2017-2018学年第二学期教学质量检测八年级数学试题卷及答案

合集下载

枣庄市峄城区2017-2018学年八年级下期中考试数学试题及答案

枣庄市峄城区2017-2018学年八年级下期中考试数学试题及答案

2017-2018学年度第二学期期中质量检测八年级数学试题说明:1.考试时间为120分钟,满分120分.另设卷面分5分.2.选择题答案用2B铅笔涂在答题卡上,如不用答题卡,请将答案填在答题纸上的口琴格内.3.考试时,不允许使用科学计算器.4.不得用铅笔或红色笔在答题纸上答题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是正确的.1.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,将弧①点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A、AB=ADB、AC平分∠BADC、S△ABC= BC AHD、BH垂直平分线段AD2.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画A、2条B、3条C、4条D、5条3.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BCA、1个B、2个C、3个D、4个4.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是A、M点B、N点C、P点D、Q点5.不等式-2x>的解集是A、x<B、x<-1C、x>D、x>-16.如果不等式组恰有3个整数解,则a的取值范围是A.a≤-1B.a<-1C.-2≤a<-1D.-2<a≤-17.把不等式组的解集表示在数轴上如下图,正确的是8.下列选项中能由左图平移得到的是9.如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是A、逆时针旋转90°B、顺时针旋转90°C、逆时针旋转45°D、顺时针旋转45°10.如图,将△ABC绕着点C顺时针旋转50°后得到△A'B'C'.若∠A=40°,∠BCA'的度数是A、110°B、80°C、40°D、30°11.下列银行标志中,既不是中心对称图形也不是轴对称图形的是12.如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是A、BE=4B、∠F=30°C. AB//DE D、DF=5二、填空题:本题共6小题,每小题填对得4分,共24分.只要求在答题纸上填写最后结果.13.如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若∠DAE=50°°,则∠BAC=________,若△ADE的周长为19cm,则BC=_____cm.14.随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有_______处.15.绕等边三角形中心旋转_______度的整倍数之后能和自己重合.16.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.17.如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是_______.18.一个图形无论经过平移变换还是旋转变换,下列结论一定正确的是______.(把所有你认为正确的序号都写上)①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都不变.三、解答题:本题共7小题,满分60分.解答应写出必要的文字说明、证明过程或演算步骤.19.(本小题满分8分)解不等式≥3+,并把解集在数轴上表示出来.20.(本小题满分8分)解不等式组:,并将解集表示在数轴上.21.(本小题满分8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C l;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.22.(本小题满分8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.23.(本小题满分8分)如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.24.(本小题满分10分)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能超过34万元.(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?25.(本小题满分10分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.2017—2018学年度第二学期期中质量检测八年级数学参考答案与评分标准一、选择题:本大题共12小题,每小题3分,共36分二、填空题:本题共6小题,每小题填对得4分,共24分13.115°,19 14.4 15.120 16.10 17.x≤0 18.②③④三、解答题:本题共7小题,共60分19.解:去分母,得2x≥30+5(x-2)………………1分去括号,得2x≥30+5x-10………………2分移项,得2x-5x≥30-10………………3分合并同类项,得-3x≥20……………4分系数化为1,得x≤-………5分将解集表示在数轴上,如右图:…………………8分20.解:①②解不等式①,得x≤8,…………………2分解不等式②,得x>2,………………4分把解集在数轴上表示出来为:……………………6分故不等式组的解集为:2<x≤8…………………8分21.解;(1)如图,△A1B1C1即为所求;(2分)(2)如图,△AB2C2即为所求,(2分)点B2(4,-2),C2(1,-3).(4分)22.(1)如图:(3分)(2)解:A’如图所示.(2分)a的取值范围是4<a<6.(3分)23.解:(1)由折叠的性质可知,DE垂直平分线段AB………………1分根据垂直平分线的性质可得DA=DB………………2分所以DA+DC+AC=DB+DC+AC=BC+AC=14(cm)………………4分(2)设∠CAD=x,则∠BAD=2x.因为DA=DB,所以∠B=∠BAD=2x…………………5分在Rt△ABC中,∠B+∠BAC=90°,即2x+2x+x=90°………………6分解得x=18°…………………7分所以∠B=2x=36°…………………8分24.解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台…………3分依题意,得7x+5×(6-x)≤34…………………3分解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:…………………5分方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台………………6分(2)根据题意,100x+60(6-x)≥380解之得x>…………………8分由(1)得x≤2,即≤x≤2.∴x可取1,2俩值.即有以下两种购买方案:方案一购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案二购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元. ∴为了节约资金应选择方案一.故应选择方案一……………………10分25.解:∵△ABC是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD绕点C顺时针旋转60°得到CE,………………3分∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,……………4分即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD与△ACE中,∠∠∴△BCD≌△ACE,……………………8分∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC…………………10分。

2017-2018学年第二学期期末八年级数学试题(含答案)

2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。

人教版2017-2018学年八年级下期中考试数学试题(含答案解析)

人教版2017-2018学年八年级下期中考试数学试题(含答案解析)

2017-2018学年甘肃省武威市八年级(下)期中数学试卷一、选择题(每题只有一个正确答案,每小题3分,共45分)1.下列式子为最简二次根式的是()A.B.C.D.2.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,143.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=69.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠212.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.2513.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD 于点E,则线段DE的长为()A.3B.C.5D.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是.17.如图,数轴上点A表示的实数是.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=.19.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.20.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG =.三、解答题(本大题共8小题,共60分)21.(6分)计算:(1)﹣5+(2)÷﹣×22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC于F,试说明EC=EF=BF.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.2017-2018学年甘肃省武威市八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每小题3分,共45分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,14【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【解答】解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以其是直角三角形;C、12+()2=()2,符合勾股定理的逆定理,所以是直角三角形;D、52+122≠142,不符合勾股定理的逆定理,所以不是直角三角形;故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直【分析】根据正方形的性质和菱形的性质,容易得出结论.【解答】解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;因此正方形具有而菱形不一定具有的性质是:对角线相等.故选:B.【点评】本题考查了正方形的性质、菱形的性质;熟练掌握正方形和菱形的性质是解决问题的关键.4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°【分析】根据矩形性质得出∠D=∠ABC=90°,AD=BC,DC∥AB,推出AE=2AD,得出∠DEA=30°=∠EAB,求出∠EBA的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠D=∠ABC=90°,AD=BC,DC∥AB.∵AB=AE,AB=2CB,∴AE=2AD.∴∠DEA=30°.∵DC∥AB,∴∠DEA=∠EAB=30°.∵AE=AB,∴∠ABE=∠AEB=(180°﹣∠EAB)=75°.∵∠ABC=90°,∴∠EBC=90°﹣75°=15°.故选:A.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数.6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=6【分析】根据二次根式的乘法法则:•=(a≥0,b≥0),二次根式的除法法则:=(a ≥0,b>0)进行计算即可.【解答】解:A、5=,故原题计算错误;B、==(a>0,b>0),故原题计算正确;C、×3=3=,故原题计算错误;D、×=×16=24,故原题计算错误;故选:B.【点评】此题主要考查了二次根式的乘除法,关键是掌握计算法则.9.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定【分析】根据平行四边形的性质得到AB=DC,而△CMB的面积为S=CD•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,这样得到S1+S2=MA•高+BM•高=(MA+BM)•高=AB•高=S,由此则可以推出S,S1,S2的大小关系.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,∵△CMB的面积为S=DC•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,而它们的高都是等于平行四边形的高,∴S1+S2=AD•高+BM•高=(MA+BM)•高=AB•高=CD•高=S,则S,S1,S2的大小关系是S=S1+S2.故选:A.【点评】本题考查平行四边形的性质对边相等以及三角形的面积计算公式,分别表示出图形面积是解题关键.11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.【点评】本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.12.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.25【分析】先将中能开方的因数开方,然后再判断n的最小正整数值.【解答】解:∵=3,若是整数,则也是整数;∴n的最小正整数值是15;故选:C.【点评】解答此题的关键是能够正确的对进行开方化简.13.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==4.8.故选:A.【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是记住菱形的性质,学会利用菱形的面积的两种求法,构建方程解决问题,属于中考常考题型.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD 于点E,则线段DE的长为()A.3B.C.5D.【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75.故选:B.【点评】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形.【分析】根据互逆命题的概念解答.【解答】解:命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形,故答案为:四条边都相等的四边形是菱形.【点评】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.17.如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=5.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得答案.【解答】解:由直角三角形的性质,得CE=AB=5,故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,利用直角三角形的性质是解题关键.19.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为(7,10)或(28,40).【分析】根据二次根式的性质和已知得出即可.【解答】解:∵+是整数,∴a=7,b=10或a=28,b=40,因为当a=7,b=10时,原式=2是整数;当a=28,b=40时,原式=1是整数;即满足条件的有序数对(a,b)为(7,10)或(28,40),故答案为:(7,10)或(28,40).【点评】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.20.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG= 4 .【分析】连接EO ,可得S △ABO =S △AEO +S △BEO ,再把AO =BO =4代入可求EF +EG 的值. 【解答】解:连接EO∵ABCD 为正方形∴AC ⊥BD ,AO =BO =CO =DO 且AC =BD =8 ∴AO =CO =BO =4 ∵S △ABO =S △AEO +S △BEO∴+∴EF +EG =4 故答案为4.【点评】本题考查了正方形的性质,本题关键是运用面积法解决问题. 三、解答题(本大题共8小题,共60分) 21.(6分)计算:(1)﹣5+(2)÷﹣× 【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可; (2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣+=;(2)原式=﹣=4﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.【分析】连接BD,根据勾股定理可求出BC、CD、BD的值,再由BC2+CD2=BD2利用勾股定理的逆定理,即可证出∠BCD=90°.【解答】解:∠BCD是直角,理由如下:连接BD,如图所示.BC==2,CD==,BD==5.∵BC2+CD2=25=BD2,∴∠BCD=90°.【点评】本题考查了勾股定理及勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC于F,试说明EC=EF=BF.【分析】通过△AEF≌△ABF,可以求证FE=FB,然后证得△CEF为等腰直角三角形即可.【解答】解:在Rt△AEF和Rt△ABF中,,∴Rt△AEF≌Rt△ABF(HL),∴FE=FB.∵正方形ABCD,∴∠ACB=∠BCD=45°,在Rt△CEF中,∵∠ACB=45°,∴∠CFE=45°,∴∠ACB=∠CFE,∴EC=EF,∴FB=EC=EF.【点评】本题考查了全等三角形的证明,考查了等腰直角三角形的判定,本题求证Rt△AEF≌Rt△ABF是解本题的关键.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.【分析】(1)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题;(2)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题.【解答】解:(1)∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2y﹣xy2=xy(x﹣y)=1×2=2;(2))∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2﹣xy+y2=(x﹣y)2+xy=22+1=4+1=5.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.【分析】(1)首先判断四边形ABCD和四边形ANMD为平行四边形,然后由“平行四边形的对边相等”推知AB=CD,AN=CM,由等式的性质证得结论;(2)根据平行四边形的对边平行,平行线的性质以及平行四边形的对角相等进行解答.【解答】(1)证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD.又∵AN=CM,∴四边形ANMD为平行四边形,∴AN=CM,∴AB﹣AN=CD﹣CM,即BN=DM;(2)∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=50°,∴∠BCD=180°﹣50°=130°.由(1)知,四边形ABCD是平行四边形,∴∠D=∠B=50°,AB=CD,AD=BC.∵BC=3,CD=2,∴四边形ABCD的周长=2(BC+CD)=2×(3+2)=10.【点评】考查了平行四边形的性质,解题的关键是平行四边形的判定,与平行四边形的性质的综合应用.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?【分析】在Rt△OBD中,求出OB,OD,再利用勾股定理即可解决问题;【解答】解:在Rt△AOC中,∵OA=OC,AC=18km,∴OA=OC=18(km),∵AB=0.2×40=8(km),CD=0.2×30=6(km),∴OB=10(km),OD=24(km),在Rt△OBD中,BD==26(km).答:此时B处距离D处26km远.【点评】本题考查勾股定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形判定,平行四边形判定,平行线性质,角平分线定义的应用,主要考查学生的推理能力.。

虹口区2017-2018学年度第二学期期末质量抽测 八年级(初二)数学真题卷

虹口区2017-2018学年度第二学期期末质量抽测 八年级(初二)数学真题卷

1.下列方程中,有实数解的方程是 ( )
(A) x 2 2 x 1;
(B) x 2 0 x2 2x
(C) x 1 x
(D) x 4 3 0
2.已知点 A(-1,m)和点 B(1,n)在函数 y 1 x k 的图像上,则下列结论中正确 3
的( )
1
-1 O 1
x
-1
(第 24 题图)
25.如图,一次函数 y 2x 4 的图像与 x 、 y 轴分别相交于点 A、B,四边形 ABCD 是
正方形.
(1)求点 A、B、D 的坐标;
y
(2)求直线 BD 的表达式. B
AO
C x
D
26.如图,已知在△ABC 中,AB = AC,点 D、E 在边 BC 上,且 AD = AE. 试说明 BD = CE 的理由.
22.有两个不透明的布袋,其中一个布袋中有一个红球和两个白球,另一个布袋中有一 个红球和三个白球,它们除了颜色外其他都相同.在两个布袋中分别摸出一个球, (1) 用树形图或列表法展现可能出现的所有结果; (2) 求摸到一个红球和一个白球的概率.
四、解答题:(本大题共 5 题,每题 8 分,满分 40 分) 23.如图,已知 C 是线段 AB 的中点,CD // BE,且 CD = BE,试说明∠D =∠E 的理由.
(A) m n ;
(B) m n ; (C) k 0 ;
(D) k 0 .
3.甲、乙两同学同时从学校出发,步行 10 千米到某博物馆,已知甲每小时比乙多走 1
千米,结果乙比甲晚 20 分钟,设乙每小时走 x 千米,则所列方程正确的是( )
(A) 10 10 20 ; x 1 x

上海市静安区2017-2018学年八年级下期末数学试卷及答案解析

上海市静安区2017-2018学年八年级下期末数学试卷及答案解析

上海市静安区2017-2018学年八年级下期末数学试卷及答案解析2017-2018学年上海市静安区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)1.当a<时,|a-1|等于()A。

a+1 B。

-a-1 C。

a-1 D。

1-a2.下列方程中,是无理方程的为()A。

B。

C。

D.3.某市出租车计费办法如图所示。

根据图象信息,下列说法错误的是()A。

出租车起步价是10元B。

在3千米内只收起步价C。

超过3千米部分(x>3)每千米收3元D。

超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+44.下列关于向量的运算,正确的是()A。

B。

C。

D.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同。

下列事件中属于确定事件的是()A。

从袋子中摸出1个球,球的颜色是红色B。

从袋子中摸出2个球,它们的颜色相同C。

从袋子中摸出3个球,有颜色相同的球D。

从袋子中摸出4个球,有颜色相同的球6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A。

AC=BD=BC B。

AB=AD=CD C。

OB=OC,AB=CD D。

OB=OC,OA=OD二、填空题(本大题共12题,每题3分,满分36分)7.x+1的图象经过一、二、三象限,那么常数k的取值范围是______。

8.方程x^3+1=0的根是______。

9.方程的根是______。

10.用换元法解方程组时,如果设x=u-v,y=u+v,那么原方程组可化为关于u、v的二元一次方程组是______。

11.已知函数f(x)=x+1,那么f(2a-1)的值是______。

12.3、4这三个数字中任选两个组成两位数,从中选出一个数,这个数是素数的概率是______。

13.如果一个n边形的内角和是1440°,那么n=______。

14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为______。

安徽省六安市裕安中学17—18学年下学期八年级月考(一)数学试题(答案)$862877

安徽省六安市裕安中学17—18学年下学期八年级月考(一)数学试题(答案)$862877

裕安中学2017-2018学年春学期月考一八年级数学学科试卷一、选择题(本题共10小题,每小题4分,满分40分)1、如果是二次根式,那么x应满足的条件是()A.x≠8 B.x<8 C.x≤8 D.x>0且x≠82、在下列方程中,一元二次方程的个数是()①3x2+7=0,②ax2+bx+c=0,③(x+2)(x﹣3)=x2﹣1,④x2﹣x+4=0,⑤x2﹣(+1)x+=0,⑥3x2﹣+6=0A.1个B.2个C.3个D.4个3、下列各式属于最简二次根式的是()A.B.C.D.4、用配方法解方程x2﹣5x=4,应把方程的两边同时()A.加上B.加上C.减去D.减去5、方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=06、小明的作业本上有以下四题:②;①;③;④.做错的题是()A.①B.②C.③D.④7、已知(m﹣1)x2+2mx+(m﹣1)=0有两个不相等的实数根,则m的取值范围是()A.m>B.m<且m≠1 C.m>且m≠1 D.<m<18、某县为发展教育事业,加强了对教育经费的投入,2017年投入3000万元,预计2019年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000(1+x)2=5000 B.3000x2=5000C.3000(1+x%)2=5000 D.3000(1+x)+3000(1+x)2=50009、已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣10、利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0 D.x2+x﹣1=0二、填空题(本题共4小题,每小题5分,满分20分)11、方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=12、已知,则a+b=13.若一元二次方程x2+kx+6=0的一个根是3,那么k=,另一个根是.14、已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为.八年级数学学科月考一考试答题卷 时间:120分钟 满分:150分一、选择题(本题有10小题,每小题 4分,共40分)二、填空题(本题有4小题,每小题5分,共20分)11.______________________ 12._________________________ 13. k=_ ___, __________ 14._________________________ 三、解答题(本大题共9小题,共90分)15、计算:(1)818214+-(2)()()20-52-6-π6101⨯+-⎪⎪⎭⎫⎝⎛-16、解方程:(1)2x ²-5x+1=0(用配方法) (2)(x+4)²=2x+817、化简求值:(2x+1)(2x-1)-(x+1)(3x-2),其中x=12-.18、已知a ,b ,c 在数轴上如图所示,化简:.19、已知1x 、2x 是关于x 的一元二次方程x ²-(2k+1)x+k ²+1=0的两个不相等的实数根,且52221=+x x ,求k 的值.20、已知x=13-,y=13+,求下列代数式的值:(1)x ²-xy+y ²;(2)x ²-y ².21、阅读下列材料:)210321(3121⨯⨯-⨯⨯=⨯; )321432(3132⨯⨯-⨯⨯=⨯;)432543(3143⨯⨯-⨯⨯=⨯;由以上三个等式相加,可得.2054331433221=⨯⨯⨯=⨯+⨯+⨯ 读完以上材料,请你计算下列各题:(1)1×2 + 2×3 + 3×4 + …… + 10×11= ; (2)1×2 + 2×3 + 3×4 + …… + n(n+1)(写出过程);(3)1×2×3 + 2×3×4 + 3×4×5 + …… + 7×8×9(写出过程)。

新课标-精品卷】2017-2018学年广东省深圳市八年级下学期期末数学试卷及答案

新课标-精品卷】2017-2018学年广东省深圳市八年级下学期期末数学试卷及答案

新课标-精品卷】2017-2018学年广东省深圳市八年级下学期期末数学试卷及答案2017-2018学年广东省深圳市八年级(下)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.不等式2x+1>x+2的解集是()A。

x>1B。

x<1C。

x≥1D。

x≤12.多项式2x^2-2y^2分解因式的结果是()A。

2(x+y)^2B。

2(x-y)^2C。

2(x+y)(x-y)D。

2(y+x)(y-x)3.下列图案中,不是中心对称图形的是()A。

B。

C。

D。

4.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A。

6cmB。

8cmC。

9cmD。

10cm5.要使分式有意义,那么x的取值范围是()A。

x≠3B。

x≠-3C。

x≠3且x≠-3D。

x≠-36.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A。

a<-1B。

a<0C。

a>-1D。

a>07.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A。

4B。

3C。

2D。

18.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上。

另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A。

3cmB。

6cmC。

2√3cmD。

3√3cm9.如图,在平行四边形ABCD中,XXX于E,AF⊥CD 于F,若AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为()A。

24B。

36C。

40D。

4810.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A。

x<mB。

x<3C。

x>mD。

x>311.已知a^2+b^2=6ab,则的值为()A。

上海市静安区2017-2018学年度第二学期期中质量调研卷 八年级(初二)数学

上海市静安区2017-2018学年度第二学期期中质量调研卷  八年级(初二)数学

静安区2017-2018学年度第二学期期中质量调研卷 八年级 数 学 (考试时间90分钟,满分100分) 考生注意: 1.本试卷含四个大题,共25题; 2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤. 一、选择题(本大题共6题,每题3分,满分18分) 1.下列方程组中,是二元二次方程组的是…………………………………………( ) (A )⎩⎨⎧=-=+21y x y x (B )⎪⎪⎩⎪⎪⎨⎧=+=-01313222y x y x (C )⎩⎨⎧==-12xy y x (D )⎩⎨⎧-==+x y xy y x 313 2.下列方程中,有实数根的方程是………………………………………………( ) (A )054=+x (B )23-=-x (C )42422-=-x x x (D )x x -=+1 3.已知点),41(),,1(21y B y A --在直线)0(>+=k b kx y 上,则21y y -的值是…( ) (A )负数 (B )非正数 (C )正数 (D )非负数 4.如果函数1+=kx y 的图像不经过第三象限,那么k 的取值范围是………( ) (A )0>k (B )0≥k (C )0<k (D )0≤k 5.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升则油箱内剩余油量y (升)与行驶时间t (小时)的函数关系式用图像表示为下图中的…………………( )学校_______________________ 班级__________ 学号_________ 姓名______________ ……………………………………密○…………………………………………封○…………………………………○线……………………………………。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年第二学期教学质量检测八年级数学试题卷及答案注意事项:1. 本试卷分试题卷和答题卷两部分,试题卷共4页,三大题,满分120分,考试时间100分钟.2. 略一.选择题(每小题3分,共30分)1. 若二次根式3-x 有意义,则x 的取值范围是 【 】 A. X<3 B. x ≠3 C. x ≤3 D. x ≥32. 下列运算结果正确的是 【 】 A.()29-=-9 B. ()22-=2 C.26÷=3 D.525±=3. 平行四边形ABCD 的对角线AC 与BD 相交于点O ,要使它成为矩形,需再添加的一个条件是 【 】 A. AO=CO B. AC=BD C. AC ⊥BD D. BD 平分∠ABC4. 如图所示,直线a 经过正方形ABCD 繁荣顶点A ,分别过顶点B,D 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE=4,BF=3,则EF 的长为 【 】 A. 1 B. 5 C. 7 D. 125. △ABC 的三边分别为a,b,c ,其对角分别为∠A,∠B ,∠C.下列条件不能判定△ABC 是直角三角形的是 【 】 A. ∠B=∠A-∠C B. a:b:c=5:12:13 B. 222c a b =- D. ∠A:∠B:∠C=3:4:56. 如图,已知一次函数y=kx+b ,y 随着x 的增大而增大,且kb<0则在直角坐标系中它的图像大致是 【 】7. 如图,平行四边形ABCD 中,AB=4,BC=6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是【 】A.6B. 8C. 10D. 128.周末小丽从家里出发骑单车去公园,图中他在路边的便利店挑选一瓶库矿泉水,耽误以一段时间后继续骑行,愉快地到了公园,图中描述了小丽路上的情景,下列说法错误的是 【 】 A. 小丽从家到公园共用时间20分钟 B. 公园离小丽家的距离为2000米 C.小丽在便利店停留时间为15分钟 D.便利店离小丽家的距离为1000米 9.如图,菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为【 】 A. 2.4cm B. 4.8cm C. 5cm D. 9,6cm10.已知,如图,△ABC 中,∠A=90°,D 是AC 上一点,且∠ADB=2∠C ,P 是BC 上任一点,PE ⊥BD 于E ,PF ⊥AC 于F ,下列结论:①△DBC 是等腰三角形;②∠C=30° ;③PE+PF=AB;④222BP AF PE =+,其中正确的结论是【 】A.①②B. ①③④C.①④D.①②③④二.填空题(每小题3分,共15分)11.如图P (3,4)是直角坐标系中一点,则点P 到原点的距离是 .12.如图,平行四边形ABCD 的对角线AC,BD 相交于点O ,且AC+BD=18,AB=6,那么△OCD 的周长是 .13.如图,在正方形ABCD 的内侧,作等边△EBC ,则∠AEB 的度数是 .14.如图,ABCD 是一块正方形场地,小华和小芳在AB 边上取定了一点E ,测量知,EC=30m,EB=10m,这块场地的对角线长是 .15.已知点A (-4,0)及第二象限的动点P (x ,y ),且y-x =5,设△OPA 的面积是S ,则S 关于x 的函数关系式为 .三、解答题(本大题共8个题目,满分75分) 16.(10分)计算:()()()482-8-1827 1=+()()()()223353-5 2+++17. (8分)如图,已知正比例函数kx y =(k ≠0)经过点P (2,4)(1)求这个正比例函数的解析式;(2)该直线向下平移4个单位,求平移后所得直线的解析式.18. (9分)甲、乙两名射击运动员最近5次射击的成绩如下(单位:环): 甲:7、8、6、8、9. 乙:9、7、5、8、6.(1)甲运动员这5次射击成绩的中位数和众数分别是多少? (2)求乙运动员这5次射击成绩的平均数和方差.19. (9分)学完《一次函数》后,老师布置了这样一道思考题:已知:如图,在长方形ABCD 中,BC=4,AB=2,点E 为AD 中点,BD 和CE 相交于点P ,求△BPC 的面积.小明同学的思路是:以点B 为坐标原点建立“平面直角坐标系”,根据一次函数的知识点求出点P 的坐标,从而可求得△BPC 的面积,请你按照小明的思路解决这道思考题.20. (9分)如图,在△ABC 中,∠ABC=90°,D,E 分别为AB,AC 的中点,延长DE 到点F ,使EF=2DE,连接CF ,求证:四边形BCFE 是平行四边形.21. (8分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费,假设这两位家长带领x 名学生去旅行,甲、乙旅行社的收费分别为乙甲,y y .(1)写出乙甲,y y 与x 的函数关系式;(2)学生人数在什么情况下,选择哪个旅行社合算?22. 如图,将一个三角板放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于Q.(1)当点Q 在DC 边上时,过点P 作MN ∥AD 分别交AB,DC 于点M ,N ,证明:PQ=BP (2)当点Q 在线段DC 的延长线时,设A,P 两点间的距离为x ,CQ 的长为y. ①直接写出y 与x 之间的函数关系式;并写出函数自变量的x 的取值范围;②△PCQ 能否为等腰三角形?如果能,直接写出相应的x 的值;如果不能说明理由.23. (12分)如图,一次函数4+-=x y 的图象与y 轴交于点A,与x 轴交于点B ,过AB 中点D 的直线CD 交x 轴于点C (-2,0).(1)求A,B 两点的坐标及直线CD 的函数解析式;(2)若坐标平面内的点F ,能使以点B,C,D,F 为顶点的四边形为平行四边形,请直接写出满足条件的点F 的坐标.2017-2018学年第二学期教学质量检测八年级数学试题卷答案题号 1 2 3 4 5 6 7 8 9 10 答案DBBCDACCBB二、填空题11.5 ;12.15 ;13. 75°;14.40m;15. )0(-5 102<<+=x x y . 三.解答题16.(1)解:原式=2373422-2333+=++(2)解:原式=5-3+3+43+4=9+4317.解(1)把点P (2,4)代入kx y =得:4=2k k =2 ∴这个正比例函数是y=2x(2)平移后的直线解析式是y=2x+418. 解:(1)甲的中位数是8,众数是8; (2)乙的平均数是:)(6857951++++=7;()()()()[]27-67-87-57-95122222=+++=乙S19. 解:如图,由题意可得C (4,0)A (0,2),B (0,0) D (4,2)∵E 是AD 的中点,∴E (2,2)设BD 的函数解析式为kx y =,由题意得:4k=2 ∴21=k ,∴BD 的函数解析式为x y 21= 设直线CE 的函数解析式为b x k y +=/,由题意得:⎪⎩⎪⎨⎧=+=+2204//b k b k解得:⎩⎨⎧=-=41/b k ,∴直线CE 的函数解析式为4-+=x y解方程组⎪⎩⎪⎨⎧+-==421x y x y 解得⎪⎪⎩⎪⎪⎨⎧==3438y x 所以点P (3438,)∴△BPC 的面积:383442121=⨯⨯=•=P BPC y BC S △ 20. 证明:∵D,E 分别为AB,AC 的中点,∴DE ∥BC ,且BC=2DE∵F 在DE 的延长线上,且EF=2DE ,∴EF=BC ,且EF ∥BC , ∴四边形BCFE 是平行四边形.21. 解:(1)200070010007.02000+=⨯+=x x y 甲1600800210008.0+=+⨯=x x y )(乙(2)700x+2000=800x+1600 解得x=4当学生人数小于4人时,选择乙旅行社合算;当学生人数是4人时,两家收费一样;当学生人数大于4人时,选择甲旅行社合算.22. (1)证明:∵四边形ABCD 是正方形, ∴AB=DC ,∠BAD=∠D=90°,∠BAC=∠NCA=45° ∵MN ∥AD ,∴∠D=∠PNC=∠AMP=∠BMP=90°, ∴∠APM=∠NPC=45°,四边形ADNM 是矩形 ∴∠APM=∠BAC=∠NCA=∠NPC=45°AM=DN , ∴PN=NC,AM=PM ∴BM=CN ∴PN=BM∵∠BPQ=90°,∴∠BPM+∠NPQ=90°,在Rt △BPM 中,∠MBP+∠BPM=90°∴∠NPQ=∠MBP ∴△BPM ≌△QPN ,∴BP=QP (2)①x y 21-=(220<<x ) ②△PCQ 可能成为等腰三角形.第一种情况:当点P 与点A 重合时,点Q 与点D 重合, PQ=QC ,此时,x=0.第二种情况:当点Q 在DC 的延长线上,且CP=CQ 时, 有:QN=AM=PM=22x ,CP==2-x ,CN=22CP=1-22x ,CQ=QN-CN=22x-(1-22x )=2x-1,∴当2-x=2x-1时,x=1综上所述,当x=0或1时,△PCQ 成为等腰三角形.23. 解:把y=0代入y=-x+4得,x=4,∴点B (4,0) 把x=0代入y=-x+4得,y=4,∴点A (0,4) ∵D 为AB 的中点,∴D (2,2) 设CD 的解析式为b kx y +=由题意得:⎩⎨⎧=+-=+0222b k b k 解得:b=1,k=21∴CD 的解析式是121+=x y (2)∵B (4,0),C (-2,0);∴BC=6当BC 是平行四边形的一边时,则DF ∥BC 且DF=BC=6,则F (8,2)或F (-4,2) 当BC 是平行四边形对角线时,DB ∥CF ,则F (0,-2)。

相关文档
最新文档