆市开州区德阳初级中学模拟预测)若关于x 的一元一次不等式组{3x −2≥2(x +2)a −2x <−5的解集为x ≥6,且关于y 的分式方程y+2a y−1−8−3y 1−y=2的解是正整数,则所有满足条件的整数a 的个数是( )A .3B .4C .5D .64.(2022·河北·模拟预测)已知a是自然数,如果关于x的不等式(a-3) x>a-3的解集为x<1,那么a的值为() A.1,2 B.1,2,3 C.0,1,2 D.2,3【答案】C【分析】根据不等式(a-3)x>a-3的解集为x<1,得a-3<0,即可求解.【详解】解:∵(a-3)x>a-3,当不等式两边同时除以a-3,若a-3>0,不等式化为x>1,若a-3<0,则不等式化为x<1,∴a-3<0,即a<3,符合条件的自然数有0,1,2.故选:C.【点睛】本题考查根据不等式解集求参数,熟练掌握根据不等式解集确定系数符号是解题的关键. 5.(2022·山东德州·二模)已知不等式组{x2+3a ≤−22x +5>1的解集在数轴上表示如图所示,则a 的值为( )A .−56B .-1C .−13D .−166.(2022·广东·二模)已知不等式组{x +a ≥0x +b ≤0,的解集为2≤x ≤3,则(a −b)2022的值为( )A .1−B .2022C .1D .−2022【答案】C【分析】解不等式得出x≥-a ,x≤-b ,由不等式组的解集得出-b=3,-a=2,解之求得a 、b 的值,代入计算可得.【详解】解:由x+a≥0,得:x≥-a , 由x+b≤0,得:x≤-b , ∵解集是2≤x≤3, ∴-b=3,-a=2,解得:a=-2,b=-3,∴(a−b)2022=(−2+3)2022=1,故选:C.【点睛】本题考查了解一元一次不等式组,能求出不等式(或组)的解集是解此题的关键.7.(2022·四川成都·模拟预测)关于x的不等式组{3x−1>4(x−1)x<m的解集为3x<,那么m的取值范围是()A.m≥3B.m>3C.m<3D.m=3【答案】A【分析】先解出第一个不等式的解集,再由不等式组的解集为3x<,即可求解.【详解】解:{3x−1>4(x−1)①x<m②,解不等式①得:3x<,∵不等式组的解集为3x<,∴m≥3.故选:A【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.8.(2022·山东·日照市北京路中学二模)若关于x的不等式组{x+1<3x+124x−1≥3(a−x)的解集是x>1,关于y的分式方程ay−1=5y−8y−1−2的解为非负数,则所有符合条件的整数a的和为()A.-18 B.-15 C.0 D.2【答案】B【分析】根据不等式组的解集求出不等式的解集,确定a的取值范围,再根据分式方程的解是非负数确定a 的取值范围,注意排除增根的情况,最后两个a的取值范围合并,就可以算出所有整数a的和.【详解】解:x+1<3x+12,2x+2<3x+1,解得x>1,4x−1≥3(a−x),4x-1≥3a-3x,x≥3a+17,∵关于x 的不等式组的解集为x >1, ∴3a+17≤1,解得a≤2, 又∵ay−1=5y−8y−1−2的解为非负数,∴a=5y −8−2(y −1), ∴y=a+63≥0且y≠1,解得a≥-6且a≠-3,∴a 的取值范围为-6≤a≤2且a≠-3,符合条件的整数a 有:-6、-5、-4、-2、-1、0、1、2,所有的a 相加的和=(-6)+(-5)+(-4)+(-2)+(-1)+(0)+1+2 =-15. 故选:B .【点睛】本题考查含参的一元一次不等式组和含参的分式方程的解.注意含参的不等式的解法和增根的情况是解决本题的关键.9.(2020·河南·模拟预测)已知不等式组{2x −a <1x −4b >3的解集为﹣1<x <1,则(a +b )(b ﹣1)的值为_____.【点睛】本题考查不等式组的计算求解集,关键是和已知解集对应相等,求出a,b的值.10.(2022·甘肃武威·模拟预测)定义新运算“⊗”,规定:a⊗b=a−2b.若关于x的不等式x⊗m>3的解集为x>−1,则m的取值范围是________.【答案】m=-2【分析】根据定义的新运算得到x⊗m=x−2m>3,得x>3+2m,从而3+2m=-1,求得m的值.【详解】解:∵a⊗b=a−2b,∴x⊗m=x−2m,∵x⊗m>3,∴x−2m>3,∴x>2m+3,∵不等式x⊗m>3的解集为x>−1,∴2m+3=−1,∴m=-2,故答案为:m=-2.【点睛】本题考查了新定义运算在不等式的应用,解题的关键是准确理解新定义的运算.◆题型二:已知不等式的特殊解,求参数值或者范围若2<x<m恰有3个整数解,求m的取值范围。

初二数学知识点梳理:不等式待定系数的取值范围

初二数学知识点梳理:不等式待定系数的取值范围

初二数学知识点梳理:不等式待定系数
的取值范围
不等式待定系数的取值范围
不等式待定系数的取值范围就是已知不等式或不等式组的解集或特殊解,确定不等式中未知数的系数的取值范围。

不等式待定系数的取值范围求法:
一、根据不等式的解集确定字母取值范围
例:
如果关于x的不等式x&gt;2a+2.的解集为x&lt;2,则a的取值范围是
A.a&lt;0B.a&lt;一lc.a&gt;lD.a&gt;一l
解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l&lt;0,得a&lt;一1,故选B.
二、根据不等式组的整数解情况确定字母的取值范围
例:
已知不等式组
的整数解只有5、6。

求a和b的范围.
解:解不等式组得
,借助于数轴,如图:
知:2+a只能在4与5之间。

只能在6与7之间.
∴4≤2+a&lt;5,6&lt;
≤7
∴2≤a&lt;3,13&lt;b≤15
三、根据含未知数的代数式的符号确定字母的取值范围
例:
已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x 的取值范围.
解:由2a-3x+1=0,可得a=
;由3b-2x-16=0,可得b=
.
又a≤4<b,
所以,
≤4<

解得:-2<x≤3.
四、逆用不等式组解集求解
例:。

2023年中考数学一轮复习之必考点题型全归纳与分层精练-一元一次不等式(组)(解析版)

2023年中考数学一轮复习之必考点题型全归纳与分层精练-一元一次不等式(组)(解析版)

专题10一元一次不等式(组)【专题目录】技巧1:一元一次不等式组的解法技巧技巧2:一元一次不等式的解法的应用技巧3:含字母系数的一元一次不等式(组)的应用【题型】一、不等式的性质【题型】二、不等式(组)的解集的数轴表示【题型】三、求一元一次不等式的特解的方法【题型】四、确定不等式(组)中字母的取值范围【题型】五、求一元一次方程组中的待定字母的取值范围【题型】六、一元一次不等式的应用【考纲要求】1、了解不等式(组)有关的概念,理解不等式的基本性质;2、会解简单的一元一次不等式(组);并能在数轴上表示出其解集.3、能列出一元一次不等式(组)解决实际问题.【考点总结】一、一元一次不等式(组)不等式或组不等式的基本性质(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变(2)不等式的两边都乘(或除以)同一个正数,不等号的方向不变(3)不等式的两边都乘(或除以)同一个负数,不等号的方向改变解法①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.在①至⑤步的变形中,一定要注意不等号的方向是否需要改变.一元一次不等式组定义一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.解法先求出各个不等式的解再确定其公共部分,即为原不等式组的解集。

四种不等式组(a<b)解集图示口诀【注意】1.不等式的解与不等式的解集的区别与联系:1)不等式的解是指满足这个不等式的未知数的某个值。

2)不等式的解集是指满足这个不等式的未知数的所有的值。

3)不等式的所有解组成了这个不等式的解集,不等式的解集中包括这个不等式的每一个解。

2.用数轴表示不等式的解集:大于向右,小于向左,有等号画实心圆点,无等号画空心圆图。

2.列不等式或不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”“最多”“超过”“不低于”“不大于”“不高于”“大于”“多”等.这些都体现了不等关系,列不等式时,要根据关键词准确地选用不等号.另外,对一些实际问题的分析还要注意结合实际.3.列不等式(组)解应用题的一般步骤:(1)审题;(2)设未知数;(3)找出能够包含未知数的不等量关系;(4)列出不等式(组);(5)求出不等式(组)的解;(6)在不等式(组)的解中找出符合题意的值;(7)写出答案(包括单位名称).【技巧归纳】基本不等式组的解集⎩⎨⎧≥≥b x a x x ≥b 大大取大⎩⎨⎧≤≤b x a x x ≤a 小小取小⎩⎨⎧≤≥bx a x a ≤x ≤b 大小小大中间找⎩⎨⎧≥≤b x a x 无解大大小小解不了技巧1:一元一次不等式组的解法技巧【类型】一、解普通型的一元一次不等式组12x <6,-2≤0的解集,在数轴上表示正确的是()2.解不等式组,并把解集表示在数轴上.(x +2),①+15>0.②【类型】二、解连写型的不等式组3.满足不等式组-1<2x -13≤2的整数的个数是()A .5B .4C .3D .无数4.若式子4-k 的值大于-1且不大于3,则k 的取值范围是____________.5.用两种不同的方法解不等式组-1<2x -13【类型】三、“绝对值”型不等式转化为不等式组求解.6.解不等式|3x -12|≤4.【类型】四、“分式”型不等式转化为不等式组求解7.解不等式3x -62x +1<0.参考答案1.C2.解:由①得,x≥-1.由②得,x <45.∴不等式组的解集为-1≤x <45.表示在数轴上,如图所示.3.B 4.1≤k <55.解:方法1解不等式①,得x>-1.解不等式②,得x≤8.所以不等式组的解集为-1<x≤8.方法2:-1<2x -13≤5,-3<2x -1≤15,-2<2x≤16,-1<x≤8.6.分析:由绝对值的知识|x|<a(a >0),可知-a <x <a.解:由|3x -12|≤4,得-4≤3x -12≤4.-4,①②解不等式①,得x≥-73.解不等式②,得x≤3.所以原不等式的解集为-73≤x≤3.点拨:7.解:∵3x -62x +1<0,∴3x -6与2x +1异号.即:-6>0,+1<0或<0,+1>0.解(Ⅰ)>2,<-12.∴此不等式组无解.解(Ⅱ)<2,>-12.∴此不等式组的解集为-12<x <2.∴原不等式的解集为-12<x <2.技巧2:一元一次不等式的解法的应用【类型】一、直接解不等式1.解下列不等式,并把它们的解集在数轴上表示出来.(1)x >13x -2;(2)4x -13-x >1;(3)x +13≥2(x +1).2.下面解不等式的过程是否正确?如不正确,请找出开始错误之处,并改正.解不等式:4-3x 3-1<7+5x 5.解:去分母,得5(4-3x)-1<3(7+5x).①去括号,得20-15x -1<21+15x.②移项,合并同类项,得-30x <2.③系数化为1,得x >-115.④【类型】二、解含字母系数的一元一次不等式3.解关于x 的不等式ax -x -2>0.【类型】三、解与方程(组)的解综合的不等式4.当m 取何值时,关于x 的方程23x -1=6m +5(x -m)的解是非负数?5+3y =10,-3y =2的解满足不等式ax +y >4,求a 的取值范围.【类型】四、解与新定义综合的不等式6.定义新运算:对于任意实数a ,b ,都有a ★b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2★5=2×(2-5)+1=-5.(1)求(-2)★3的值;(2)若3★x 的值小于13,求x 的取值范围,并在数轴上表示出来.【类型】五、解与不等式的解综合的不等式7.已知关于x 的不等式3x -m ≤0的正整数解有四个,求m 的取值范围.8.关于x 的两个不等式①3x +a 2<1与②1-3x>0.(1)若两个不等式的解集相同,求a 的值;(2)若不等式①的解都是②的解,求a 的取值范围.参考答案1.解:(1)x>13x-2,23x>-2,x>-3.这个不等式的解集在数轴上的表示如图所示.(2)4x-13-x>1,4x-1-3x>3,x> 4.这个不等式的解集在数轴上的表示如图所示.(3)x+13≥2(x+1),x+1≥6x+6,-5x≥5,x≤-1.2.解:第①步开始错误,应该改成:去分母,得5(4-3x)-15<3(7+5x).去括号,得20-15x-15<21+15x.移项,合并同类项,得-30x<16.系数化为1,得x>-8 15 .3.解:移项,合并同类项得,(a-1)x>2,当a-1>0,即a>1时,x>2a-1;当a-1=0,即a=1时,x无解;当a-1<0,即a<1时,x<2a-1.4.解:解方程得x =-313(m +1),由题意得-313(m +1)≥0,解得m ≤-1.5.解:2x +3y =10,-3y =2,=2,=2.代入不等式得2a +2>4.所以a >1.6.解:(1)(-2)★3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3★x <13,∴3(3-x)+1<13,去括号,得9-3x +1<13,移项,合并同类项,得-3x <3,系数化为1,得x >-1.在数轴上表示如图所示.7.解:解不等式得x ≤m 3,由题意得4≤m 3<5,解得12≤m <15.方法规律:已知一个不等式的解集满足特定要求,求字母参数的取值范围时,我们可先解出这个含字母参数的不等式的解集,然后根据题意列出一个(或几个)关于字母参数的不等式,从而可求出字母参数的取值范围.8.解:(1)由①得x <2-a 3,由②得x <13,由两个不等的解集相同,得2-a 3=13,解得a =1.(2)由不等式①的解都是②的解,得2-a 3≤13,解得a ≥1.技巧3:含字母系数的一元一次不等式(组)的应用【类型】一、与方程组的综合问题1.已知实数x ,y 同时满足三个条件:①x -y =2-m ;②4x -3y =2+m ;③x >y.那么实数m 的取值范围是()A .m >-2B .m <2C .m <-2D .m >22+y =-7-a ,-y =1+3a的解中,x 为非正数,y 为负数.(1)求a 的取值范围;(2)化简|a -3|+|a +2|.3.在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13.(1)求a ,b 的值;(2)当-1<x <2时,求y 的取值范围.【类型】二、与不等式(组)的解集的综合问题题型1:已知解集求字母系数的值或范围4.已知不等式(a -2)x >4-2a 的解集为x <-2,则a 的取值范围是__________.5-a <1,-2b >3的解集为-1<x <1,求(b -1)a +1的值.题型2:已知整数解的情况求字母系数的值或取值范围6>2,<a 的解集中共有5个整数,则a 的取值范围为()A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤87-a ≥0,-b <0的整数解是1,2,3,求适合这个不等式组的整数a ,b 的值.题型3:已知不等式组有无解求字母系数的取值范围8-1>0,-a <0无解,则a 的取值范围是__________.91<a ①,+5>x -7②有解,求实数a 的取值范围.参考答案1.B2.解:(1)=-3+a ,=-4-2a.∵x 为非正数,y 3+a ≤0,4-2a <0,解得-2<a ≤3.(2)∵-2<a ≤3,即a -3≤0,a +2>0,∴原式=3-a +a +2=5.3.解:(1)将x =1时,y =-3;x =-3时,y =13代入y =ax +b +b =-3,3a +b =13,=-4,=1.(2)由y =-4x +1,得x =1-y 4.∵-1<x <2,∴-1<1-y 4<2,解得-7<y <5.4.a <25.-a <1.①,-2b >3.②,解①得x <a +12;解②得x >2b +3.根据题意得a +12=1,且2b +3=-1,解得a =1,b =-2,则(b -1)a +1=(-3)2=9.6.A7.解:解不等式组得a 2≤x <b 3.∵不等式组仅有整数解1,2,3,∴0<a 2≤1,3<b 3≤4.解得0<a ≤2,9<b ≤12.∵a,b为整数,∴a=1,2,b=10,11,12. 8.a≤19.+1<a①,+5>x-7②,解不等式①得x<a-1.解不等式②得x>-6.∵不等式组有解,∴-6<x<a-1,则a-1>-6,a>-5.【题型讲解】【题型】一、不等式的性质例1、若a>b,则下列等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|【答案】B【分析】利用不等式的基本性质判断即可.【详解】A、由a>b不一定能得出a>b+2,故本选项不合题意;B、若a>b,则a+1>b+1,故本选项符合题意;C、若a>b,则﹣a<﹣b,故本选项不合题意;D、由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.【题型】二、不等式(组)的解集的数轴表示例2、不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.【题型】三、求一元一次不等式的特解的方法例3、不等式12x-≤的非负整数解有()A.1个B.2个C.3个D.4个【答案】D【详解】解:12x-≤,解得:3x≤,则不等式12x-≤的非负整数解有:0,1,2,3共4个.故选:D.【题型】四、确定不等式(组)中字母的取值范围例4、若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.【答案】-2-3【详解】解:由题意得:130 x abx->⎧⎨+≥⎩①②解不等式①得:x>1+a,解不等式②得:x≤3 b-不等式组的解集为:1+a<x≤3b- 不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为:-2,-3.【题型】五、求一元一次方程组中的待定字母的取值范围例5、若不等式组841x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是().A .m >3B .m≥3C .m≤3D .m <3【答案】C【解析】详解:841x x x m +<-⎧⎨>⎩①②,解①得,x>3;解②得,x>m ,∵不等式组841x x x m +<-⎧⎨>⎩的解集是x>3,则m ⩽3.故选:C.【题型】六、一元一次不等式的应用例6、某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A .13B .14C .15D .16【答案】C【分析】根据竞赛得分10=⨯答对的题数(5)+-⨯未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【详解】解:设要答对x 道.10(5)(20)120x x +-⨯->,10 1005 120x x -+>,15 220x >,解得:443x >,根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选C .一元一次不等式(组)(达标训练)一、单选题1.若m n >,则下列不等式一定成立的是().A .2121m n -+>-+B .1144m n ++>C .m a n b+>+D .am an-<-【答案】B【分析】根据不等式的性质解答.不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、∵m >n ,∴-2m <-2n ,则-2m +1<-2n +1,故该选项不成立,不符合题意;B 、∵m >n ,∴m +1>n +1,则1144m n ++>,故该选项成立,符合题意;C 、∵m >n ,∴m +a >n +a ,不能判断m +a >n +b ,故该选项不成立,不符合题意;D 、∵m >n ,当a >0时,-am <-an ;当a <0时,-am >-an ;故该选项不成立,不符合题意;故选:B .【点睛】本题考查了不等式的性质,掌握不等式的基本性质是解答本题的关键.2.北京2022冬奥会吉祥物“冰墩墩”和“雪容融”受到大家的喜爱,某网店出售这两种吉祥物礼品,售价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是()A .100x +80(10﹣x )>900B .100+80(10﹣x )<900C .100x +80(10﹣x )≥900D .100x +80(10﹣x )≤900【答案】D【分析】设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据“冰墩墩单价×冰墩墩个数+雪容融单价×雪容融个数≤900”可得不等式.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据题意,得:100x +80(10﹣x )≤900,故选:D .【点睛】本题主要考查由实际问题抽象出一元一次不等式,解题的关键是理解题意,找到其中蕴含的不等关系.3.不等式组3050x x +>⎧⎨-≤⎩的解是()A .3x >-B .5x ≤C .35x -<≤D .无解【答案】C 【分析】先求出每个不等式的解集,再结合起来即可得到不等式组的解集.【详解】由30x +>得:3x >-由50x -≤得:5x ≤∴35x -<≤故选C【点睛】本题考查一元一次方程组的求解,掌握方法是关键.4.不等式3﹣x <2x +6)A .x <1B .x >1C .x <﹣1D .x >﹣1【答案】D【分析】根据一元一次不等式的解法,移项、合并同类项、系数化1求解即可.【详解】解:326x x -<+,移项得362x x -<+,合并同类项得33x -<,系数化1得1x >-,∴不等式326x x -<+的解集是1x >-,故选:D .【点睛】本题考查一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解决问题的关键.5.在数轴上表示不等式1x >-的解集正确的是()A.B.C.D.【答案】A【分析】根据不等式解集的表示方法依次判断.【详解】解:在数轴上表示不等式x>−1的解集的是A.故选:A.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法,区分实心点与空心点,是解题的关键.二、填空题6.超市用1200元钱批发了A,B两种西瓜进行销售,两种西瓜的批发价和零售价如下表所示,若计划将这批西瓜全部售完后,所获利润率不低于40%,则该超市至少批发A种西瓜__________kg.名称A B批发价(元/kg)43零售价(元/kg)64【答案】120【分析】设批发A种西瓜x kg,根据“利润率不低于40%”列出不等式,求解即可.【详解】解:设批发A种西瓜x kg,则(6-4)x+120043x-×(4-3)≥1200×40%,解得x≥120.答:该超市至少批发A种西瓜120kg.故答案为:120.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.7.不等式2103x--<的解集为____.【答案】5x <【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1;本题可以采用去括号、移项、合并同类项即可求解.【详解】解:去分母,得:230x --<,移项,得:23x <+,合并同类项,得:5x <.∴不等式的解集为:5x <.故答案为:5x <.【点睛】本题考查了解一元一次不等式.严格遵循解不等式的基本步骤是关键,尤其需要注意∶不等式两边都乘以或除以同一个负数时,不等号方向改变;在数轴上表示不等式的解集要注意实心点和空心点的区别.三、解答题8.解不等式组:()36,3121,x x x x ≤-⎧⎨+>-⎩并将解集在数轴上表示.【答案】3x ≥,数轴表示见解析【详解】解:解不等式36x x -≤,得:3x ≥,解不等式312(1)x x +>-,得:3x >-,∵3x ≥与3x >-的公共部分为3x ≥,∴不等式组的解集是:3x ≥.在数轴上表示解集如下:【点睛】本题考查了一元一次不等式组,熟练掌握一元一次不等式组解集的求解方法是解题关键.一元一次不等式(组)(提升测评)1.2022年北京冬季奥运会开幕式于2022年2月4日20:00在国家体育馆举行,嘉淇利用相关数字做游戏:①画一条数轴,在数轴上用点A ,B ,C 分别表示﹣20,2022,﹣24,如图1所示;②将这条数轴在点A 处剪断,点A 右侧的部分称为数轴I ,点A 左侧的部分称为数轴Ⅱ;③平移数轴Ⅱ使点A 位于点B 的正下方,如图2所示;④扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧.则整数k 的最小值为()A .511B .510C .509D .500【答案】A 【分析】根据题意可得k ⋅AC AB >,列出不等式,求得最小整数解即可求解.【详解】解:依题意,4AC =,2042AB =∵扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧,∴k ⋅AC AB >,即42042k >,解得15102k >, k 为正整数,∴k 的最小值为511,故选A .【点睛】本题考查了数轴上两点距离,一元一次不等式的应用,根据题意得出k ⋅AC AB >是解题的关键.2.不等式12<32x x -⎛⎫ ⎪⎝⎭的解在数轴上表示正确的是()A .B .C .D .【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:21<3x x -,移项,得:3+2<1x x -,合并同类项,得:<1x -,系数化为1,得>1x -,在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.已知实数a ,b ,c 满足2a c b +=,112a c b +=.则下列结论正确的是()A .若0a b >>,则0c b >>B .若1ac =,则1b =±C .a ,b ,c 不可能同时相等D .若2a =,则28b c=【答案】B【分析】A.根据0a b >>,则11a b <,根据112a c b +=,得出c b <;B.根据112a c b+=,得出()2ac b a c =+,把2a c b +=代入得:21b ac ==,即可得出答案;C.当a b c ==时,可以使2a c b +=,112a c b +=,即可判断出答案;D.根据解析B 可知,22b ac c ==,即可判断.【详解】A.∵0a b >>,∴11a b<,∵112a c b+=,∴11c b,∴c b <,故A 错误;B.∵112a c b +=,即2a c ac b+=,∴()2ac b a c =+,把2a c b +=代入得:222ac b =,21b ac ∴==,解得:1b =±,故B 正确;C.当a b c ==时,可以使2a c b +=,112a c b+=,∴a ,b ,c 可能同时相等,故C 错误;D.根据解析B 可知,2b ac =,把2a =代入得:22b c =,故D 错误.故选:B .【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.4.若数a 使关于x 的分式方程1133x a x x ++=--有非负整数解,且使关于y 的不等式组3212623y y y y a++⎧⎪⎨⎪≥-⎩>至少有3个整数解,则符合条件的所有整数a 的和是()A .﹣5B .﹣3C .0D .2【答案】D 【分析】解不等式组,根据题意确定a 的范围;解出分式方程,根据题意确定a 的范围,根据题意计算即可.【详解】解:3212623y y y y a ++⎧⎪⎨⎪≥-⎩>①②,解不等式①得:y >﹣8,解不等式②得:y ≤a ,∴原不等式组的解集为:﹣8<y ≤a ,∵不等式组至少有3个整数解,∴a ≥﹣5,1133x a x x++=--,去分母得∶1﹣x ﹣a =x ﹣3,解得:x 42a -=,∵分式方程有非负整数解,∴x ≥0(x 为整数)且x ≠3,∴42a -为非负整数,且42a -≠3,∴a ≤4且a ≠﹣2,∴符合条件的所有整数a 的值为:﹣4,0,2,4,∴符合条件的所有整数a 的和是:2,故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.5.已知三个实数a 、b 、c ,满足325a b c ++=,231a b c +-=,且0a ≥、0b ≥、0c ≥,则37+-a b c 的最小值是()A .111-B .57-C .37D .711【答案】B【分析】由两个已知等式3a +2b +c =5和2a +b ﹣3c =1.可用其中一个未知数表示另两个未知数,然后由条件:a ,b ,c 均是非负数,列出c 的不等式组,可求出未知数c 的取值范围,再把m =3a +b ﹣7c 中a ,b 转化为c ,即可得解.【详解】解:联立方程组325231a b c a b c ++=⎧⎨+-=⎩,解得,73711a c b c=-⎧⎨=-⎩,由题意知:a ,b ,c 均是非负数,则07307110c c c ≥⎧⎪-≥⎨⎪-≥⎩,解得37711c ≤≤,∴3a +b ﹣7c=3(﹣3+7c )+(7﹣11c )﹣7c=﹣2+3c ,当c =37时,3a+b ﹣7c 有最小值,即3a+b ﹣7c =﹣2+3×37=﹣57.故选:B .【点睛】此题主要考查代数式求值,考查的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.二、填空题6.一元二次方程x 2+5x ﹣m =0有两个不相等的实数根,则m 的取值范围是_____.【答案】254m >-## 6.25m >-##164m >-【分析】由方程有两个不相等的实数根结合根的判别式,可得254()0m =-->Δ,进行计算即可得.【详解】解:根据题意得254()0m =-->Δ,解得,254m >-,故答案为:254m >-.【点睛】本题考查了根的判别式,解题的关键是掌握根的判别式并认真计算.7.若关于x 的分式方程232x m x -=-的解是非负数,则m 的取值范围是________.【答案】m ≤6且m ≠4【分析】先求得分式方程的解,利用已知条件列出不等式,解不等式即可求解.【详解】解:关于x 的分式方程232x m x -=-的解为:x =6−m ,∵分式方程有可能产生增根2,∴6−m ≠2,∴m ≠4,∵关于x 的分式方程232x m x -=-的解是非负数,∴6−m ≥0,解得:m ≤6,综上,m 的取值范围是:m ≤6且m ≠4.故答案为:m ≤6且m ≠4.【点睛】本题主要考查了分式方程的解,解一元一次不等式,解分式方程一定要注意有可能产生增根的情况,这是解题的关键.三、解答题8.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,三名航天员平安归来,神舟十三号任务取得圆满成功.飞箭航模店看准商机,推出了“神舟”和“天宫”模型.已知每个“神舟”模型的成本比“天宫”模型多10元,同样花费100元,购进“天宫”模型的数量比“神舟”模型多5个.(1)“神舟”和“天宫”模型的成本各多少元?(2)飞箭航模店计划购买两种模型共200个,且每个“神舟”模型的售价为30元,“天宫”模型的售价为15元.设购买“神舟”模型a 个,销售这批模型的利润为w 元.①求w 与a 的函数关系式(不要求写出a 的取值范围);②若购进“神舟”模型的数量不超过“天宫”模型数量的13,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?【答案】(1)“天宫”模型成本为每个10元,“神舟”模型每个20元(2)①51000w a =+②购进“神舟”模型50个时,销售这批模型可以获得最大利润,最大利润为1250元【分析】(1.(2)①设“神舟”模型a 个,则“天宫”模型为200a -()个,根据利润关系即可表示w 与a 的关系式.②根据购进“神舟”模型的数量不超过“天宫”模型数量的13,即可找到a 的取值范围,利用一次函数性质即可求解.(1)解:设“天宫”模型成本为每个x 元,则“神舟”模型成本为每个10x +()元.依题意得100100510x x =++.解得10x =.经检验,10x =是原方程的解.答:“天宫”模型成本为每个10元,“神舟”模型每个20元;(2)解:① “神舟”模型a 个,则“天宫”模型为200a -()个.()()()3020151020051000w a a a ∴=-+--=+.② 购进“神舟”模型的数量不超过“天宫”模型数量的13.()12003a a ∴≤-.解得:50a ≤.51000w a =+ .50k =>.()max 5055010001250a w ∴==⨯+=当时,元.即:购进“神舟”模型50个时,销售这批模型可以获得利润.最大利润为1250元.【点睛】本题考查了分式方程、一次函数的性质,关键在于找到等量关系,建立方程,不等式,函数模型.9.解不等式组:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩【答案】1x ≥-【分析】先分别求出两个一元一次不等式的解集,然后根据“同大取大、同小取小,小大大小取中间、大大小小找不到”即可求解.【详解】解:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩①②,解不等式①,得1x ≥-,解不等式②,得>7x -,∴该不等式组的解集为1x ≥-.【点睛】本题主要考查了解一元一次不等式组,理解并掌握求不等式组的原则“同大取大、同小取小,小大大小取中间、大大小小找不到”是解题的关键.。

巧用口诀法求不等式组中待定字母的值的范围

巧用口诀法求不等式组中待定字母的值的范围

巧用“口诀”法求不等式组中待定字母的值的范围一元一次不等式组是初中数学的一个重要内容,不过一元一次不等式组的解集的确定教材里只讲了用数轴来确定,这种方法对于不等式组中未出现待定字母时容易求解。

一旦不等式组中出现了待定字母,学生是感到束无手策的,本文举例说明如何用口诀法来求一元一次不等式组中待定字母的值。

一元一次不等式组解集是指不等式组中几个一元一次不等式解集的公共部分。

利用数轴来确定虽然直观,但也有不足之处,不过利用它我们能够得出下面“口诀”。

不等式组(a >b) 解集在数轴上的情况 不等式组的解集口诀 ① bx a x >> x >a 同大取大 ② bx a x << x <b 同小取小 ③ b x a x >< b <x <a 大小交叉中间找 ④ b x a x <> 无解(空集) 大小分离无处找例1:如果一元一次不等式组 ax x >>2的解集为2>x ,那么a 的取值范是( )。

A. 2>a B.2≥a C.2≤a D.2<a分析:此题中因为a 待定,所以利用数轴较为困难,但利用口诀法中的“同大取大”结合不等式的解集2>x ,易知b a b a b ab a2≤a ,故选C 。

例2:若不等式组 632≤++m x m x >有解,则m 的取值范围是 。

解:解不等式m x >2+得2-+m x >解不等式63≤+m x 得32m x -≤ 如果此时利用数轴则难以下手,但因为不等式组有解,结合口诀法中的“大小交叉中间找”,表明322m m --<,434<m ,3<m ,所以m 的取值范围是3<m 。

例3:如果不等式组 212++m x m x >>的解集为1->x ,那么m 的值是多少?分析:若212+≥+m m ,则1≥m ,又1->x ,所以结合口诀法中的“同大取大”,可得112-=+m ,解得m=-1,而m ≥1故舍去。

若2m+1<m+2,则m <1,又1->x ,所以利用口诀法中的“同大取大”得m+2=-1,解得m=-3,因m <1,所以符合条件。

初中数学----不等式(组)的字母取值范围的确定方法(含参考答案)

初中数学----不等式(组)的字母取值范围的确定方法(含参考答案)

初中数学----不等式(组)的字母取值范围的确定方法(含参考答案)七下数学与中考试题中,经常出现已知不等式(组)的解集,确定其中字母的取值范围的问题,下面举例说明字母取值范围的确定方法,供同学们学习时参考.一、 根据不等式(组)的解集确定字母取值范围例l 、如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B .例2、已知不等式组153x a x a <<⎧⎨<<+⎩的解集为a<x<5。

则a 的范围是 .解:借助于数轴,如图1,可知: 1≤a<5并且 a+3≥5. 所以,2≤a<5 .二、根据不等式组的整数解情况确定字母的取值范围例3、关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是 .分析:由题意,可得原不等式组的解为8<x<2—4a ,又因为不等式组有四个整数解,所以8<x<2—4a 中包含了四个整数解9,10,11,12于是,有12<2—4a ≤13. 解之,得 114-≤a<52- .例4、已知不等式组⎩⎨⎧<+>-b x ax 122的整数解只有5、6。

求a 和b 的范围.解:解不等式组得⎪⎩⎪⎨⎧-<+>212b x a x ,借助于数轴,如图2知:2+a 只能在4与5之间。

21-b 只能在6与7之间. ∴4≤2+a<5 6<21-b ≤7∴2≤a<3, 13<b ≤15.三、根据含未知数的代数式的符号确定字母的取值范围例5、已知方程组213(1)21(2)x y m x y m +=+-----⎧⎨+=------⎩满足x+y<0,则( )图1图2A .m>一lB .m>lC .m<一1D .m<1分析:本题可先解方程组求出x 、y ,再代入x+y<0,转化为关于m 的不等式求解;也可以整体思考,将两方程相加,求出x+y 与m 的关系,再由x+y<0转化为m 的不等式求解. 解:(1)十(2)得,3(x+y)=2+2m ,∴x+y =223m+<0.∴m<一l ,故选C . 例6、(江苏省南通市2007年)已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.解:由2a -3x +1=0,可得a=312x -;由3b -2x -16=0,可得b=2163x +. 又a ≤4<b , 所以,312x -≤4<2163x +, 解得:-2<x ≤3. 四、逆用不等式组解集求解例7、如果不等式组260x x m-≥⎧⎨≤⎩ 无解,则m 的取值范围是 .分析:由2x 一6≥0得x ≥3,而原不等式组无解,所以3>m ,∴m<3. 解:不等式2x-6≥0的解集为x ≥3,借助于数轴分析,如图3,可知m<3.例8、不等式组⎩⎨⎧>≤<m x x 21有解,则( ).A m<2B m ≥2C m<1D 1≤m<2解:借助图4,可以发现:要使原不等式组有解,表示m 的点不能在2的右边,也不能在2上,所以,m<2.故选(A ).例9、(2007年泰安市)若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是 .解:由x-3(x-2)<2可得x>2,由24a x x +>可得x<12a. 因为不等式组有解,所以12a>2. 所以,4a >.31 2图4图3例3、 某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?不等式(组)中待定字母的取值范围不等式(组)中字母取值范围确定问题,在中考考场中频频登场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7. (2019∙大庆)已知x=4是不等式ax−3a−1 0的解,x=2不是不等式ax−3a−1 0的解,则实数a的取值范围是______________
8.(2017·呼和浩特)已知关于x的不等式组
有四个整数解,实数a的取值范围是__________
9.(2018·贵阳)若关于x的一元一次不等式组 ,则a的取值范围是_____________
A.a 2B.a≥2C.a 2D.a≤2
4.(2017·金华)若关于x的一元一次不等式组 解是x<5,则m的取值范围是( )
A.m 5 B.m>5 C.m 5 D.m<5
5. (2019∙黑龙江)若关于x的一元一次不等式组 的解集为 ,则m的取值范围是______________。
6. (2019∙同仁)不等式组 的解集为 3a+2,则a的取值范围是___________.
10.(2018·泰安)若不等式组 有3个整数解,则实数a的取值范围是__________________
11. (2019∙包头)已知不等式组 的解集为x −1,则k的取值范围是______.
12. (2019∙宜宾)若关于x的不等式组 ,有且只有两个整数解,则m的取值范围是__________________.
专题:
确定不等式(组)中待定系数的取值范围(或值)问题
1. (2019∙内江)若关于x的不等式组 恰有三个整数解,则a的取值范围是( )
2. (2019∙聊城)若不等式组 无解,则m的取值范围为( )
A. m≤2B. m 2C. m≥2D. m 2
3. (2019∙云南)若关于x的不等式组 的解ቤተ መጻሕፍቲ ባይዱ是x a,则a的取值范围是()
相关文档
最新文档