中考复习专题-实际应用题
人教版2024年中考数学第一轮复习练习题—应用题分类复习

人教版2024中考数学第一轮复习练习题—应用题分类复习类型一、一元一次方程的应用1、某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?2、甲、乙两班学生到集市上购买苹果,苹果的价格如下:超过20千克购苹果数不超过10千克超过10千克但不超过20千克每千克价格10元9元8元甲班分两次共购买苹果30千克(第二次多于第一次),共付出256元;而乙班则一次购买苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为千克;②甲班第一次、第二次分别购买多少千克?3、有一批核桃要加工成罐头,甲工人每天能加工32公斤,乙工人每天能加工48公斤,且甲单独加工这批核桃要比乙多用10天.(1)这批核桃共多少公斤?(2)为了尽快加工完成,先由甲、乙两工人按原速度合作一段时间后,甲工人停工,而乙工人每天的生产速度提高25%,乙工人单独完成剩余部分,且乙工人的全部工作时间是甲工人工作时间的3倍还多1天,求乙工人共加工多少天?类型二、二元一次方程组的应用1、某商场从厂家购进了A、B两种品牌篮球,第一批购买了这两种品牌篮球各40个,共花费了7200元.全部销售完后,商家打算再购进一批这两种品牌的篮球,最终第二批购进50个A品牌篮球和30个B 品牌篮球共花费了7400元.两次购进A、B两种篮球进价保持不变.(1)求A、B两种品牌篮球进价各为多少元一个;(2)第二批次篮球在销售过程中,A品牌篮球每个原售价为140元,售出40个后出现滞销,商场决定打折出售剩余的A品牌篮球;B品牌篮球每个按进价加价30%销售,很快全部售出.已知第二批次两种品牌篮球全部售出后共获利2440元,求A品牌篮球打几折出售2、“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡、兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿,问笼中各有几只鸡和兔?3、根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高_____________cm,放入一个大球水面升高_____________cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?类型三、分式方程的应用1、某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?2、为了响应“保护环境,低碳生活”的号召,张老师决定将上班的交通方式由开汽车改为骑自行车.张老师家距学校6千米,由于汽车的平均速度是自行车平均速度的4倍,所以张老师每天比原来提前30分钟出发,才能按原来的时间到校,求张老师骑自行车的平均速度是每小是多少千米.3、甲、乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲、乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同加油更合算(填“金额”或“油量”).类型四、一元一次不等式(组)的应用1、某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?2、某商店购进A,B两种教学仪器,已知A仪器价格是B仪器价格的1.5倍,用450元购买A仪器的数量比用240元购买B仪器数量多2台.(1)求A,B两种仪器单价分别是多少元?(2)该商店购买两种仪器共100台,且A型仪器数量不少于B型仪器数量的14,那么A型仪器最少需要购买多少台,求A型仪器执行最少购买量时购买两种仪器的总费用.3、某地区为筹备一项庆典,计划搭配A,B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉50盆,乙种花卉30盆;搭配一个B种造型需甲种花卉40盆,乙种花卉60盆,且搭配一个A种造型的花卉成本是270元,搭配一个B种造型的花卉成本是360元.(1)试求甲、乙两种花卉每盆各多少元?(2)若利用现有的2295盆甲种花卉和2190盆乙种花卉进行搭配,则有哪几种搭配方案?(3)在(2)的搭配方案中花卉成本最低的方案是哪一种?最低成本是多少元?类型五、一元二次方程的应用1、如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计﹣横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?2、某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?3、周末,小明和小红约着一起去公园跑步锻炼身体若两人同时从A 地出发,匀速跑向距离12000m处的B地,小明的跑步速度是小红跑步速度的1.2倍,那么小明比小红早5分钟到达B地.(1)求小明、小红的跑步速度;(2)若从A 地到达B 地后,小明以跑步形式继续前进到C 地(整个过程不休息),据了解,在他从跑步开始前30分钟内,平均每分钟消耗热量10卡路里,超过30分钟后,每多跑步1分钟,平均每分钟消耗的热量就增加1卡路里,在整个锻炼过程中,小明共消耗2300卡路里的热量,小明从A 地到C 地锻炼共用多少分钟.类型六、一次函数的应用1、在创建全国文明城市过程中,官渡区决定购买A 、B 两种树苗对某路段道路进行绿化改造.已知购买A 种树苗5棵,B 种树苗3棵,需要840元;购买A 种树苗3棵,B 种树苗5棵,需要760元.(1)求购买A 、B 两种树苗每棵各需多少元?(2)现需购进这两种树苗共100棵,考虑到绿化效果和资金周转,购进A 种树苗不能少于30棵,且用于购买这两种树苗的资金不能超过10000元,怎样购买所需资金最少?2、临沂到海口货运路线总长2400千米.交通法规定:货车在这条路线上行驶速度范围是:60≤x ≤100(单位:km/h ,x 表示货车的行驶速度,假设货车保持匀速行驶),该货车每小时耗油(x 32400−x 220+85x )升,柴油价格是10元/升.(1)求该货车在这条路线上行驶时全程的耗油量Q (升)关于车速x 之间的函数关系式.(2)求车速为何值时,该车全程油费最低,并求出最低油费.(3)刘师傅欲将一车香蕉由海南运往临沂,公司要求在32小时之内(包含32小时)到达.否则刘师傅将支付2000元的超时高额罚款.请计算刘师傅的最佳车速.3、某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费120元,购进A品牌文具袋3个和B品牌文具袋4个共花费88元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为w元.①求w关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不低于进货价格的45%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.类型七、二次函数的应用1、某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月售出500kg,销售价每涨价1元,月销售量就减少5kg.(1)当销售单价定为60元时,计算月销售量和销售利润.(2)商店想让顾客获得更多实惠的情况下,使月销售利润达到9000元,销售单价应定为多少?(3)当售价定为多少元时会获得最大利润?求出最大利润.2、小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当售价为30元时销量为200件,每涨1元少卖10件,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?3、某游乐场的圆形喷水池中心O有一喷水管OA,0.5OA 米,从A点向四周喷水,喷出的水柱为抛物线且形状相同.如图,以水平方向为x轴,点O为原点建立平面直角坐标系,点A在y轴上.已知在与池中心O点水平距离为3米时,水柱达到最高,此时高度为2米.(1)求水柱所在的抛物线(第一象限部分)的函数表达式;(2)身高为1.67m的小颖站在距离喷水管4m的地方,她会被水喷到吗?(3)现重新改建喷泉,升高喷水管,使落水点与喷水管距离7m,已知喷水管升高后,喷水管喷出的水柱抛物线形状不变,且水柱仍在距离原点3m处达到最高,则喷水管OA要升高多少?。
中考数学专题实际应用题(解析版)

【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)
中考数学专题复习32套测试题(16)数学实际应用题

数学实际应用题一选择题(本题共10 小题,每小题只有一个选项符合题意)1 .某火车站为了解某月每天上午的乘车人数,抽查了其中10 天每天上午的乘车人数.所抽查的这10 天每天上午的乘车人数是这个问题的()( A )总体(B )个体( C )一个样本(D )样本容量2、一座圆弧形拱桥的跨度AB (弧所对的弦长)为24 米,拱高CD (弓形高)为 4 米,如图2一29 ,则拱桥的半径为()( A ) 16 米(B ) 15 米( C ) 20 米(D ) 18 米3 .甲、乙两人在相同条件下各射靶10 次,他们命中环数的平均数相等,但方差不同,则射击成绩较稳定的是() .( A )甲(B )乙( C )甲、乙一样稳定(D )无法确定4 .如图2一30 ,为测一河两岸相对两电线杆A 、B 间的距离,在距 A 点15 米的C 处(AC ┸AB )测得∠ACB =500,则AB 间的距离应为( ) .( A ) 15Sin500米(B ) 15cos500米( C ) 15 tan500米(D ) 15 米5 .甲、乙二人按2 : 5 投资比例开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙两人分别分得() .( A ) 2000 元,50000 元(B ) 5000 元,20000 元( C ) 4000 元,10000 元(D ) 1000 元,40000 元6 一个滑轮起重装置如图2 一31 所示.滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA 今绕轴心O 按逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,圆周率取 3 . 14 ,结果精确到1 度) ( ) .( A ) 1 15度( B ) 60度( C ) 57度( D ) 29度7 .如图2 一32 ,要制作一个底面直径为20cm ,母线长为12cm 的圆锥形烟囱帽,从下面的矩形铁片中选择一块,大小最合适的是() .( A ) 12cm X 10 . 4cm ( B ) 22 . 4cmX12cm( C ) 24cmX22 . 4cm ( D ) 24cmX18cm8 .光线以图2 一33 所示的角度a 照射到平面镜Ⅰ上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠a= 60 度,∠β=50 度。
九年级数学中考专项复习——函数图像与实际问题应用题(附答案)

中考专项复习——函数与实际问题1. 甲、乙两车从A 城出发前往B 城.在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间 h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60 km/h 的速度匀速行驶.(Ⅰ)填空:① A ,B 两城相距km② 当02x ≤≤时,甲车的速度为 km/h ③ 乙车比甲车晚 h 到达B 城 ④ 甲车出发4h 时,距离A 城km⑤ 甲、乙两车在行程中相遇时,甲车离开A 城的时间为 h(Ⅱ)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式.(Ⅲ)当1352x ≤≤时,两车所在位置的距离最多相差多少km ?y 1/ km 53232. 已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:离开家的时间/min 6 10 20 46 离家的距离/km12.5(Ⅱ)填空:① 聪聪家到体育场的距离为______km② 聪聪从体育场到文具店的速度为______km/min ③ 聪聪从文具店散步回家的速度为______ km/min④ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.3.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表: 一次购买台数(台) 2 6 15 … 甲电器店收费(元) 6000 … 乙电器店收费(元)4800…(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.4.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.5.共享电动车是一种新理念下的交通工具:主要面向的出行市场,现有A 两种品牌的共享电动车,给出的图象反映了收费元与骑行时间min 之间的对应关系,其中品牌收费方式对应,品牌的收费方式对应. 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为,小明家到工厂的距离为,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时的值是 . (Ⅲ)直接写出,关于的函数解析式.3~10km B y x A 1y B 2y 300m /min 9km x 1y 2y x y /元O 10 20 x /min8 66. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.7. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为 y 乙(个),其函数图象如图所示. (I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =8. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的折出售.在乙书店一次购书的标价总额不超过元的按标价总额计费,超过元后的部分打折.设在同一家书店一次购书的标价总额为(单位:元,). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元… 在甲书店应支付金额/元 … 在乙书店应支付金额/元…(Ⅱ)设在甲书店应支付金额元,在乙书店应支付金额元,分别写出、关于的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额元,则在甲、乙两个书店中的 书店购书应支付的金额少.9. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家,文具店离家.周末小明从家出发,匀速跑步到体育场;在体育场锻炼后,匀速走了到文具店;在文具店停留买笔后,匀速走了返回家.给出的图象反映了这个过程中小明离开家的距离与离开家的时间之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min离开家的距离/ km(II )填空:① 体育场到文具店的距离为______ ② 小明从家到体育场的速度为______ ③ 小明从文具店返回家的速度为______④ 当小明离家的距离为时,他离开家的时间为______ (III )当时,请直接写出关于的函数解析式.81001006x 0x 501503*********y 2y 1y 2y x 2801203km 1.5km 15min 15min 15min 20min 30min km y min x 6122050701.23km km /min km /min 0.6km min 045x ≤≤y x10. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.11. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m②明明在书店停留的时间是min③明明与家距离900m 时,明明离开家的时间是 min(Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式. 时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m400 60012. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km⑤ 当甲车离开A 城120km 时甲车行驶了 h ⑥ 当乙车出发行驶 h 时甲乙两车相距20km13.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F32506886104参考答案1. 解:(Ⅰ)①360 ②60 ③56④6803⑤52或196(Ⅱ)当0≤x ≤2时 160y x =当2223x <≤时 1120y =当222533x <≤时 1280803y x =-(Ⅲ)当1352x ≤≤时由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大 ∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103km2.解:(Ⅰ) 1.5(Ⅱ)①2.5 ②③ ④12或 (Ⅲ)当时当时3. 解:(Ⅰ)16800 33000 14400 36000(Ⅱ)当0<≤5时当>5时,即;=⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数).(x >0且x 为正整数)531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x1y 23000802400y x x %(Ⅲ)设与的总费用的差为元. 则 即. 当时 即 解得.∴当时 选择甲乙两家电器店购买均可 ∵<0∴随的增大而减小∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算4. 解:(Ⅰ)1 0.5(Ⅱ)填空:(i ) 25 (ii )(iii ) (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧x (0≤x ≤15),1(15<x ≤30), x +2(30<x ≤ 45).5.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>6. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y ∵图象过),(500和)(330,80∴⎩⎨⎧+==b k b8033050 1y 2y y 180060002400y x x 6006000y x 0y60060000x10x10x 600y x 1y 2y 23115160115130-解得⎩⎨⎧==505.3b k ∴y 与x 的函数关系式为505.3+=x y )800(≤≤x7. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当时 当时当时∵图象经过(4 120)则 解得:∴ 当时∴(2)设 把 分别代入得解得 ∴与时间t 之间的函数关系式为:8. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲03t t y 40=甲43≤t <120=甲y 84≤t <140b t y +=甲1440120b +⨯=401-=b 84≤t <4040-=t y 甲⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲2b kt y +=乙(5,0)(8,360)⎩⎨⎧+=+=22836050b k b k ⎩⎨⎧-==6001202b k y 乙)乙85(600120≤≤-=t t y9. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x10. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13(Ⅲ)当04x ≤<时5y x =当412x <≤时5154y x =+11. 解:(Ⅰ)1000 600(Ⅱ)①600 ②4 ③4.5或7或338 (Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<) 12. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或213. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x (Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等. 时间/min 2 3 4 12 容器内水量/L 10 15 20 30。
初三数学中考专题:实际应用题压轴题大全

类型一购买、分配问题典例精讲例(2020大理市统考)某中学为打造书香校园,购进甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元①,乙型号书柜共花了18000元②,乙型号书柜比甲型号书柜单价便宜300元③,购买乙型号书柜的数量是甲型号书柜数量的2倍④,求甲、乙型号书柜各购进多少个?【分层分析】设购进甲型号书柜x个,由题干④得购进乙型号书柜________个,由题干①得购进甲型号书柜单价为________元,由题干②得购进乙型号书柜单价为________元,由题干③可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020百色)某玩具生产厂家,A车间原来有30名工人,B车间原来有20名工人,现新增25名工人分配到两车间,使得A车间工人总数是B车间工人总数的2倍.(1)请问新分配到A、B车间各多少人?(2) A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人增加生产线后比原来提前几天完成任务?类型二工程、行程问题典例精讲例(2020常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍①,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒②,求该地4G与5G的下载速度分别是每秒多少兆?【分层分析】设4G的下载速度是x兆/秒,由题干①可得5G的下载速度是______兆/秒,则下载一部600兆公益片用5G所用时间为______,用4G所用时间为________,结合题干②可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020云师大实验模拟)某无人机公司使用无人机(植保机)进行药水喷洒,若甲型无人机工作2 h,乙型无人机工作4 h,一共可以喷洒700亩;若甲型无人机工作3 h,乙型无人机工作2 h,一共可以喷洒650亩.(1)求甲、乙两型无人机每小时各可以喷洒多大面积;(2)近期,该公司无人机喷洒84消毒液进行特定区域消毒的业务量猛增,要让甲、乙两型无人机每天喷洒的面积总量不低于2250亩,它们每天至少要一起工作多少小时?类型三阶梯费用问题典例精讲例(2019潜江)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克①,若一次购买超过5千克,则超过5千克部分的种子价格打8折②.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分层分析】(1)一次购买量为x千克,由题干①可得,若x≤5,则付款金额为________,由题干②可得若x>5,则付款金额为____________;(2)把x=30代入(1)中函数解析式,即可计算.【自主作答】针对训练(2020徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a、b的值.类型四方案问题典例精讲例(2020荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨①,乙厂的生产量是甲厂的2倍少100吨②,这批防疫物资将运往A地240吨③,B地260吨④,运费如下表(单位:元/吨).(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200 元,求m的最小值.【分层分析】(1)设这批防疫物资甲厂生产了a吨,乙厂生产了b吨,由题干①可得等量关系式为______,由题干②可得等量关系式为________;(2)由(1)知甲厂生产了200吨,乙厂生产了300吨,∵乙厂运往A地x吨,则运往B地________吨,则由题干③可知甲厂运往A地________吨,由题干④可知甲厂运往B地________吨.再结合总费用=每吨的费用×吨数,即可求得y与x之间的函数关系式;(3)每吨运费降m元,则500吨一共降________元.由题意和(2)中的结果列不等式求解.【自主作答】针对训练褚橙也叫励志橙,是云南有名的特产,以味甜皮薄著称.我省某褚橙产地计划组织40辆货车装运A、B、C三种褚橙共200吨到外地销售,按计划40辆货车都要装满,且每辆货车只能装运同一品种的褚橙,已知装运A、B品种褚橙的车辆数均不少于2辆.下表是A、B、C三种褚橙的货车运载量和利润信息:设装运A品种褚橙的车辆数为x辆,装运B品种褚橙的车辆数为y辆,解答以下问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)设销售利润为W元,求出获利最大的运输方案,并确定W的最大值.类型五销售、利润(含最值)问题典例精讲例云南某地的特产天山雪莲果营养价值丰富.某网店销售盒装天山雪莲果,已知天山雪莲果的成本价为每盒30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,在销售过程中发现:每月的销售量y(盒)与销售单价x(元)之间满足一次函数关系①,当销售单价为55元时,每月的销售量为60盒;当销售单价为40元时,每月的销售量为120盒②.(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)当盒装天山雪莲果的销售单价定为多少元时,月销售利润最大?最大利润是多少元?【分层分析】(1)由题干①可知y与x为一次函数关系,结合题干②,可得一次函数经过两点,分别为__________,利用待定系数法求出一次函数解析式;(2)设网店的月销售利润为w元,由单价×数量=总费用,利润=总费用-成本,可列出月销售利润w=__________,再结合二次函数图象性质求解.【自主作答】针对训练(2020东营改编)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:设甲种型号口罩的产量是y 万只,销售完这些口罩所获利润为w 万元.(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)求w 与y 的函数解析式,并直接写出y 的取值范围;(3)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.参考答案类型一 购买、分配问题典例精讲例 【分层分析】2x ,15000x ,180002x ,15000x -180002x =300解:设购进甲型号书柜x 个,则购进乙型号书柜2x 个, 根据题意得15000x -180002x =300,解得x =20,经检验,x =20是原分式方程的解且符合实际, ∴2x =40.答:购进甲型号书柜20个,购进乙型号书柜40个.针对训练解:(1)设新分配到A 车间x 人,则新分配到B 车间(25-x )人,根据题意得 30+x =2(20+25-x ), 解得x =20, ∴25-x =5(人).答:新分配到A 车间20人,新分配到B 车间5人; (2)∵每条生产线配置5名工人,∴A 车间原来可配置30÷5=6条生产线,新增工人后可配置(30+20)÷5=10条生产线, ∵A 车间用一条生产线单独完成任务要30天, ∴A 车间原来完成任务需要的时间为30÷6=5(天), 新增工人后完成任务需要的时间为30÷10=3(天), ∴A 车间新增工人增加生产线后比原来提前5-3=2(天). 答:A 车间新增工人增加生产线后比原来提前2天完成任务 .类型二 工程、 行程问题典例精讲例 【分层分析】15x ,60015x ,600x ,600x -60015x=140解:设4G 的下载速度是x 兆/秒,则5G 的下载速度是15x 兆/秒, 由题意,得600x -60015x=140,解得x =4,经检验,x =4是原分式方程的解且符合实际, 则15x =60,∴该地4G 的下载速度是4兆/秒,5G 的下载速度是60兆/秒.针对训练解:(1)设甲型无人机每小时喷洒的面积为x 亩,乙型无人机每小时喷洒的面积为y 亩,根据题意,得⎩⎪⎨⎪⎧2x +4y =7003x +2y =650,解得⎩⎪⎨⎪⎧x =150y =100,∴甲型无人机每小时喷洒的面积为150亩,乙型无人机每小时喷洒的面积为100亩; (2)设它们每天要一起工作a 小时, 根据题意,得(150+100)a ≥2250, 解得a ≥9,∴它们每天至少要一起工作9小时.类型三 阶梯费用问题典例精讲例 【分层分析】20x ,100+(x -5)×20×0.8 解:(1)根据题意,得 当0≤x ≤5时,y =20x ;当x >5时,y =20×0.8(x -5)+20×5=16x +20, 则y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧20x ,0≤x ≤516x +20,x >5; (2)∵30>5,∴将x =30代入y =16x +20, 得y =16×30+20=500.答:一次购买玉米种子30千克,需付款500元.针对训练解:由题意可得,⎩⎪⎨⎪⎧a +(2-1)b =9a +3+(3-1)(b +4)=22, 解得⎩⎪⎨⎪⎧a =7b =2,∴a =7,b =2.类型四 方案问题典例精讲例 【分层分析】(1)a +b =500,2a -b =100;(2)300-x ,240-x ,260-(300-x );(3)500m 解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则⎩⎪⎨⎪⎧a +b =5002a -b =100, 解得⎩⎪⎨⎪⎧a =200b =300,答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨; (2)如下表,甲、乙两厂调往A ,B 两地的数量如下:∴y =20(240-x )+25(x -40)+15x +24(300-x ) =-4x +11000, ∵⎩⎪⎨⎪⎧x ≥0240-x ≥0300-x ≥0x -40≥0,∴40≤x ≤240. 又∵-4<0,∴y 随x 的增大而减小. ∴当x =240时总运费最小,∴使总运费最少的调运方案是:甲厂的200吨全部运往B 地;乙厂运往A 地240吨,运往B 地60吨;(3)由题意和(2)中的解答得:y =-4x +11000-500m ,当x =240时,y 最小=-4×240+11000-500m =10040-500m , ∴10040-500m ≤5200, 解得m ≥9.68,∵0<m ≤15且m 为整数,∴m 的最小值为10.针对训练解:(1)根据题意,装运A 品种褚橙的车辆数为x 辆,装运B 品种褚橙的车辆数为y 辆,则装运C 品种褚橙的车辆数为(40-x -y )辆,依题意得6x +5y +4(40-x -y )=200,即y =-2x +40(2≤x ≤19,且x 为整数);【解法提示】由⎩⎪⎨⎪⎧x ≥2-2x +40≥2,解得2≤x ≤19,且x 为整数. (2)由(1)知,40-x -y =40-x -(-2x +40)=x ,∴W =6x ·1800+5(-2x +40)×2400+4x ·1500=-7200x +480000.∵-7200<0,∴W 的值随x 的增大而减小.∵2≤x ≤19,且x 为整数,∴当x =2时,利润W 最大,最大利润为W =-7200×2+480000=465600(元).此时运输方案为装运A 品种褚橙的车辆数为2辆,装运B 品种褚橙的车辆数为36辆,装运C 品种褚橙的车辆数为2辆.答:当装运A 品种褚橙的车辆数为2辆,B 品种褚橙的车辆数为36辆,C 品种褚橙的车辆数为2辆时,获利最大,最大利润为465600元.类型五 销售、利润(含最值)问题典例精讲例 【分层分析】(1)(55,60),(40,120);(2)-4(x -50)2+1600解:(1)设y 与x 的函数解析式为y =kx +b (k ≠0),将(55,60)和(40,120)代入,得⎩⎪⎨⎪⎧55k +b =6040k +b =120,解得⎩⎪⎨⎪⎧k =-4b =280, ∴y =-4x +280;∵销售单价不低于成本价且不高于成本价的2倍,∴30≤x ≤60.∴y 与x 的函数关系式为y =-4x +280(30≤x ≤60);(2)设该网店的月销售利润为w 元,由题意得w =(x -30)·y =(x -30)(-4x +280)=-4x 2+400x -8400=-4(x -50)2+1600, ∵-4<0,30≤x ≤60,∴当x =50时,月销售利润w 有最大值,最大值为1600元.答:当盒装天山雪莲果的销售单价定为50元时,月销售利润最大,最大利润是1600元. 针对训练解:(1)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只. 根据题意得:18y +6(20-y )=300,解得y =15,则20-y =20-15=5,答:生产甲种型号的防疫口罩15万只,生产乙种型号的防疫口罩5万只;(2)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只,∴w =(18-12)y +(6-4)(20-y )=4y +40(0≤y ≤20);(3)根据题意得:12y +4(20-y )≤216,解得:y ≤17.又∵w =4y +40中,4>0,∴w 随y 的增大而增大,即当y =17时,w 最大,此时w =4×17+40=108.答:安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,该月获得最大利润﹐最大利润为108万元.。
2020湖南省中考数学专题复习实际应用题

2020湖南省中考数学专题复习实际应⽤题实际应⽤题(郴州必考;衡阳必考;岳阳5考;益阳必考)类型⼀分配问题(郴州2018、2015.21,2014.24;岳阳2019.20,2017、2014.20;益阳2018.24,2014~2016.19)1. (2019资阳)为了参加西部博览会,资阳市计划印制⼀批宣传册,该宣传册每本共10页,由A、B两种彩页构成.已知A种彩页制版费300元/张,B种彩页制版费200元/张,共计2400元.(注:彩页制版费与印数⽆关)(1)每本宣传册A、B两种彩页各有多少张?(2)据了解,A种彩页印刷费2.5元/张,B种彩页印刷费1.5元/张,这批宣传册的制版费与印刷费的和不超过30900元.如果按到资阳展台处的参观者⼈⼿⼀册发放宣传册,预计最多能发给多少位参观者?2. (2020原创)某青春党⽀部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、⼄两种树苗让其栽种,已知⼄种树苗价格⽐甲种树苗贵10元,⽤480元购买⼄种树苗的棵数恰好与⽤360元购买甲种树苗的棵数相同.(1)求甲、⼄两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、⼄两种树苗共50棵.此时,甲种树苗的售价⽐第⼀次购买时降低了10%,⼄种树苗的售价保持不变.如果此次购买两种树苗的总费⽤不超过1500元,那么他们最多可购买多少棵⼄种树苗?3. (2019桂林)为响应国家“⾜球进校园”的号召,某校购买了50个A类⾜球和25个B类⾜球共花费7500元,已知购买⼀个B类⾜球⽐购买⼀个A类⾜球多花30元.(1)求购买⼀个A类⾜球和⼀个B类⾜球各需多少元?(2)通过全校师⽣的共同努⼒,今年该校被评为“⾜球特⾊学校”,学校计划⽤不超过4800元的经费再次购买A类⾜球和B类⾜球共50个,若单价不变,则本次⾄少可以购买多少个A类⾜球?4.(2019烟台)亚洲⽂明对话⼤会召开期间,⼤批的⼤学⽣志愿者参与服务⼯作.某⼤学计划组织本校全体志愿者统⼀乘车去会场,若单独调配36座新能源客车若⼲辆,则有2⼈没有座位;若只调配22座新能源客车,则⽤车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该⼤学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每⼈有座,⼜保证每车不空座,则两种车型各需多少辆?5. (2019聊城)某商场的运动服装专柜对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进⾏销售,已知这两种服装过去两次的进货情况如下表:(1)问A ,B 两种品牌运动服的进货单价各是多少元?(2)由于B 品牌运动服的销量明显好于A 品牌,商家决定采购B 品牌的件数⽐A 品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B 品牌运动服?6. (2019孝感)为加快“智慧校园”建设,某市准备为试点学校采购⼀批A 、B 两种型号的⼀体机.经市场调查发现,今年每套B 型⼀体机的价格⽐每套A 型⼀体机的价格多0.6万元,且⽤960万元恰好能购买500套A 型⼀体机和200套B 型⼀体机.(1)求今年每套A 型、B 型⼀体机的价格各是多少万元?(2)该市明年计划采购A 型、B 型⼀体机共1100套,考虑物价因素,预计明年每套A 型⼀体机的价格⽐今年上涨25%,每套B 型⼀体机的价格不变.若购买B 型⼀体机的总费⽤不低于购买A 型⼀体机的总费⽤,那么该市明年⾄少需要投⼊多少万元才能完成采购计划?类型⼆利润问题(郴州2017、2016.21;衡阳2018.24;益阳2019.24,2017.19)1. 夏威夷果果仁营养丰富,不仅含有⼈体必需的8种氨基酸,还富含矿物质和维⽣素.⼝感⾹酥滑嫩可⼝,有独特的奶油⾹味,是世界上品质最佳的⾷⽤⽤果,有“⼲果皇后”,“世界坚果之王”之美称.超市以每千克40元的价格购进夏威夷果,计划以每千克60元的价格销售,为了让顾客得到更⼤的优惠,现决定降价销售,已知这种夏威夷果销售量y (千克)与每千克降价x (元) (0<x <20)之间满⾜⼀次函数关系,其图象如图所⽰:(1)求y 与x 之间的函数关系式;(2)超市要想获利2090元,则这种夏威夷果每千克应降价多少元?第1题图2. (2020原创)平衡车越来越受到中学⽣的喜爱,某公司今年从⼚家以3000元/辆的批发价购进某品牌平衡车300辆进⾏销售,零售价格为4200元/辆.暑期将⾄,公司决定拿出⼀部分该品牌平衡车以4000元/辆的价格进⾏促销.设全部售出获得的总利润为y 元,今年暑假期间拿出促销的该品牌平衡车数量为x 辆,根据上述信息,解答下列问题:(1)求y 与x 之间的函数解析式(也称关系式),并直接写出x 的取值范围;(2)若以促销价进⾏销售的数量不低于零售价销售数量的14,该公司应拿出多少辆该品牌平衡车促销才能使这批车的销售利润最⼤?并求出最⼤利润.3. (2019绵阳)⾠星旅游度假村有甲种风格客房15间,⼄种风格客房20间.按现有定价:若全部⼊住,⼀天营业额为8500元;若甲、⼄两种风格客房均有10间⼊住,⼀天营业额为5000元.(1)求甲、⼄两种客房每间现有定价分别是多少元?(2)度假村以⼄种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天⽀出80元的各种费⽤.当每间房间定价为多少元时,⼄种风格客房每天的利润w最⼤,最⼤利润是多少元?4.由于雾霾天⽓频发,市场上防护⼝罩出现热销.某医药公司每⽉固定⽣产甲、⼄两种型号的防雾霾⼝罩共20万只,且所有产品当⽉全部售出.原料成本、销售单价及⼯⼈⽣产提成如下表:(1)若该公司五⽉份的销售收⼊为300万元,求甲、⼄两种型号的产量分别是多少万只?(2)公司实⾏计件⼯资制,即⼯⼈每⽣产⼀只⼝罩获得⼀定⾦额的提成.如果公司六⽉份投⼊总成本(原料总成本+⽣产提成总额)不超过239万元,应怎样安排甲、⼄两种型号的产量,可使该⽉公司所获利润最⼤?并求出最⼤利润(利润=销售收⼊-投⼊总成本).5. (2018陕西)经过⼀年多的精准帮扶,⼩明家的⽹络商店(简称⽹店)将红枣、⼩⽶等优质⼟特产迅速销往全国.⼩明家⽹店中红枣和⼩⽶这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个⽉,⼩明家⽹店销售上表中规格的红枣和⼩⽶共3000 kg,获得利润4.2万元,求这前五个⽉⼩明家⽹店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6⽉到10⽉这后五个⽉,⼩明家⽹店还能销售上表中规格的红枣和⼩⽶共2000 kg,其中,这种规格的红枣的销售量不低于600 kg,假设这后五个⽉,销售这种规格的红枣为x(kg),销售这种规格的红枣和⼩⽶获得的总利润为y(元),求出y与x之间的函数关系式,并求这后五个⽉,⼩明家⽹店销售这种规格的红枣和⼩⽶⾄少获得总利润多少元.类型三⽅案问题(郴州2017.21,2019.22;衡阳2019、2017.24,2016.23)1.(2019荆州节选)为拓展学⽣视野,促进书本知识与⽣活实践的深度融合,荆州市某中学组织⼋年级全体学⽣前往松滋洈⽔研学基地开展研学活动.在此次活动中,若每位⽼师带队14名学⽣,则还剩10名学⽣没⽼师带;若每位⽼师带队15名学⽣,就有⼀位⽼师少带6名学⽣.现有甲、⼄两种⼤型客车,它们的载客量和租⾦如下表所⽰:学校计划此次研学活动的租⾦总费⽤不超过3000元,为安全起见,每辆客车上⾄少要有2名⽼师.(1)参加此次研学活动的⽼师和学⽣各有多少⼈?(2)既要保证所有师⽣都有车坐,⼜要保证每辆车上⾄少要有2名⽼师,可知租车总辆数为______辆;(3)学校共有⼏种租车⽅案?2.张⽼师计划组织朋友暑假去旅游.经了解,现有甲、⼄两家旅⾏社⽐较合适,报价均为每⼈640元,且提供的服务完全相同.针对组团旅游的游客,甲旅⾏社表⽰,每⼈按⼋五折收费;⼄旅⾏社表⽰,若⼈数不超过20⼈,每⼈都按九折收费,超过20⼈,则超出部分每⼈按七五折收费.假设组团参加甲、⼄两家旅⾏社的⼈数均为x⼈.(1)请分别写出甲、⼄两家旅⾏社收取组团旅游的总费⽤y(元)与x(⼈)之间的函数关系式;(2)若你是张⽼师,在甲、⼄两家旅⾏社中,你怎样选择?说明理由.3.某⼯艺品店准备购进甲、⼄两种⼯艺品.经了解,购进5件甲种⼯艺品和4件⼄种⼯艺品需要2000元,购进10件甲种⼯艺品和3件⼄种⼯艺品需要3000元.(1)甲种⼯艺品和⼄种⼯艺品每件各多少元?(2)实际购买时,发现⼚家有两种优惠⽅案.⽅案⼀:购买甲种⼯艺品超过20件时,超过的部分按原价的8折付款,⼄种⼯艺品没有优惠;⽅案⼆:两种⼯艺品都按原价的9折付款.该⼯艺品店决定购买x(x>20)件甲种⼯艺品和30件⼄种⼯艺品.①求两种⽅案的费⽤y与件数x的函数解析式;②请你帮该⼯艺品店决定选择哪种⽅案更合算.4.(2019温州)某旅⾏团32⼈在景区A游玩,他们由成⼈、少年和⼉童组成.已知⼉童10⼈,成⼈⽐少年多12⼈.(1)求该旅⾏团中成⼈与少年分别是多少⼈?(2)因时间充裕,该团准备让成⼈和少年(⾄少各1名)带领10名⼉童去另⼀景区B游玩,景区B的门票价格为100元/张,成⼈全票,少年8折,⼉童6折,⼀名成⼈可以免费携带⼀名⼉童.①若由成⼈8⼈和少年5⼈带队,则所需门票的总费⽤是多少元?②若剩余经费只有1200元可⽤于购票,在不超额的前提下,最多可以安排成⼈和少年共多少⼈带队?求所有满⾜条件的⽅案,并指出哪种⽅案购票费⽤最少.类型四⼯程、⾏程问题(岳阳2018.21,2016.20)1. (2019岳阳模拟)2019年5⽉,某地迎来了“复兴号”列车,与“和谐号”相⽐,“复兴号”列车时速更快,安全性更好.已知“甲城——⼄城”全程⼤约500千⽶,“复兴号”G 92次列车平均每⼩时⽐某列“和谐号”列车多⾏驶40千⽶,其⾏驶时间是该列“和谐号”列车⾏驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G 92次列车从甲城到⼄城,中途只有丙⼀站,停留10分钟.求乘坐“复兴号”G 92次列车从甲城到⼄城需要多长时间.2. 某市政府计划对城区道路进⾏改造,现安排甲、⼄两个⼯程队完成.已知甲队的⼯作效率是⼄队⼯作效率的32倍,甲队改造720⽶的道路⽐⼄队改造同样长的道路少⽤4天.(1)甲、⼄两⼯程队每天能改造道路的长度分别是多少⽶?(2)若甲队⼯作⼀天需付费⽤7万元,⼄队⼯作⼀天需付费⽤5万元,如需改造的道路全长2400⽶,改造总费⽤不超过195万元,⾄少安排甲队⼯作多少天?参考答案类型⼀分配问题1. 解:(1)设每本宣传册A 、B 两种彩页分别有x 张和y 张,根据题意有:x +y =10300x +200y =2400,解得?x =4y =6,答:每本宣传册A 、B 两种彩页分别有4张和6张; (2)设预计最多能发m 位参观者,根据题意有: 4m ×2.5+6m ×1.5≤30900-2400,解得m ≤1500,答:预计最多能发1500位参观者.2. 解:(1)设甲种树苗每棵的价格是x 元,则⼄种树苗每棵的价格是(x +10)元,由题意得, 360x =480x +10,解得x =30,经检验,x =30是原分式⽅程的解,且符合题意,∴x +10=40.答:甲种树苗每棵的价格是30元,⼄种树苗每棵的价格是40元;(2)设他们可购买y 棵⼄种树苗;依题意有30×(1-10%)(50-y )+40y ≤1500,解得y ≤11713,∵y 是整数,∴y 的最⼤值为11,答:他们最多可购买11棵⼄种树苗.3. 解:(1)设购买⼀个A 类⾜球和⼀个B 类⾜球分别需x 元和y 元,依题意得:x +30=y ,50x +25y =7500,解得?x =90,y =120. 答:购买⼀个A 类⾜球和⼀个B 类⾜球分别需90元和120元;(2)设购买a 个A 类⾜球,则购买B 类⾜球为(50-a )个(a 为整数),依题意得: 90a +120(50-a )≤4800,解得a ≥40.答:本次⾄少可以购买40个A 类⾜球.4. 解:(1)设计划调配36座新能源客车x 辆,则该⼤学志愿者有(36x +2)名,根据题意,得 36x +2=22(x +4)-2,解得 x =6.∴36x +2=36×6+2=218.答:计划调配36座新能源客车6辆,该⼤学共有218名志愿者; (2)设调配⽤36座新能源客车m 辆,22座新能源客车n 辆,依题意得36m +22n =218,即18m +11n =109,⼜∵m 、n 为正整数,∴m =3, n =5.答:调配36座新能源客车3辆,22座新能源客车5辆,既保证每⼈有座,⼜保证每车不空座. 5. 解:(1)设A ,B 两种品牌运动服的进货单价分别是x 元、y 元,根据表格数据可列⽅程组:20x +30y =10200,30x +40y =14400,解得?x =240,y =180.答:A ,B 两种品牌运动服的进货单价分别为240元和180元; (2)设购进A 品牌运动服m 件,则购进B 品牌运动服(32m +5)件,根据题意得:240m +180(32m +5)≤21300,解得m ≤40,∴32m +5≤32×40+5=65. 答:最多能购进65件B 品牌运动服.6. 解:(1)设今年每套A 型⼀体机的价格为x 万元,每套B 型⼀体机的价格为y 万元,由题意可得y -x =0.6,500x +200y =960,解得?x =1.2,y =1.8,答:今年每套A 型⼀体机的价格是1.2万元,每套B 型⼀体机的价格是1.8万元;(2)设该市明年购买A 型⼀体机m 套,则购买B 型⼀体机(1100-m )套,需投⼊W 万元,由题意可得 W =1.2×(1+25%)m +1.8(1100-m )=-0.3m +1980,∵-0.3<0,∴W 随m 的增⼤⽽减⼩,由题意可得:1.8(1100-m )≥1.2(1+25%)m ,解得m ≤600,∴当m =600时,W 有最⼩值,最⼩值为-0.3×600+1980=1800. 答:该市明年⾄少需投⼊1800万元才能完成采购计划.类型⼆利润问题1. 解:(1)设⼀次函数解析式为y =kx +b ,∵当x =2时,y =120;当x =4时,y =140;∴2k +b =120,4k +b =140,解得k =10,b =100.∴y 与x 之间的函数关系式为y =10x +100(0(60-40-x )(10x +100)=2090,整理得x 2-10x +9=0,解得x 1=1,x 2=9.∵为了让顾客得到更⼤的优惠,∴x =9.答:超市要想获利2090元,则这种夏威夷果每千克应降价9元. 2. 解:(1)根据题意得:y =(4000-3000)x +(4200-3000)(300-x )=-200x +360000(0≤x ≤300); (2)根据题意得: x ≥14(300-x ),解得x ≥60,由(1)可知,y =-200x +360000,∵-200<0,∴y 随x 的增⼤⽽减⼩,∴当x =60时,y 的值最⼤,最⼤值为-200×60+360000=348000(元).答:公司应拿出60辆该品牌平衡车促销才能使这批车的销售利润最⼤,最⼤利润为348000元. 3. 解:(1)设甲、⼄两种客房每间现有定价分别是x 元、y 元,根据题意,得:15x +20y =850010x +10y =5000,解得?x =300y =200,答:甲、⼄两种客房每间现有定价分别是300元、200元; (2)设每个房间每天的定价增加了m 个20元,则有2m 个房间空闲,根据题意得:w =(20-2m )·(200+20m -80)=-40m 2+160m +2400 =-40(m -2)2+2560,∵-40<0,∴当m =2时,w 取得最⼤值,最⼤值为2560,此时房间的定价为200+2×20=240元.答:当每间房间定价为240元时,⼄种风格客房每天的利润w 最⼤,最⼤利润是2560元. 4. 解:(1)设甲种型号的产量为x 万只,则⼄种型号的产量为(20-x )万只,由题意可得18x +12(20-x )=300,解得x =10,∴20-x =10.答:甲种型号的产量为10万只,⼄种型号的产量为10万只; (2)设甲种型号的产量为a 万只,则⼄种型号的产量为(20-a )万只,由题意可得(12+1)a +(8+0.8)(20-a )≤239,解得a ≤15,设该⽉公司所获利润为y 万元,由题意可得y =(18-12-1)a +(12-8-0.8)(20-a )=1.8a +64,∵1.8>0,∴y 随a 的增⼤⽽增⼤,∴当a =15时,y 有最⼤值91.答:甲种型号的产量为15万只,⼄种型号的产量为5万只,可使该⽉公司所获利润最⼤,最⼤利润为91万元.5. 解:(1)设前五个⽉⼩明家⽹店销售这种规格的红枣a 袋,销售⼩⽶b 袋,根据题意,得:a +2b =3000(60-40)a +(54-38)b =42000,解得a =1500b =750,答:这前五个⽉⼩明家⽹店销售这种规格的红枣1500袋;(2)设后五个⽉⼩明家⽹店销售这种规格的红枣x kg ,则销售这种规格的⼩⽶(2000-x )kg ,获得的总利润为y 元,由题意得:y =(60-40)x +(54-38)(2000-x )2=20x +16000-8x =12x +16000(600≤x ≤2000),在y =12x +16000中,∵12>0,∴y 随x 的增⼤⽽增⼤,∴当x 取最⼩值时,y 取最⼩值,∵600≤x ≤2000,∴当x =600时,y 有最⼩值, y 最⼩=12×600+16000=23200,答:这后五个⽉,⼩明家⽹店销售这种规格的红枣和⼩⽶⾄少获得总利润23200元.类型三⽅案问题1. 解:(1)设参加此次研学活动的⽼师有x ⼈,学⽣有y ⼈,依题意,得14x +10=y 15x -6=y ,解得?x =16y =234.答:参加此次研学活动的⽼师有16⼈,学⽣有234⼈; (2)8;【解法提⽰】∵(234+16)÷35=7(辆)……5(⼈),∴最少租8辆车,最多租16÷2=8(辆) ∴租车总辆数为8辆.(3)设租35座客车m 辆,则需租30座的客车(8-m )辆,依题意,得:35m +30(8-m )≥234+16,400m +320(8-m )≤3000 解得2≤m ≤112.∵m 为正整数,∴m =2,3,4,5,∴共有4种租车⽅案.答:学校共有4种租车⽅案.2. 解:(1)甲旅⾏社的总费⽤y 甲=640×0.85x =544x ;当020时,y ⼄=640×0.9×20+640×0.75(x -20)=480x +1920,∴y ⼄=?576x (0480x +1920(x >20);(2)若0若x >20,由于y 甲=544x ,y ⼄=480x +1920,①当y 甲<y ⼄时,即544x <480x +1920,解得x <30;故当20<x <30时,选择甲旅⾏社;②当y 甲=y ⼄时,即544x =480x +1920,解得x =30;故当x =30时,两家旅⾏社⼀样;③当y 甲>y ⼄时,即544x >480x +1920,解得x >30;故当x >30时,选择⼄旅⾏社.综上所述,当参加旅游的⼈数少于30⼈时,选择甲旅⾏社;当参加旅⾏的⼈数正好30⼈时,两家都⼀样;当参加旅⾏社的⼈数多于30⼈时,选择⼄旅⾏社.3. 解:(1)设甲种⼯艺品每件x 元,⼄种⼯艺品每件y 元,根据题意可得5x +4y =200010x +3y =3000,解得?x =240y =200,答:甲种⼯艺品每件240元,⼄种⼯艺品每件200元; (2)①⽅案⼀:y 1=240×20+240×0.8×(x -20)+200×30=192x +6960;⽅案⼆:y 2=(240x +200×30)×0.9=216x +5400;②当y 1=y 2时,即192x +6960=216x +5400,解得x =65;当y 1即192x +6960<216x +5400,解得x >65;当y 1>y 2时,即192x +6960>216x +5400,解得x <65,∴当购买甲种⼯艺品65件时,两种⽅案⼀样;当购买甲种⼯艺品的件数2065时,选择⽅案⼀更合算.4. 解:(1)设该旅⾏团中成⼈x ⼈,少年y ⼈,根据题意,得:x +y +10=32,x =y +12,解得?x =17,y =5. 答:该旅⾏团中成⼈17⼈,少年5⼈; (2)①∵成⼈8⼈可免费带8名⼉童,∴所需门票的总费⽤为:100×8+100×0.8×5+100×0.6×(10-8)=1320(元);②设可以安排成⼈a ⼈、少年b ⼈带队,则1≤a ≤17,1≤b ≤5. 当10≤a ≤17时,(ⅰ)当a =10时,100×10+80b ≤1200,∴b ≤52,∴b 最⼤值=2,此时a +b =12,费⽤为1160元; (ⅱ)当a =11时,100×11+80b ≤1200,∴b ≤54,∴b 最⼤值=1,此时a +b =12,费⽤为1180元;(ⅲ)当a ≥12时,100a ≥1200,即成⼈门票⾄少需要1200元,不合题意,舍去.当1≤a <10时,(ⅰ)当a =9时,100×9+80b +60≤1200,∴b ≤3,∴b 最⼤值=3,此时a +b =12,费⽤为1200元; (ⅱ)当a =8时,100×8+80b +2×60≤1200,∴b ≤72,∴b 最⼤值=3,此时a +b =11<12.不合题意,舍去; (ⅲ)同理,当a <8时,a +b <12,不合题意,舍去;综上所述,最多可以安排成⼈和少年共12⼈带队,有三个⽅案:成⼈9⼈,少年3⼈;成⼈10⼈,少年2⼈;成⼈11⼈,少年1⼈;其中当成⼈10⼈,少年2⼈时购票费⽤最少.类型四⼯程、⾏程问题1. 解:设“复兴号”G 92次列车从甲城到⼄城的⾏驶时间需要x ⼩时,则“和谐号”列车的⾏驶时间需要54x ⼩时,根据题意得:500x =50054x +40,解得x =52,经检验,x =52是原分式⽅程的解,且符合实际意义,∴x +16=83.答:乘坐“复兴号”G 92次列车从甲城到⼄城需要83⼩时.2. 解:(1)设⼄⼯程队每天能改造道路的长度为x ⽶,则甲⼯程队每天能改造道路的长度为32x ⽶,根据题意得,720x -72032x =4,解得x =60,经检验,x =60是原分式⽅程的解,且符合题意,∴32x =32×60=90. 答:甲⼯程队每天能改造道路的长度为90⽶,⼄⼯程队每天能改造道路的长度为60⽶; (2)设安排甲队⼯作m 天,则安排⼄队⼯作2400-90 m60天,根据题意得,7m +5×2400-90 m60≤195,解得m ≥10.答:⾄少安排甲队⼯作10天.。
中考数学代数类实际应用题
解:(1)20+10×(25-21)=20+40=60(瓶).答:商场每天的销量 是60瓶; (2)设这种酒精的销售单价应该定为x元.依题意得(x-15)[20+ 10(25-x)]=350,整理得x2-42x+440=0,解得x1=22,x2= 20.∵要把更多的优惠给顾客,∴这种酒精的销售单价应该定为 20元.答:这种酒精的销售单价应该定为20元.
6.(2020·宁夏)在抗击新冠肺炎疫情期间,某学校工会号召广大教师积极 开展了“献爱心捐款”活动,学校拟用这笔捐款购买A,B两种防疫物品.如 果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件, B种物品30件,共需840元.
(1)求A,B两种防疫物品每件各多少元; (2)现要购买A,B两种防疫物品共600件,总费用不超过7000元,那么A种 防疫物品最多购买多少件?
解:(1)y与x之间的函数关系式为y= 4x+80(1≤x≤10,且x为正整数), 128(11≤x≤14,且x为正整数);
(2)当1≤x≤10时,W=(0
=-(x-6)2+676,∵开口向下,∴当x=6时,W有最大值
676;当11≤x≤14时,W= 128[16-(14 x+8)]=-32x+1024,∵
解:(1)设每千克苹果的售价为x元,每千克梨的售价为y元,依题意 得x2+x+3yy==2262,, 解得xy==86,. 答:每千克苹果的售价为8元,每千克 梨的售价为6元; (2)设购买m千克苹果,则购买(15-m)千克梨.依题意得8m+6(15 -m)≤100,解得m≤5.答:最多购买5千克苹果.
解:(1)设购买一根跳绳需要x元,购买一个毽子需要y元,依题意 得24xx++53yy==3326,, 解得xy==64,. 答:购买一根跳绳需要6元,购买一 个毽子需要4元; (2)设购买m(m>20)根跳绳,则购买(54-m)个毽子.依题意得6m +4 (54-m)≤260,解得20<m≤22.又∵m为正整数,∴m可以取 21,22,∴共有2种购买方案,方案1:购买21根跳绳,33个毽子; 方案2:购买22根跳绳,32个毽子.
数学中考应用题及答案
数学中考应用题及答案1. 某工厂生产一种产品,原计划每天生产100件,实际每天生产120件。
若原计划生产时间为30天,实际生产时间为25天,求实际生产效率比原计划提高了百分之几?答案:解:首先计算原计划和实际的生产总量。
原计划生产总量 = 100件/天× 30天 = 3000件实际生产总量 = 120件/天× 25天 = 3000件接下来计算提高的百分比。
提高的百分比 = [(实际生产量 - 原计划生产量) / 原计划生产量] × 100%提高的百分比 = [(3000 - 3000) / 3000] × 100% = 0%答:实际生产效率与原计划相比没有提高。
2. 某商店购进一批商品,进价为每件20元,若按每件30元出售,可售出500件。
若每件商品提价1元,销售量将减少20件。
求该商店为获得最大利润,每件商品应定价多少元?答案:解:设每件商品提价x元,则每件商品的售价为(30+x)元,销售量为(500-20x)件。
利润函数为:y = (30+x-20)(500-20x) = -20x^2 + 300x + 5000这是一个开口向下的二次函数,对称轴为x = 7.5。
当x = 7.5时,y取得最大值,此时售价为30 + 7.5 = 37.5元。
答:每件商品应定价为37.5元,此时利润最大。
3. 某校组织学生去春游,若租用45座客车,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,其余车刚好坐满。
求该校共有多少名学生?答案:解:设租用45座客车x辆,则学生总数为45x + 15。
根据题意,租用60座客车时,有(x-1)辆坐满,一辆空着,所以学生总数为60(x-1)。
将两个表达式相等,得到方程:45x + 15 = 60(x-1)解方程得:45x + 15 = 60x - 6015 + 60 = 60x - 45x75 = 15xx = 5所以,学生总数为:45 × 5 + 15 = 240人。
中考数学总复习训练 一次函数的实际应用含解析
一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计A 200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b 为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y与x 的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x ﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意;假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意;∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+150=178元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。
中考数学专题练习应用题
AM45°30°B北 第4题中考应用题附参考答案1.2010年广西桂林适应训练某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.1求该同学看中的随身听和书包单价各是多少元2某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售不足100元不返券,购物券全场通用,该同学只带了400元钱,他能否在这两家超市都可以买下看中的这两样商品若两家都可以选择,在哪一家购买更省钱2.2010年黑龙江一模某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品. 3.2010广东省中考拟A,B 两地相距18km,甲工程队要在A,B 两地间铺设一条输送天然气管道,乙工程队要在A,B 两地间铺设一条输油管道,已知甲工程队每周比乙工程队少铺设1km,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙工程队每周各铺设多少管道4.2010年广东省中考拟如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300m ,求点M 到直线AB 的距离精确到整数.并能设计一种测量方案参考数据:7.13≈,4.12≈5.2010年湖南模拟某花木园,计划在园中栽96棵桂花树,开工后每天比原计划多栽2棵,•结果提前4天完成任务,问原计划每天栽多少棵桂花树.6.2010年厦门湖里模拟某果品基地用汽车装运A 、B 、C 三种不同品牌的水果到外地销售,按规定每辆汽车只能装同种水果,且必须装满,其中A 、B 、C 三种水果的重量及利润按下表提供信息:1若用7辆汽车装运A 、C 两种水果共15吨到甲地销售,如何安排汽车装运A 、C 两种水果2计划用20辆汽车装运A 、B 、C 三种不同水果共42吨到乙地销售每种水果不少于2车,请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润. 7.2010年杭州月考某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润元如下表:1设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W 元,求W 关于x 的函数关系式,并求出x 的取值范围;2若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;3为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大8.2010年河南中考模拟题1某市一些村庄发生旱灾,市政府决定从甲、乙两水库向A 、B两村调水,其中A村需水15万吨,B村需水13万吨,甲、乙两水库各可调出水14万吨;甲、乙两水库到A、B两村的路程和运费如下表:路程千米运费元/万吨·千米甲水库乙水库甲水库乙水库A村50 30 1200 1200B村60 45 1000 9001如果设甲水库调往A村x万吨水,求所需总费用y元与x的函数关系式;2如果经过精心组织实行最佳方案,那么市政府需要准备的调运费用最低为多少9.2010年河南中考模拟题2某批发市场欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别是60千米/小时、100千米/小时,两货运公司的收费项目和收费标准如下表所示:体积m 3/件质量吨/件A 型商运输工具 运输费单价 元/吨·千米 冷藏费单价元/吨·小时过路费元装卸及管理 费用元汽车 2 5 200 0 火车51600元/吨·千米表示每吨货物每千米的运费;元/吨·小时表示每吨货物每小时冷藏费1设批发商待运的海产品有x 吨,汽车货运公司和铁路货运公司所要收取的费用分别为y 1元和y 2元,分别写出y 1、y 2与x 的关系式.2若该批发商待运的海产品不少于30吨,为节省费用,他应该选哪个货运公司承担运输业务∴所运海产品不少于30吨且不足50吨应选汽车货运公司; 所运海产品刚好50吨,可任选一家; 所运海产品多于50吨,应选铁路货运公司10.2010年河南中考模拟题3某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款万元,乙工程队工程款万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:1甲队单独完成这项工程刚好如期完成.2乙队单独完成这项工程要比规定日期多用6天.3若甲、乙两队合作3天,余下的工程由乙队单独做也正好如期完成. 试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款请说明理由. 11.2010年河南中考模拟题5宏远商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:1已知一批商品有A 、B 两种型号,体积一共是20 m3 ,质量一共是吨,求A、B两种型号商品各有几件2物流公司现有可供使用的货车每辆额定载重吨,容积为6 m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将1中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元12.2010年河南中考模拟题6绿谷商场“家电下乡”指定型号冰箱,彩电的进价和售价如下表所示:(1)按国家政策,农民购买“家电下乡”产品享受售价13℅的政府补贴;农民田大伯到该商场购买了冰箱,彩电各一台,可以享受多少元的补贴(2)为满足农民需求,商场决定用不超过85000元采购冰箱,彩电共40台,且冰箱的数量不少于彩电数量的56;①请你帮助该商场设计相应的进货方案;②用哪种方案商场获得利润最大利润=售价-进价,最大利润是多少13.2010年江苏省泰州市济川实验初中中考模拟题某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA万元与投资金额x万元之间存在某种关系的部分对应值如下表:x万元 1 2 3 5y万元 1 2A万元与投资金额x万元之间存信息二:如果单独投资B种产品,则所获利润yB=ax2+bx,且投资2万元时获利润万元,当投资4万元时,可获利在二次函数关系:yB润万元.与x的函数关系式.1求出yB与x之2从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x的函数关系式.间的关系,并求出yA3如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少14.2010年广州中考数学模拟试题四小明家想要在自己家的阳台上铺地砖,经测量后设计了如右图的图纸,黑色区域为宽度相等的一条“7”形的健身用鹅卵石小路,空白部分为地砖铺设区域.1要使铺地砖的面积为14平方米,那么小路的宽度应为多少2小明家决定在阳台上铺设规格为80×80的地砖即边长为80厘米的正方形,为了美观起见,工人师傅常采用下面的方法来估算至少需要的地砖数量:尽量保证整块地砖的铺设,边上有多余空隙的,空隙宽度小于地砖边长一半的,可将一块割成两块来铺设空隙处,大于一半的只能铺设一处一边长80厘米的矩形空隙,请你帮助工人师傅估算一下小明家至少需要多少块地砖15.2010年河南省南阳市中考模拟数学第14题试题某市政府为响应党中央建设社会主义新农村和节约型社会的号召,决定资助部分农村地区修建一批沼气池,使农民用到经济、环保的沼气能源.红星村共有264户村民,村里得到34万元的政府资助款,不足部分由村民集资解决.修建A型、B 型沼气池共20个.两种型号沼气池每个修建费用、可供使用的户数、修建用地情况见下表:修建费用万元/个可供使用户数户/个占地面积m2/个沼气池A3 20 48型B2 3 6型政府土地部门只批给该村沼气池修建用地708m2.若修建A型沼气池x个,修建两种型号沼气池共需费用y万元.1求y与x之间的函数关系式;2既不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种3若平均每户村民集资700元,能否满足所需费用最少的修建方案答案:1.解:1解法一:设书包的单价为x元,则随身听的单价为()x-元48根据题意,得48452-+=x x解这个方程,得x=92答:该同学看中的随身听单价为360元,书包单价为92元;2在超市A购买随身听与书包各一件需花费现金:45280%3616⨯=.元因为3616400.<,所以可以选择超市A 购买;在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金:360+2=362元 因为362400<,所以也可以选择在超市B 购买;因为3623616>.,所以在超市A 购买更省钱 2.答案:依题意有220100100410x x -+=-. 整理得2653000x x -+=. 解得5x =或60x =.5x =时,1050x -=-<,5x ∴=舍去. 60x ∴=.答:改进操作方法后每天生产60件产品.3.解:设甲工程队铺设xkm/周,则乙工程队铺设x+1/周,依题意得:解这个方程,得x 1=2,x 2= -3.经检验,x 1=2,x 2= -3都是原方程的解,但.x 2= -3不符合题意,应舍去; 答:甲工程队铺设2km/周,则乙工程队铺设3km/周 4.解: 过点M 作AB 的垂线MN ,垂足为N .∵M 位于B 的北偏东45°方向上, ∴∠MBN = 45°,BN = MN . 又M 位于A 的北偏西30°方向上, ∴∠MAN =60°,AN =tan 603MN MN=. ∵AB = 300,∴AN +NB = 300 .AM45°30°B北第6题答案图N∴3003=+MN MN .MN 191≈.方案:利用三角函数知识或相似三角形或全等三角形知识,合理都可以给分由于计算方式及取近似值时机不同有多个值,均不扣分 5.解:设原计划每天栽树x 棵 根据题意,得96962x x -+=4 整理,得x 2+2x-48=0 解得x 1=6,x 2=-8经检验x 1=6,x 2=-8都是原方程的根,但x 2=-8不符合题意舍去 答:原计划每天栽树6棵.6.解:1设安排x 辆汽车装运A 种水果,则安排7-x 辆汽车装运C 种水果. 根据题意得, +27-x=15 解得,x=5,∴7-x=2 答:安排5辆汽车装运A 种水果,安排2辆汽车装运C 种水果;2设安排m 辆汽车装运A 种水果,安排n 辆汽车装运B 种水果,则安排20-m-n 辆装运C 种水果;根据题意得,++220-m-n= 42 ∴n =20-2m又∵⎪⎩⎪⎨⎧≥--≥≥22022n m n m ∴⎩⎨⎧≤≥92m m ∴92≤≤m m 是整数 设此次装运所获的利润为w,则w=6× +8× +5×2×20-m-n=-+336… ∵<0,92≤≤m ∴W 随m 的增大而减小, ∴当m=2时,W=百元=31520元即,各用2辆车装运A 、C 种水果,用16辆车装运B 种水果使果品基地获得最大利润,最大利润为31520元.7.答案:依题意,甲店B 型产品有(70)x -件,乙店A 型有(40)x -件,B 型有(10)x -件,则1200170(70)160(40)150(10) W x x x x =+-+-+-2016800x=+.由700400100xxxx⎧⎪-⎪⎨-⎪⎪-⎩≥≥≥≥,,,.解得1040x≤≤.2由201680017560W x=+≥,38x∴≥.3840x∴≤≤,38x=,39,40.∴有三种不同的分配方案.①38x=时,甲店A型38件,B型32件,乙店A型2件,B型28件.②39x=时,甲店A型39件,B型31件,乙店A型1件,B型29件.③40x=时,甲店A型40件,B型30件,乙店A型0件,B型30件.3依题意:(20)16800a x=-+.①当020a<<时,40x=,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大.②当20a=时,1040x≤≤,符合题意的各种方案,使总利润都一样.③当2030a<<时,10x=,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考复习专题:实际应用题类型一一次函数图象型问题1. 某游泳池一天要经过“注水—保持—排水”三个过程,如图,图中折线表示的3)与时间x(m(min)之间的关系.是游泳池在一天某一时间段内池中水量y(1)求排水阶段y与x之间的函数关系式,并写出x的取值范围;(2)求水量不超过最大水量的一半值的时间一共有多少分钟.第1题图2. (2017衢州8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y元,租用乙公司的车所需1费用为y元,分别求出y、y关于x的函数表达式;221(2)请你帮助小明计算并选择哪个出游方案合算.第2题图3. (2017吉林省卷8分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28 s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s) 1之间的函数图象如图②所示.(1)正方体的棱长为________cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.第3题图4. 如图①所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶,图②是客车、货车离C站的距离y(千1米),y(千米)与行驶时间x(小时)之间的函数关系图象.2(1)填空:A,B两地相距________千米;(2)求两小时后,货车离C站的距离y与行驶时间x之间的函数关系式;2(3)客、货两车何时相遇?第4题图5. (2017乌鲁木齐10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地.两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图2所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.第5题图3答案,+bx之间的函数关系式是y=kx1.解:(1)设排水阶段y与1500??b285k-100?k??,代入得,,解得,(300,0)将(285,1500)??0??b300k30000?b?? 30000,=-100x+即排水阶段y与x之间的函数关系式是y 280,30000,解得x==2000时,2000=-100x+当y 300;≤x≤的取值范围是∴x280,=1500代入得,30my=mx,将(30,1500)(2)设注水阶段y与x的函数关系式为,=50xy50,∴注水阶段与x的函数关系式为y解得m=,x=20时,1000=50x,得当y=1000 ,=290x+30000,得x100将y=1000代入y=-.分钟)(300-290)=30(∴水量不超过最大水量的一半值的时间一共有20+80,95=k++kx80,且图象过点(1,95),则有(1)2. 解:由题意可知y=111;x≥0)y0),由题意易得=30x(15k∴=15,∴y=x+80(x≥21116 ,x==(2)当yy 时,解得21316 <,yy>时,解得x当21316.>时,解得<yx当y21316 小时,选择甲、乙公司一样合算;∴当租车时间为316 小时,选择乙公司合算;当租车时间小于316 当租车时间大于小时,选择甲公司合算. 3 ;解:3. (1)10秒后水槽内高,12水槽内水面的高度为【解法提示】由题意可得12秒时,10 cm ;度变化趋势改变,故正方体的棱长为10 cm 对应的函数解析式为:设线段(2)AB4y=kx+b,5?k??10??b12k??8??,解得(28,20),∴,∵图象过A(12,10),B520??b28k???b ??255∴线段AB对应的函数解析式为:y=x+(12≤x≤28);28(3)4 s.【解法提示】∵没有正方体时,水面上升10 cm,所用时间为16 s,∴没有正方体的圆柱形水槽,注满需要用时间32 s,∴取出正方体铁块后,已经注水28 s,且注水速度一定,故还需要4 s才能注满圆柱形水槽,∴t=4 s.4. 解:(1)420;(2)由题图可知货车的速度为60÷2=30(千米/小时),货车到达A地一共需要2+360÷30=14(小时).设y=kx+b,代入点(2,0),(14,360)得22k?b?10k?30??,解得,所以y=30x -60;??214k?b?360b?-60??(3)设y=mx+n,代入点(6,0),(0,360)得16m?n?0m??60???360. x+所以y=-60,解得.?1n?360n?360??14由y=y得30x-60=-60x+360,解得x=. 21314答:客、货两车经过小时相遇.35. 解:(1)由题图得,甲乙两地相距600千米;(2)由题图得,慢车总用时10小时,600∴慢车速度为=60(千米/小时),10设快车速度为x千米/小时.由题图得,60×4+4x=600,解得x=90(千米/小时),∴快车速度90千米/小时,慢车速度60(千米/小时);60020(3)由(2)得,=(小时),3905202060×=400(千米),时间为小时时快车已到达,此时慢车走了400千米,3320?y?150x?600(4≤x<)??3?;之间的函数关系式为x∴两车相遇后y 与20?y?60x(≤x≤10)?3?(4)设出发x小时后,两车相距300千米,①当两车相遇前,由题意得:60x+90x=600-300,解得x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得x=6,即两车行驶6小时或2小时后,两车相距300千米.类型二方案选取型问题1. 现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?2. (2017焦作模拟)某会堂举行专场音乐会,出售的门票分为成人票和学生票,已6知购买2张成人票和1张学生票共需45元,购买1张成人票和2张学生票共需30元.(1)求成人票和学生票的单价分别是多少?(2)暑假期间,为了丰富广大师生的业余文化生活,该会堂制定了两种优惠方案,方案①:购买一张成人票赠送一张学生票;方案②:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.设学生人数为x(人),付款总金额为y(元),分别求出两种优惠方案中y与x的函数关系式;(3)在(2)的条件下,请计算并确定出最节省费用的购票方案.3.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如2,从第八层起每上升一层,每平方米的售价提/米下:第八层楼房售价为4000元高50元;反之,楼层每下降一层,每平方米的售价降低30元.已知该楼盘每套2.米楼房面积均为120若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.2)与楼层x(1≤x≤23元(/米,x取整数)之间的函数关系式;(1)请写出售价y(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.4.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付0.4元;“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话时间为x分钟,两种通讯方式的费用分别为y元和y元.21(1)写出y,y与x的关系式;21(2) 某人估计一个月内通话300分钟,应选择哪种移动通讯合算些.7(3)一个月通话为多少分钟时,哪种业务更优惠?5. 为奖励在社会实践活动中表现优异的同学,某校准备购买一批文具袋和水性笔作为奖品.已知文具袋的单价是水性笔单价的5倍,购买5支水性笔和3个文具袋共需60元.(1)求文具袋和水性笔的单价;(2)学校准备购买文具袋20个,水性笔若干支,文具店给出两种优惠方案:A:购买一个文具袋,赠送1支水性笔;B:购买水性笔10支以上,超出10支的部分按原价的八折优惠,文具袋不打折.①设购买水性笔x支,选择方案A总费用为y元,选择方案B总费用为y元,21分别求出y,y与x的函数关系式;21②若学校购买水性笔超过10支,选择哪种方案更合算?请说明理由.8参考答案之间的函数关系式为:(千克)(元)与x(1)1.解:甲快递公司快递该物品的费用y1;=22xx≤1时,y当0<17.+15x15(x-1)=y当x>1时,=22+1≤x(0<1)22x?,y=∴?11)>7(x15x??;+3y=16x(元)与x(千克)之间的函数关系式为乙快递公司快递该物品的费用y221 1;时,<x≤,当22x>16x+3x(2)若0<≤121 =;+3时,x当22x=16x21 <;0<xx<16x+3时,当222 ;x<4x16+3时,1<若x>1,当15x+7>;x=416x+3时,=当15x+7 ,>4x+3时,x<当15x+7161 时,选乙快递公司省钱;<4因此,当<x21 时,选甲、乙两家快递公司快递费一样多;=4x=或x当21 4时,选甲快递公司省钱.<或x>当0<x2 b元,设成人票的单价是a 元,学生票的单价是解:2. (1)45b?2a??根据题意得,?30??2ba?20?a?,解得?5?b?元;元,学生票的单价是5则成人票的单价是20 ,x60(≥4)4)-×5=5x ++=(2)方案①:y20×4(x1;4)72(x≥+90%20=方案②:y(5x+×4)×=4.5x2,≥12(x=y-得由(3)(2)y0.5-x4)219①当y-y=0,即0.5x-12=0时,解得x=24,21∴当学生人数为24时,两种优惠方案付款一样多.②当y-y<0,即0.5x-12<0时,解得x<24,21∴当4≤x<24时,优惠方案①付款较少.③当y-y>0,即0.5x-12>0时,解得x>24,21当x>24时,优惠方案②付款较少.3.解:(1)当1≤x≤8时,每平方米的售价为y=4000-(8-x)×30=30x+3760(元/平方米);当9≤x≤23时,每平方米的售价为y=4000+(x-8)×50=50x+3600(元/平方米).30x?3760(1≤x≤8)?∴y=.?50x?3600(9≤x≤23)?(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),设所交房款为W元.按照方案一所交房款为:W=4400×120×(1-8%)-a=485760-a(元),1按照方案二所交房款为:W=4400×120×(1-10%)=475200(元),2当W>W时,即485760-a>475200,21解得:0<a<10560;当W=W时,即a=10560;21当W<W时,即485760-a<475200,21解得:a>10560,∴当0<a<10560时,方案二合算;当a=10560元时两种方案一样;当a>10560时,方案一合算.4.解:(1)根据题意得:y=50+0.4x;1y=0.6x.210(2)将x=300代入到y=50+0.4x,得y=170,将x=300代入到y=0.6x,得211y =180.∵170<180,∴选择全球通业务更优惠.2(3)当y>y时,有50+0.4x>0.6x,21解得:x<250;当y=y时,有50+0.4x=0.6x,x=250;21当y<y时,有50+0.4x<0.6x,21解得:x>250,答:当一个月通话时间小于250分钟时,选择“神州行”业务更优惠;当一个月通话时间为250分钟时,选择“全球通”和“神州行”业务费用相同;当一个月通话时间大于250分钟时,选择“全球通”业务更优惠.5. 解:(1)设水性笔的单价是x元,则文具袋的单价是5x元.由题意得5x+3×5x=60,解得x=3,则5x=15,所以水性笔的单价是3元,文具袋的单价是15元;(2)①根据题意,得y=20×15+3×(x-20)=3x+240,1当0≤x≤10时,y=3x +300;2当x>10时,y=20×15+3×10+3×0.8(x-10)=2.4x+306. 2②当y>y 时,可知3x+240>2.4x+306,解得x>110,21所以当购买数量超过110支时,选择方案B更合算;当y=y时,可知3x+240=2.4x+306,解得x=110,21所以当购买数量为110支时,选择方案A、B均可;当y<y时,可知3x+240<2.4x+306,解得x<110,21所以当购买数量超过10支而不足110支时,选择方案A更合算.11类型三方案设计型问题1. 我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A 种树苗5棵,B种树苗6棵,则需要800元.(1)求购买A,B两种树苗每棵各需要多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于50棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)若种好一棵A种树苗应付工钱30元,种好一棵B种树苗应付工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?2. 做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获得的总利润最大?最大的总利润是多少?ɑi)共100吨.第一批蒜t分3. (2017潍坊8)某蔬菜加工公司先后两批次收购蒜薹(薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?12(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种;粗加工每吨利润400元.精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?4.某校在去年购买A,B两种足球,费用分别为2400和2000元,其中A种足球数量是B种足球数量的2倍,B种足球单价比A种足球单价多80元.(1)求A,B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,且本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买才能使费用W最少?5. (2017遂宁9分)2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨;(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派车方案;(3)在(2)的条件下,已知一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算.6. 巴基斯坦瓜达尔港成为我国“一带一路”倡议上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:甲乙丙)(平均货轮载重的吨数万吨7.5 5 10平均每吨货物可获利润(百元) 53.6413(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,那么如何安排装运,可使集团获得最大利润?最大利润为多少?7. (2016葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?答案1. 解:(1)设购买A种树苗每棵需要x元,B种树苗每棵需要y元,8x?3y?950x?100??由题意得,解得.??5x?6y?800y?50??14答:购买A种树苗每棵需要100元,B种树苗每棵需要50元.(2)设购买A种树苗m棵,则购买B种树苗(100-m)棵,由题意得100m+50(100-m)≤7650,解得m≤53.又∵m≥50,∴50≤m≤53,即有四种购买方案:方案一:购买A种树苗50棵,B种树苗50棵;方案二:购买A种树苗51棵,B种树苗49棵;方案三:购买A种树苗52棵,B种树苗48棵;方案四:购买A种树苗53棵,B种树苗47棵.(3)方案一所付的种植工钱为50×30+50×20=2500(元);方案二所付的种植工钱为51×30+49×20=2510(元);方案三所付的种植工钱为52×30+48×20=2520(元);方案四所付的种植工钱为53×30+47×20=2530(元).∵2500<2510<2520<2530,∴方案一购买A种树苗50棵,B种树苗50棵所付的种植工钱最少,最少工钱是2500元.2. 解:(1)设A款式服装分配到甲店铺为x件,则分配到乙店铺为(36-x)件;B款式分配到甲店铺为(30-x)件,分配到乙店铺为(x-6)件.根据题意得30x+35×(30-x)=26×(36-x)+36×(x-6),解得x=22.∴36-x=14(件),30-x=8(件),x-6=16(件),故A款式服装分配到甲店铺为22件,分配到乙店铺为14件,B款式分配到甲店铺为8件,分配到乙店铺为16件时,能使两个店铺在销售完这批服装后所获利润相同;(2)设总利润为w元,根据题意得:30x+35×(30-x)≥950,解得x≤20.由题意得6≤x≤20,15w=30x+35×(30-x)+26×(36-x)+36×(x-6)=5x+1770,∵k=5>0,∴w随x的增大而增大,∴当x=20时,w有最大值,最大值为5×20+1770=1870.∴A款式服装分配给甲、乙两店铺分别为20件和16件,B款式服装分配给甲、乙两店铺分别为10件和14件,王老板获得利润最大,最大的总利润为1870元.3.解:(1)设第一批次收购x吨蒜薹,则第二批次收购(100-x)吨蒜薹,由题意得,4000x+1000(100-x)=160000,解得,x=20,∴100-x=80,∴第一批次收购20吨蒜薹,第二批次收购80吨蒜薹;(2)设精加工数量为y吨,则粗加工数量为(100-y)吨,∵精加工数量不多于粗加工数量的3倍,∴y≤3(100-y),解得y≤75,设获得的利润为w元,由题意可得w与y之间的关系式为w=1000y+400(100-y),整理得w=600y+40000,∵w是y的一次函数,且k=600>0,∴w随y的增大而增大,∴当y取最大值时,w最大,∵y≤75,∴当y=75时,w最大,最大值w=600×75+40000=85000.综上所述,精加工数量为75吨时,可获得最大利润,最大利润是85000元.4.解:(1)设A种足球单价为x元,则B种足球单价为(x+80)元,24002000根据题意,得=2×,解得x=120,xx+80经检验:x=120是原分式方程的解.答:A种足球单价为120元,B种足球单价为200元.(2)设再次购买A种足球x个,则B种足球为(18-x)个.根据题意,得W=120x+200(18-x)=-80x+3600,∵18-x≥2x,∴x≤6,∵-80<0,∴W随x的增大而减小,∴当x=6时,W最小,此时18-x=12,16答:本次购买A种足球6个,B种足球12个,才能使购买费用W最少.5. 解:(1)设一辆大型渣土运输车每次运土方x吨,一辆小型渣土运输车每次运x?10x?y?15????,,解得土方y吨,根据题意,得y?53x?8y?70??答:一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土为5吨;(2)设派出小型渣土运输车m辆,则派出大型渣土运输车为(20-m)辆,根据题意,1485m?10(20?m)≥?2?,解得7≤m≤10,∵m取整数,∴m=得7,8,9,10. 5m≥7?∴有如下四种方案:①派出小型渣土运输车7辆,派出大型渣土运输车为13辆;②派出小型渣土运输车8辆,派出大型渣土运输车为12辆;③派出小型渣土运输车9辆,派出大型渣土运输车为11辆;④派出小型渣土运输车10辆,派出大型渣土运输车为10辆;(3)设总费用为W元,派出小型渣土运输车m辆,则派出大型渣土运输车为(20-m)辆,根据题意得W=300m+500(20-m)=-200m+10000,∵k=-200<0,∴W随m的增大而减小,∴当m=10时,W最小,最小值为8000元.故该公司选择方案为小型渣土运输车10辆,大型渣土运输车10辆.6.解:(1)设用乙、丙两种型号的货轮分别为x艘、y艘,x?y?8x?2????,,解得则5x?7.5y?55y?6??答:用2艘乙种型号的货轮,6艘丙种型号的货轮;(2)设乙型货轮有n艘,则甲型有20-(m+n)艘,根据题意得10[20-(m+n)]+5n+7.5m=180,解得n=4-0.5m,17∴20-(m+n)=16-0.5m,即甲型货轮有(16-0.5m)艘,乙型货轮有(4-0.5m)艘,由题意得4-0.5m+m≤16-0.5m,解得m≤12,∵m,16-0.5m,4-0.5m均为正整数,∴m=2,4,6,设集团的总利润为w,则w=10×5(16-0.5m)+5×3.6(4-0.5m)+7.5×4m=-4m+872,∵-4<0,∴w随m的增大而减小,故当m=2时,w最大,最大值为864,此时利润为864×100×10000=8.64(亿元).此时16-0.5×2=15,4-0.5×2=3.答:甲型货轮有15艘,乙型货轮有3艘,丙型货轮有2艘时,可获得最大利润,最大利润为8.64亿元.7. 解:(1)y=-2x+80(20≤x≤28);【解法提示】设一次函数的表达式为:y=kx+b(k≠0),将点(22,36)、点(24,32)分别代入求得:y=-2x+80;2-60x+875=0+x80)=150,整理得x,由题意知,(2)(x-20)(-2(x-25)(x-35)=0,解得x=25,x=35(不合题意,舍去),21答:每本纪念册的销售单价是25元;22+200,x-30) 2x1600+120x-=-2(=-2x由题意知,(3)w=(-20)(-x+80)∵a=-2<0,∴二次函数图象开口向下,∴当x<30时,w随x的增大而增大,2+200=192(元),30)(282w28x28x20∵≤≤,∴当=时,最大=-×-28192元.答:当纪念册销售单价定为元时,所获利润最大,最大利润为1819。