同济大学_高等数学(上册).第一章 7~9节
高等数学 第五版 上册

14
2. 逆映射与复合映射 g : Rf → X
g f的逆映射, f 映射 称为 的逆映射,记作 ,
定义域: 定义域: Df = Rf
1
1
值域: 值域: Rf = X
1
15
g : X → Y1, f : Y2 → Z ,
Y 其中 1 Y2.
f g: X →Z
16
三 函数
1. 函数的概念
例
圆内接正多边形的周长
, 例如 2x 1, x > 0 f ( x) = 2 x 1, x ≤ 0
y = x2 1
y = 2x 1
24
例 符号函数
1, x > 0 y = sgn( x) = 0, x = 0 1, x < 0
定义域(∞,+∞).
值域{1,0,1}. , ,
y
1
°
x
o
° –1
25
例 取整函数(阶梯曲线) y = [x] 为不超过 x 的最大 整数部分. 如图:
{x a < x < b} 称为开区间 记作(a, b) 称为开区间,
o a x b 称为闭区间, {x a ≤ x ≤ b} 称为闭区间 记作[a, b] o a
b
x
10
{x a ≤ x < b} {x a < x ≤ b}
称为半开区间, 称为半开区间
记作[a, b)
称为半开区间, 称为半开区间 记作(a, b] 以上都是有限区间,以下是无限区间: 以上都是有限区间,以下是无限区间:
反之, 反之, 如果
即 亦即
因此 所以
x A 或 xB x A∩ B
x ∈( A∩ B)C
高数同济七版电子课本上册

反常积分
反常积分的概念
反常积分是对于无穷区间上的积分,它分为两类:无穷限的反常积 分和瑕点的反常积分。
反常积分的性质
反常积分具有一些特殊的性质,例如:无穷限的反常积分的结果可 能为无穷大,瑕点的反常积分的结果可能为无穷小。
反常积分的计算方法
对于不同类型的反常积分,计算方法有所不同,常用的方法包括利 用极限理论、幂级数展开等。
法则。
基本公式
02 基本公式包括指数函数的导数、幂函数的导数、对数
函数的导数和三角函数的导数等。
常见函数的导数
03
常见函数的导数包括一次函数的导数、二次函数的导
数、反比例函数的导数和幂函数的导数等。
微分及其应用
01
02
03
微分的概念
微分是函数在某一点处的 近似值,即函数在该点的 切线截距。
微分的几何意义
柯西中值定理
进一步揭示了函数在某点处的导数与该点附近函数的平均值之间的关系,是微分学中的重要定理之一。
洛必达法则
洛必达法则基本内容
在一定条件下,当一个函数的极限为0时,可以 应用洛必达法则求其导数的极限。
洛必达法则的应用
适用于求一些复杂函数的极限,简化计算过程 。
洛必达法则的条件
只有在满足一定条件下才能使用洛必达法则,否则可能导致错误的结果。
反常积分的应用
• 总结词:反常积分是定积分的一种推广形式,它可以用来求解更广泛的一类问 题。反常积分的应用包括物理、工程、经济等领域。
• 详细描述:反常积分是定积分的一种推广形式,它可以用来求解更广泛的一类 问题。反常积分有两种类型:无穷区间上的反常积分和无界函数的反常积分。 无穷区间上的反常积分可以用来求解函数在无穷区间上的积分,而无界函数的 反常积分可以用来求解函数在有限区间上的瑕积分。反常积分的应用非常广泛 ,包括物理、工程、经济等领域。例如,在物理学中,反常积分可以用来求解 量子力学中的波函数问题、电动力学中的电磁场问题等;在工程学中,反常积 分可以用来求解流体动力学中的问题、热传导问题等;在经济领域,反常积分 可以用来求解贴现问题、投资组合问题等。
同济大学《高等数学》[上册]的答案解析
![同济大学《高等数学》[上册]的答案解析](https://img.taocdn.com/s3/m/e852866ba5e9856a561260bf.png)
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 2-5
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
>>>
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
总习题四
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 3-3
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 3-4
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
练习 4-3
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 4-4
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
《高等数学》(同济大学第七版)上册知识点总结

高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→x xx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; )()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
同济大学高等数学(第七版)上册第一章函数 PPT课件

3
2
1 -4 -3 -2 -1 o -1 1 2 3 4 5 x
-2 -3 -4
阶梯曲线
(4) 狄利克雷函数
y
D( x)
1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
例
设
D(
x)
1 0
xQ ,
xQ
求D( 7), D(1 2).并讨论D(D( x))的性质. 5
例如,
f
(
x)
2x
x
2
1, 1,
x0 x0
y x2 1
y 2x 1
(1) 绝对值函数
y
0
x
(2) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
x sgn x x
y
1
o
x
-1
y
(3) 取整函数 y=[x]
4
[x]表示不超过 x 的最大整数
函数的值域可由其定义域和对应规则确定,即
R f ={ y y = f( x ),x D f }= f( D f ).
结论:函数的两个要素实际也给出了判别两函数是 否相同的方法,即若两函数的定义域相同,对应法 则也相同,这两函数就是相同的,否则就是不同的。
例如:y = f( x )= sin x,x R =( - ,+ );
反函数的定义域和值域恰为原函数的值域 和定义域
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
同济大学高等数学(第七版)上册第一章函数 PPT课件

16 x2 0
(1) (2)
y 2x ln x 16 x2
y log5 (x2 1)
ln x 0 x [1, 4) (4, )
x0
x2 1 0 x (, 1) (1, )
函数定义可简单地归结为构成函数的两个要素: • 定义域 D f : 自变量的变化范围。 • 对应法则 f :自变量与因变量的对应规则。
y y f (x)
f (x)
f (x)
-x o x
x
偶函数图形关于y轴对称,如:y=kx2
设D关于原点对称, 对于x D, 有 f ( x) f ( x) 称 f ( x)为奇函数;
y
y f (x)
-x f (x)
f (x)
o
xx
奇函数的图形关于原点对称,如:y=kx
奇、偶函数经四则运算后仍可在一定条件 下保持相应的奇、偶性。
解: D( 7) 1, 5
D(1 2) 0,
D(D( x)) 1,
(5) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
例.
已知函数
y
f
(
x)
2 1
x, x,
y
y f (x)
f (x2 )
f (x1)
o
x
I
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (2) f ( x1 ) f ( x2 ), 则称函数 f ( x)在区间I上是单调减少的;
同济版大一高数第一章第九节

cos x −1 的定义域为
因此它无连续点
例2. 求 解: 原式 例3. 求 解: 令 t = a −1, 则 x = loga (1+ t), t 原式 = lim t →0 loga ( + t) 1
x
说明: 说明 由此可见当
时, 有
ln(1+ x) ~ x
ex −1 ~ x
例4. 求 解: 原式
3 1 sin x ln( + 2x)
3 ⋅ 2x x
说明: 若 lim u(x) = 0, lim v(x) = ∞, 则有 说明
x→x0 x→x0
x→x0
lim [ 1+ u(x) ]
v( x)
=e
=e
lim v(x)u(x)
x→x0
例5. 设 讨论复合函数 解: 的连续性 .
x ≤1 x, ϕ(x) = x + 4, x >1
x
证: 设函数 即 于是
且 ϕ(x0) = u0 .
lim f (u)
u→u0
= f [ϕ(x0)]
故复合函数
例如, 例如
是由连续函数链
x ∈R*
复合而成 , 因此
x ∈R* 上连续 . 在
y O
1 y = sin x
x
例1 . 设
均在
上连续, 证明函数
也在 证:
上连续.
f (x) − g(x)
y
上连续单调递增, π arcsin x 例如, 例如 y = sin x在 − 2 −1 其反函数 y = arcsin x 在[−1, 1]上也连续单调 O 1πx
2
sin x
递增.
同济大学 高等数学 第一册 函数 课件

f ( x1 ) − f ( x 2 )
= x −x
2 1
2 2
= (x1 − x2 )( x1 + x2 )< 0
∴ f ( x1 ) < f ( x 2 )
∴ y = x 2在(0, ∞ )单调增加。 + 单调增加。
x 2 +1
2
y = 1 − x2
y = eu , u =
u
x2 + 1
2
y = e , u = v , v = x + 1.
注意:一个函数要作为复合函数, 注意:一个函数要作为复合函数,必须 仅仅依赖 选择合适的中间变量 中间变量u,使得y仅仅 选择合适的中间变量 ,使得 仅仅依赖 仅仅依赖于x. 于u,而u仅仅依赖于 , 仅仅依赖于
用来描述某一点的附近。 用来描述某一点的附近。
数集 { x x − a < δ }称为点 a的 δ 邻域 ,
表示以点 a为中心 、以δ为半径的开区间 . δ δ
x a+δ 记作 U ( a , δ ) = { x a − δ < x < a + δ }. a
a−δ
点 a的去心的 δ 邻域 ,
记作 U (a , δ ) = { x 0 < x − a < δ }.
y
y = f ( x)
y
f ( x2 )
y = f ( x)
f ( x1 )
f ( x2 )
f ( x1 )
o
I
x
o
I
x
图形:单调增加函数的图形从左到右往上升. 图形:单调增加函数的图形从左到右往上升. 单调减少函数的图形从左到右往下降. 单调减少函数的图形从左到右往下降.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 cos x lim 2 x 0 x
故 时
2 x 2 sin 2 lim 2 x 0 4( x ) 2
1 2
是关于 x 的二阶无穷小, 且
1 cos
1 x2 x~ 2
机动
目录
上页
下页
返回
结束
例1. 证明: 当
证:
时,
~
n 1 n 1 n2 ( a b ) a b ( a b ) a b
机动
目录
上页
下页
返回
结束
说明: 设对同一变化过程 , , 为无穷小 , 由等价
无穷小的性质, 可得简化某些极限运算的下述规则.
(1) 和差取大规则: 若 = o() , 则 ~ 1 x sin x lim 例如, lim 3 3 x 0 3 x x 0 x 3 x (2) 和差代替规则: 若 ~ , ~ 且 与 不等价 , lim , 则 ~ , 且 lim
及
中至少一个不存在 ,
若其中有一个为 , 称
x0 为无穷间断点 . x0 为振荡间断点 .
机动 目录 上页 下页 返回 结束
若其中有一个为振荡 , 称
例如:
y
y tan x
2
x 为其无穷间断点 . 2
o
x
y
1 y sin x
x 0 为其振荡间断点 .
y
0
x
x 1 为可去间断点 .
内容小结
1. 无穷小的比较
设 , 对同一自变量的变化过程为无穷小, 且 0
是 的高阶无穷小 是 的低阶无穷小 是 的同阶无穷小 是 的等价无穷小 是 的 k 阶无穷小
机动 目录 上页 下页 返回 结束
常用等价无穷小 :
~
~
~
~
2. 等价无穷小替换定理
x 0 时,
机动
目录
上页
下页
返回
结束
定理2 . 设
且
存在 , 则
lim
证:
lim lim lim lim lim lim
例如,
2x 2 tan 2 x lim lim x 0 5 x 5 x 0 sin 5 x
对自变量的增量 函数
x x0
有函数的增量 连续有下列等价命题:
x 0
在点
lim f ( x) f ( x0 )
x 0
lim f ( x0 x) f ( x0 )
lim y 0
y y f ( x)
y
f ( x0 ) f ( x0 ) f ( x0 )
x
ln(1 x) ~ x
ex 1 ~ x
机动 目录 上页 下页 返回 结束
例4. 求
解: 原式
3 sin x ln(1 2 x )
3 2x x
说明: 若 lim u ( x) 0 , lim v( x) , 则有
x x0 x x0
x x0
lim 1 u ( x)
又如,
其反函数
在
在
上连续 单调 递增,
上也连续单调递增.
定理3. 连续函数的复合函数是连续的. 证: 设函数 即 于是
u u 0
且 ( x0 ) u0 .
lim f (u )
f [ ( x0 )]
故复合函数
机动 目录 上页 下页 返回 结束
例如,
是由连续函数链
x R*
复合而成 , 因此
连续 , 或称它为该区间上的连续函数 .
在闭区间
例如,
又如, 有理分式函数 在其定义域内连续.
Q ( x0 , ) 0), , 都有 lim x)( x 0 R ) 只要 x0 ( lim P ( x)R ( P ) ( x0 continue
x x0 x x0
机动 目录 上页 下页 返回 结束
* 上连续 . x R 在
y
1 y sin x
o
x
机动
目录
上页
下页
返回
结束
例1 . 设
均在
上连续, 证明函数
也在
上连续.
证:
f ( x) g ( x) f ( x) g ( x)
根据连续函数运算法则 , 可知 连续 .
也在
上
机动
目录
上页
下页
返回
结束
二、初等函数的连续性
基本初等函数在定义区间内连续 连续函数经四则运算仍连续 连续函数的复合函数连续 一切初等函数 在定义区间内 连续
第九节 目录 上页 下页 返回 结束
备用题 确定函数 f ( x)
解: 间断点 x 0 , x 1
1 1 e
x 1 x
间断点的类型.
lim f ( x) , x 0 为无穷间断点;
x 0
x , f ( x) 0 当 x 1 时, 1 x x , f ( x) 1 当 x 1 时, 1 x
则称函数 f ( x) 在 x0 连续. 可见 , 函数 (1) (2) 极限 (3) 在点 在点 x0 连续必须具备下列条件:
有定义 , 即
存在 ;
存在 ;
机动
目录
上页
下页
返回
结束
若
在某区间上每一点都连续 , 则称它在该区间上 上的连续函数的集合记作 C [ a , b ]. ( 有理整函数 ) 在 上连续 .
若 lim k C 0 , 则称 是关于 的 k 阶无穷小; 若 lim 1, 则称 是 的等价无穷小, 记作 ~ 或 ~
机动 目录 上页 下页 返回 结束
例如 , 当 x 0 时
x 3 o( 6 x 2 ) ; sin x ~ x ; tan x ~ x arcsin x ~x
tan x sin x 例1. 求 lim . 3 x 0 x
解: 原式
xx 原式 lim 3 x 0 x
lim
2 x 1 x 2 x 0
x3
机动
目录
上页
下页
返回
结束
(1 1 . 例2. 求 lim x 0 cos x 1
解:
1 x2 )3
机动
目录
上页
下页
返回
结束
v( x)
e
e
x x0
lim v( x) u ( x)
机动
目录
上页
下页
返回
结束
例5. 设 讨论复合函数 的连续性 .
x, x 1 ( x) x 4 , x 1
解:
2 ( x),
( x) 1
2 ( x) , ( x) 1
lim f [ ( x)] lim x 2 1
y 2
x sin 2
cos( x
x ) 2
x
即 这说明 在 在
x 0
0
内连续 .
同样可证: 函数
内连续 .
机动 目录 上页 下页 返回 结束
二、 函数的间断点
设 在点 的某去心邻域内有定义 , 则下列情形 不连续 : 无定义 ; 之一函数 f (x) 在点 (1) 函数 在
但 ~ 时此结论未必成立 . 2x x tan 2 x sin x lim 1 例如, lim 2 1 x 1 x 0 x x 0 2
机动 目录
上页
下页
返回
结束
(3) 因式代替规则: 若 ~ , 且 ( x) 极限存在或有 界, 则 例如,
lim ( x) lim ( x) 1 1 lim arcsin x sin lim x sin 0 x 0 x x 0 x
( 利用极限的四则运算法则证明)
例如, 在其定义域内连续 定理2. 连续单调递增 (递减) 函数的反函数 也连续单调 递增 (递减).
(证明略)
例如, y sin x 在
上连续单调递增,
其反函数 y arcsin x 在 [-1 , 1] 上也连续单调递增.
机动 目录 上页 下页 返回 结束
第七节 无穷小的比较
2
第一章
引例 . x 0 时 , 3 x , x , sin x 都是无穷小, 但
sin x 1 x lim , 0, lim x 0 3 x 3 x 0 3 x sin x lim 2 , x 0 x
可见无穷小趋于 0 的速度是多样的 .
2
机动
目录
上页
n
n
~
机动 目录 上页 下页 返回 结束
定理1.
证:
~
o( )
lim 1 lim( 1) 0, 即 lim 0
~
o( ) , 即 o( )
例如, x 0 时,
~
tan x ~x , 故
tan x x o( x)
x 1
x2 ,
x 1
2 x , x 1
x 1 时 f [ ( x)] 为初等函数 , 故此时连续; 而
x 1
x 1
lim f [ ( x)] lim (2 x) 3
下页
返回
结束
定义. 设 , 是自变量同一变化过程中的无穷小,
若 lim 0 , 则称 是比 高阶的无穷小, 记作 o( ) 若 lim , 则称 是比 低阶的无穷小; 若 lim C 0 , 则称 是 的同阶无穷小;