材料燃烧性能的锥形量热计实验
CONE(锥形量热仪)法在塑料燃烧性能综合评估中的应用研究

CONE(锥形量热仪)法在塑料燃烧性能综合评估中的应用研究【摘要】本文介绍了塑料的燃烧性能及其常规测试方法,新型测定聚合物燃烧热性能仪器——锥形量热仪在评定聚合物燃烧性能中的应用,并提出了全面对燃烧性能进行综合评估的新型方法,从而为塑料的正确选型提供了一定的依据【关键词】塑料锥形量热仪层次分析法燃烧性能综合评估聚氯乙烯高抗冲聚苯乙烯1.前言目前,塑料的应用领域已经遍及工农业生产和人民生活的各个领域。
据统计,1999年全球五种主要热塑性塑料的总产量已近1.1亿吨[1],而三大合成材料(塑料,合成纤维,合成橡胶)中塑料占2/3以上的比例。
然而,作为一种高聚物,塑料燃烧迅速并释放出大量的热和有毒烟气,在火灾中暴露出较大的危害性,所以,对塑料的燃烧性能进行全面综合的评估以及正确选型就显得日益重要。
2.塑料的燃烧性能及其常用测定方法2.1塑料的燃烧性能塑料燃烧的主要过程可表示如下:热源(热量反馈)图1 塑料燃烧过程示意图通常塑料在火灾中的燃烧性能主要包括以下几个方面:⑴引燃性引燃性是指材料被引燃的难易程度,是燃烧的初始阶段。
材料在热作用下被引燃时,是热流和时间共同作用的结果。
⑵火焰传播性火焰传播性是指火焰沿材料表面蔓延发展的程度。
其决定因素关键是材料表面有可燃性气体产生,或在材料内部能形成可燃性气体但能逸至材料表面。
火焰传播速度越大,则越易使火灾波及附近的可燃物而使火灾扩大。
⑶释热性由表1[2]中给出的几种塑料的燃烧热值可以看出,塑料燃烧通常能释放出大量的热。
释热性影响着火灾环境温度和火灾传播速度,释热越大的物质,其危险性程度越高,反之越低。
名称 聚苯乙烯 聚乙烯聚氯乙稀 赛璐珞聚酰胺 酚醛树脂燃烧热40.18 45.88 18.05-28.0317.30 30.84 13.47 (KJ/g)表1 几种常见塑料的燃烧热值⑷生烟性烟气的生成不仅大大降低了火场的可见度,影响着人员疏散和救援工作的开展,而且烟气本身的窒息性直接威胁着人身安全。
建材锥形量热试验

建材锥形量热试验1. 背景介绍建材是指用于建筑工程中的各种材料,如混凝土、砖块、砂浆等。
建材的质量和性能直接影响着建筑物的安全性和耐久性。
锥形量热试验是一种常用于评估建材燃烧性能的方法。
通过对建材在高温下的燃烧特性进行研究,可以为建筑物的设计和材料的选择提供参考依据。
2. 锥形量热试验原理锥形量热试验是利用锥形量热仪对建材样品进行测试,以测定其燃烧性能。
试验中,将建材样品置于锥形量热仪的加热器中,通过控制加热速率,使样品受热并发生燃烧。
同时,通过测量样品的温度和热释放速率等参数,来评估建材的燃烧特性。
3. 锥形量热试验参数在进行锥形量热试验时,常用的参数包括:•最大热释放速率(Peak Heat Release Rate,PHRR):表示样品燃烧时释放的最大热量。
•平均热释放速率(Average Heat Release Rate,AHRR):表示样品燃烧时平均每单位时间释放的热量。
•烟气产生速率(Smoke Production Rate,SPR):表示样品燃烧时产生的烟气的速率。
•烟气毒性(Toxicity):表示样品燃烧时产生的烟气对人体的毒性。
•温度曲线(Temperature Curve):表示样品燃烧时温度的时间变化曲线。
4. 锥形量热试验过程下面是标准的锥形量热试验过程:步骤一:样品制备•准备建材样品,通常为规定尺寸和形状的试块。
•清洁样品表面,确保无油污和杂质。
步骤二:仪器设置•将样品放入锥形量热仪中,并确保样品合适的安装位置。
•设置测试参数,如加热速率、采样频率等。
步骤三:试验开始•启动锥形量热仪,开始测试。
•监测样品温度、热释放速率和烟气产生速率等参数的变化。
步骤四:数据分析•根据实验结果,计算最大热释放速率、平均热释放速率、烟气产生速率等参数。
•分析温度曲线和燃烧过程中的特征。
步骤五:结果评估•根据试验结果评估建材的燃烧性能和烟气产生情况。
•与相应的标准进行对比,判断建材是否符合要求。
聚合物材料燃烧性和阻燃性锥形量热仪测试评价法

聚合物材料燃烧性和阻燃性锥形量热仪测试评价法有机聚合物材料是一种新兴而广泛使用的材料,但由于其内在易燃性,使使用场所的火灾危险性大大增加。
因此,如何正确评价其在实际火情条件下的燃烧与阻燃性能已成为一项迫在眉捷的首要问题。
锥形量热仪( CON E)是美国国家科学技术研究所( N IST)的Babra uskas于1982年提出的。
它是以氧消耗原理为基础的新一代聚合物材料燃烧测定仪,氧消耗原理是指每消耗1 g的氧,材料在燃烧中所释放出的热量是13. 1 kJ(误差为5% 或更好) ,且受燃料类型和是否发生完全燃烧影响很小。
只要能精确地测定出材料在燃烧时消耗的氧量就可以获得准确的热释放速率。
不热辐射强度下的热释放速率( HRR )是CON E给出的最重要的参数之一,同时还能给出其它许多参数。
它们可从不同角度评价聚合物材料的燃烧性和阻燃性。
不同于以往的传统实验室型评价方法(如: 极限氧指数LOI, NBS烟箱等) , CON E的实验结果与大型燃烧实验结果之间存在很好的相关性[2 ]。
以往为了正确评价建筑材料、装饰材料和电线电缆等必须进行大型燃烧实验,浪费了大量的物力和财力。
近年来,由于CON E的出现使评价工作大为改观。
有利的促进了研究和评价工作的进展,并制定了相应的实验标准,如: ASTM E1354- 90 和90A 和ISODIS 5660 /90。
CON E可望在评价聚合物材料燃烧性和阻燃性上代替或部分代替大型燃烧实验,并能进行阻燃机理及烟等方面的研究工作。
1、锥形量热仪可模拟多种火情强度,测定聚合物材料的热释放速率等燃烧参数的CON E由六部分组成: ( 1)截断锥形加热器和有关控制电路; ( 2)通风橱和有关设备; ( 3)天平及试样架; ( 4)氧气和气体分析仪表; ( 5)烟测量系统; ( 6)有关的辅助设备。
该仪器具有较宽的热辐射功率范围( 10 kW /m2~110 kW /m2)。
木材和高聚物燃烧性能的锥形量热仪研究

中图分类号:X913.4,TKl21
文献标志码:B
文章编号:1009~0029(2009)Q2一0080—03
随着经济发展和社会进步,火灾发生的频率及其 所造成的损失也在不断增加。为了预防和控制火灾的 发生,最大限度地减少火灾损失,需要研究影响火灾发 生和发展的各种因素,其中材料本身的燃烧性能对火 灾的行为起着决定性的作用。
从图1中的曲线可看出,与未经阻燃处理的榉木 比较,经聚磷酸铵真空加压阻燃处理榉木的热释放速 率变化平缓得多,不存在尖锐的峰值,且热释放速率的 平均值有很大程度的降低,因而降低了火灾危险性。
80
万方数据
250
200
E
主150
褂 瑙100 橙
壁50
穰
O
l
73
145
235
307
379
时问/s
图l’榉木热释放速率变化曲线图
相似文献(10条)
1.期刊论文 王蔚.张和平.万玉田.WANG Wei.ZHANG He-ping.WAN Yu-tian 基于锥形量热仪的PVC电缆燃烧性能试验
研究 -安全与环境学报2008,8(2)
采用锥形量热仪研究不同型号PVC电缆的燃烧性能.通过改变锥形量热仪的热辐射强度模拟不同规模的火灾.分析火灾中电缆样品的热释放速率、质量 损失速率、烟气产生速率等重要参数,研究热辐射强度、电缆护套层厚度对这些参数的影响,以及不同火灾性能参数间的关系.结果表明,热辐射强度越大 ,电缆的平均热释放速率、质量损失速率和烟气产生速率的峰值越高;电缆护套厚度越大,平均热释放速率、热释放速率的峰值越高,燃烧持续时间越长.由 于电缆结构的影响.电缆样品与护套标准片状样品的火灾特性存在差异.电缆样品的试验结果可以更好地反映电缆在真实火灾中的燃烧性能.
锥形热量仪的原理及应用

锥形热量仪的原理及应用1. 引言锥形热量仪(Cone Calorimeter)是一种广泛应用于材料燃烧性能测试的实验设备。
本文将介绍锥形热量仪的原理及其在材料燃烧性能测试中的应用。
2. 原理锥形热量仪是一种利用辐射热传导原理测量材料燃烧性能的设备。
其工作原理如下:•在实验中将待测材料置于锥形加热源上方,在一定的热辐射条件下进行加热。
•待测材料受热后开始燃烧,产生烟气和火焰。
•烟气和火焰中的能量通过辐射、对流和导热等方式传递给锥形加热源。
•锥形加热源通过测量传递到其上的能量来计算材料的燃烧特性和热释放率。
3. 应用锥形热量仪在材料燃烧性能测试中具有广泛的应用,主要包括以下几个方面:3.1 材料燃烧特性评估锥形热量仪可以用于评估材料的燃烧特性,包括:•燃烧时间:锥形热量仪可以测量材料的燃烧时间,即材料从开始燃烧到完全燃尽所需的时间。
•热释放率:通过测量锥形加热源上的能量,锥形热量仪可以计算出材料的热释放率,用于评估材料的火灾危险性。
•烟气产生速率:锥形热量仪还可以测量材料燃烧过程中产生的烟气的产生速率,用于评估材料的烟雾毒性。
3.2 材料燃烧性能改进锥形热量仪可以用于评估不同材料的燃烧性能,从而指导材料的设计和改进。
通过对比不同材料燃烧过程中的热释放率、烟气产生速率等参数,可以选择具有较低火灾危险性和烟雾毒性的材料进行应用。
3.3 材料阻燃剂评估锥形热量仪可以用于评估材料阻燃剂的效果。
通过在待测材料中添加不同类型和含量的阻燃剂,可以比较其对燃烧特性的影响,从而选择最佳的阻燃剂组合。
3.4 构建火灾模型锥形热量仪产生的数据可以用于构建火灾模型,模拟材料在火灾中的燃烧过程。
通过模型的建立,可以预测火灾发展过程、烟气扩散路径等,为火灾防控提供科学依据。
4. 结论锥形热量仪是一种用于评估材料燃烧性能的重要实验设备。
通过测量材料燃烧过程中的热释放率、烟气产生速率等参数,可以评估材料的燃烧特性和火灾危险性,指导材料的设计和改进。
锥形量热仪中材料点燃的数值模拟研究

关 键 词 : 燃模 型 ;材 料 ;传 热 方 程 ;数 值 模 拟 点
中图分类号 : 1. 。 X9 3 4 TK1 1 2
文献标志码 : A
真 实 的 材 料 点 燃 过 程 非 常 复 杂 , 包 括 多 维 热 传 导 它
文章 编 号 :0 9 0 9 2 1 ) 7 5 9 3 1 0 —0 2 ( O 0 O 一O 6 一o
消防理 研 霎 论 究
锥 形 量 热 仪 中材 料 点 燃 的数 值 模 拟 研 究
徐 亮 。丁严 艳
( . 华 市 消 防 支 队 , 江 金 华 3 1 0 ;2 杭 州 电子 科 技 大 学 , 江 杭 州 3 0 1 ) 1金 浙 20 0 . 浙 1 0 8
摘 要 : 据 锥 形 量 热 仪 中 热 辐 射 均 匀 分 布 的 特 性 , 一 根 从
方程 出发 , 用数值模拟的方法对材料的点燃进行研究 。 采 1 点 燃 数值 模 拟
传热方程 , 过数值 模拟 的方 法计 算得 到无 量纲 点燃 时 间, 通 利 用 幂 指数 线 性 拟 合 的方 法得 到 了热 薄 型 、 中型 和 热 厚 型 材 料 热
的 点 燃 时 间 公 式 , 过 无 量 纲 热 辐 射 通 量 给 出 了 各 预 测 公 式 的 通
火 灾 的发 生 、 延 具 有 重 要 的 意 义 。锥 形 量 热 仪 是 火 灾 蔓
领 域 杰 出 的 发 明 , 研 究 材 料 点 燃 性 能 的 常 用 设 备 。前 是 人 在 此 方 面 已 经 开 展 过 一 些 研 究 。S e r on 利 用 积 分 p ap it
眦 的热 损 失 边 界 条 件 采 用 Qun ir it e和 Mik l e k oa推 导出 论 理
锥形量热仪法测低水合硼酸锌对木材的阻燃作用

锥形量热法研究低水合硼酸锌对木材的阻燃作用一、实验目的1.了解锥形量热仪的工作原理及其使用;2.学会分析锥形量热实验数据和图谱。
二、实验原理锥形量热仪(CONE)是以氧消耗原理为基础的材料燃烧性能测定仪,可获得可燃材料在火灾中的燃烧参数有热释放速率(HRR)、总释放热(THR)、有效燃烧热(EHC)、烟及毒性参数和质量变化参数(MLR)等,与CONE测试相关的工业标准有ISO 5660,ATSM E 1354等。
CONE是火灾科学研究的重要手段,具有其他小型燃烧试验和实体实验不能比拟的优点, 它可为阻燃材料进行等级划分,预测材料着火危险性,评价材料的烟释放能力,研究阻燃材料的阻燃特性及阻燃机理等。
锥形量热仪(CONE)是根据氧消耗原理来测定材料燃烧热的仪器。
耗氧燃烧热是指燃料与氧完全反应时消耗单位质量氧所产生的热量,用E来表示。
1917年,Thorntond对大量有机物的燃烧热进行了研究发现,各种化合物的燃烧热各不相同,但是,它们的耗氧燃烧热却十分接近。
1980年,Huggett进一步对有机高分子及天然有机材料进行了系统的研究,试验表明典型有机化合物耗氧燃烧热值都接近于12.72MJ/Kg,典型有机高分子材料耗氧燃烧热值接近13.02MJ/Kg,天然有机高分子材料耗氧燃烧热值接近13.21MJ/Kg。
大量的试验结果表明,绝大多数的材料耗氧燃烧热值接近13.1MJ/Kg这一平均值,偏差在5%左右。
这个平均值通常被用作火灾中有机材料耗氧燃烧热值,那么根据耗氧原理,实际测量时只需测定材料燃烧前后气体中氧含量的变化,就可以根据公式算出材料燃烧所产生的热量。
Q=E(m O2σ- m O2) (1)还可以进一步给出试样在单位时间内、单位面积上释放出的热量。
配备上天平、光度测定仪和气体分析仪等辅助装置还有计算机系统,锥形量热仪就能同时给出试样的质量、烟和尾气等成分随时间变化的动态情况。
通过辐射锥,锥形量热仪能够模拟多种火灾强度,能够同时提供几十组相关参数或曲线。
新一代评估方法——锥形量热仪(CONE)法在材料阻燃研究中的应用【毕业论文】

图书分类号:密级:毕业设计(论文)题目:新一代评估方法——锥形量热仪 (CONE)法在材料阻燃研究中的应用学生姓名班级学院名称专业名称指导教师学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
除文中已经注明引用或参考的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标注。
本人完全意识到本声明的法律结果由本人承担。
论文作者签名:日期:年月日学位论文版权协议书本人完全了解关于收集、保存、使用学位论文的规定,即:本校学生在学习期间所完成的学位论文的知识产权归所拥有。
有权保留并向国家有关部门或机构送交学位论文的纸本复印件和电子文档拷贝,允许论文被查阅和借阅。
可以公布学位论文的全部或部分内容,可以将本学位论文的全部或部分内容提交至各类数据库进行发布和检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
论文作者签名:导师签名:日期:年月日日期:年月日新一代评估方法——锥形量热仪(CONE)法在材料阻燃研究中的应用【摘要】利用新一代评估方法----锥形量热仪法对材料阻燃机理、材料危险性等级划分、烟毒释放的评价、材料燃烧性及阻燃性评价等方面的应用进行了分析讨论,结果表明锥形量热仪法对阻燃剂、阻燃制品的研究开发及阻燃剂在火灾中的行为研究有重要意义。
【关键词】锥形量热仪评估机理阻燃燃烧The New Evaluating Methods—CONE on the Application of MaterialFire Retarded ResearchNew evaluating methods―CONE is used on the application of material fire retarded research. The analysis results, including researching fire retarded mechanism, carving up material hazard grade, evaluating the release of smoke and poison, evaluating the properties of combustion and fire retardation, etc., are discussed. The results demonstrate that CONE method is of signification on the development and research of fire retardants and fire retarded products, and on the behavior research of fire retardants in fire disaster.Key words:CONE evaluating methods mechanism fire1 引言阻燃科学与技术的发展对阻燃材料燃烧行为的评估、测试手段提出了越来越高的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国矿业大学安全工程学院
实验报告
课程名称:消防专业实验
实验名称:材料燃烧性能的锥形量热计实验姓名:
学号:
实验日期: 2011.3.6
实验1 材料燃烧性能的锥形量热计实验
本实验的理论依据为:“对于许多有机液体和气体,当其完全燃烧时,消耗单位质量的氧气所释放出的热量是一个常数,为13.1MJ/kgO2 ”。
从而利用此原理,求出不同试件,不同情况下的各个参数,通过对数据结果进行分析,并以表格的形式展现出来,分析对比,得出结论。
本实验测定了不同的木材,分别在3okw/m2,50kw/m2的辐射强度下燃烧的各项参数数据,以及pvc在3okw/m2,50kw/m2的辐射强度下的实验。
一.下面是对木材HRR数据进行整理得出的图表:
图表1-1
通过图表可以看出,在该热辐射强度的条件下,我们可以发现:
1)在相同的条件下,无烤漆柞木的燃烧需要的热量高于其他木材,从表格中可以看出,大概在50s左右的时间,柞木开始放热。
2)每一种木材在燃烧的过程中,并非呈平缓上升或下降的状态,过程中都出现了多个峰值,其中在初期阶段,带烤漆松木热释放速率的峰值最高,HRR曲线较为最为陡峭,无烤漆柞木最低。
3)经过分析可得多次出现峰值的原因:起初因材料的热分解产生气体阻碍了木炭与氧气的接触,因此,开始为分解气体的燃烧,反应逐渐加快,热释放速率不断增加,直至出现第一峰值后热释放速率开始下降,后来
因分解产生的气体逐渐减少,开始转变为木炭的的有焰燃烧,固又会出现第二峰值,直至最后木炭燃烧殆尽......
图表1-2
在辐射强度为30kw/m2的条件下,我们可以看出:
1)各木材在初期阶段,热释放速率的上升曲线较为陡峭,在下降阶段较为平缓,且带烤漆松木燃烧所需要的热量较少,其次为无烤漆桦木,带烤漆符合与无烤漆柞木。
2)在该条件的HRR曲线中,带烤漆松木最先达到最高值,且热释放速率皆大于其他木材。
下面是同种材料(以及pvc材料)在不同热辐射强度条件下HRR曲线的对比:
图表 2.2.1
图表 3.2.2
图表 4.2.3
图表 5.2.4
通过上面几组结果相似的图表,我们可以看出:
同种材料,在相同的其他条件下,热辐射强度小的燃烧所需要的时间,热量更多,其热释放速率,峰值都小于辐射强度高的同种材料,燃烧时间大于高辐射强度条件下的材料。
二.pvc材料的相关实验
图表3-1质量损失速率MLR/(g/s*m2)
由图表我们可以看出:
1)从反应一开始,在高热辐射强度下的pvc材料就进行了强烈的热分解反应,其反应速率明显的远远高于低辐射热强度下的同种材料。
2)当到达峰值后的一段时间内,分解反应进行的相对平缓,持续一段时间后,分解速率开始缓慢的下降直至分解反应结束。
3)不同的热辐射强度下,高热辐射强度的分解速率,峰值远远高于其他,并很快的结束分解反应。
图表6-2HRR曲线
从表3-1中,我们可以得到启示:
1)Pvc材料的HRR曲线明显不同于木材的是,在燃烧的初期,pvc材料的热释放速率为负值,即此时为吸热分解状态,随着反应的进行,短暂时间内,吸热速率迅速降低,材料热分解速度急剧上升,开始放热反应,并很快的达到热释放速率的一个峰值,接着反应进入了较为相对平缓的阶段,反应到了一定时间后,分解反应速率下降,燃烧速度变慢,热释放速率开始下降,直至最后燃烧过程结束。
2)在不同的热辐射强度下,50kw/m2时的HRR明显高于30kw/m2的,燃烧的也更加迅速,同时持续时间也更短。
图表3-3
从该表格中,可以观察到该材料在火灾情况下的比消光面积的参数情况:
1)在不同的热辐射强度下,该材料的比消光面积大致近似,但是其燃烧过程却差异较大。
2)pvc材料在开始,会进行分解反应,释放大量的烟气,因此,比消光面积会迅速增大,随着反应进行,热量的积累,无焰燃烧开始转变为有焰燃烧,比
消光面积开始下降。
3)从上面的分析可以得出,在高热辐射强度的条件下,pvc材料的分解反应得到的热量较多,分解反应放出的气体更多,从而会燃烧产生更多的烟气,因此会出现其比消光面积大于其他。
当热量不断积累,得到的热量也越来越多,高辐射热强强度下的pvc首先达到自燃点,进而出现强烈的燃烧现象,比消光面积开始下降,而此时,低热辐射强度的材料仍然在进行分解反应,烟气不断积累,直至自燃后比消光面积开始下降,因高热辐射强度下的材料燃烧的时间较短,固先熄灭,比消光面积比低热辐射强度时先达到最小值。