分枝定界搜索算法

合集下载

分枝定界法

分枝定界法


4
x1
x2 x1
16.5 4
x1 0, x2 0
结论1 :(IP)的最优解一定在某个子问题中
2 :子问题的可行域 父问题的可行域 子问题的最优解 ≤ 父问题的最优值
3 :子问题中的整数解都是(IP)的可行解
二: 定界,以每个后继问题为一分枝标明求解结 果,在解的结果中,找出最优目标函数值最大者作 为新的上界.从已符合整数条件的各分支中,找出 目标函数值为最大者作为新的下界,若无,则下界 为0.
x1 x2 x3 x4 x5 解
检 0 0 -20/3 0 -50/3 Z-440/3
x2 0
x1 1 x4 0
1 1/3 0
00
0
0 -1/3 1
-2/3 17/6 13 -10/3 5/3
L1最优解:x1 3,x2 17 6 , x3 0
x4

5 3
,
x5

0,
最优值:z1

440 3
求解子问题L3 :
x1 x2 x3
检 0 0 -20/3
x2 0 1 1/3 x1 1 0 0 x4 0 0 -1/3
x6 0 1 0
x4 x5
x6
0 -50/3 0
00 1
解 Z-440/3 17/6 3 5/3
2
最优解:
xx14

35,/ 2x,2 x52, x03,
11 4,x2 0,x4
3, 52,
z3 130 得下界
x5 14 , x6 0
z4

285 2
z3
L5
:x1 x3
2,x2 0,x4

分支定界算法

分支定界算法

分支定界 (branch and bound) 算法是一种在问题的解空间树上搜索问题的解的方法。

但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。

利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是:1 .产生当前扩展结点的所有孩子结点;2 .在产生的孩子结点中,抛弃那些不可能产生可行解(或最优解)的结点;3 .将其余的孩子结点加入活结点表;4 .从活结点表中选择下一个活结点作为新的扩展结点。

如此循环,直到找到问题的可行解(最优解)或活结点表为空。

从活结点表中选择下一个活结点作为新的扩展结点,根据选择方式的不同,分支定界算法通常可以分为两种形式:1 . FIFO(First In First Out) 分支定界算法:按照先进先出原则选择下一个活结点作为扩展结点,即从活结点表中取出结点的顺序与加入结点的顺序相同。

2 .最小耗费或最大收益分支定界算法:在这种情况下,每个结点都有一个耗费或收益。

如果要查找一个具有最小耗费的解,那么要选择的下一个扩展结点就是活结点表中具有最小耗费的活结点;如果要查找一个具有最大收益的解,那么要选择的下一个扩展结点就是活结点表中具有最大收益的活结点。

又称分支定界搜索法。

过程系统综合的一类方法。

该法是将原始问题分解,产生一组子问题。

分支是将一组解分为几组子解,定界是建立这些子组解的目标函数的边界。

如果某一子组的解在这些边界之外,就将这一子组舍弃(剪枝)。

分支定界法原为运筹学中求解整数规划(或混合整数规划)问题的一种方法。

用该法寻求整数最优解的效率很高。

将该法原理用于过程系统综合可大大减少需要计算的方案数日。

分支定界法的思想是:首先确定目标值的上下界,边搜索边减掉搜索树的某些支,提高搜索效率。

在竞赛中,我们有时会碰到一些题目,它们既不能通过建立数学模型解决,又没有现成算法可以套用,或者非遍历所有状况才可以得出正确结果。

分支定界算法实验报告

分支定界算法实验报告

一、实验目的通过本次实验,掌握分支定界算法的基本原理,并学会在实际问题中运用分支定界法求解整数规划问题。

了解算法的搜索策略、分支与定界方法,以及剪枝技巧,从而提高解决实际问题的能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 运行环境:Python 3.8三、实验原理分支定界算法是一种用于求解整数规划问题的方法。

它通过构建一个搜索树,将问题分解为一系列子问题,并对这些子问题进行求解。

在搜索过程中,算法会根据子问题的上下界和当前最优解进行剪枝,以减少搜索空间,提高求解效率。

四、实验步骤1. 问题建模:根据实际问题,建立整数规划模型,并确定决策变量、目标函数和约束条件。

2. 分支策略:选择一个分支变量,按照该变量的取值范围进行分支。

例如,如果决策变量x只能取整数,则将x分别取上界和下界,得到两个子问题。

3. 定界策略:对每个子问题,求解其线性松弛问题的最优解,得到该子问题的上界和下界。

4. 剪枝策略:根据子问题的上下界和当前最优解,判断是否需要剪枝。

如果子问题的上界小于当前最优解,则可以剪枝。

5. 求解子问题:对需要求解的子问题,重复执行步骤2-4,直到找到最优解。

五、实验内容本次实验以背包问题为例,说明分支定界算法的求解过程。

背包问题:给定一组物品,每个物品具有重量和价值,背包的容量有限。

求解在不超过背包容量的情况下,如何选择物品,使得背包中的物品总价值最大。

模型:设背包容量为C,物品数量为n,决策变量为x_i(i=1,2,...,n),表示是否选择第i个物品。

目标函数:最大化总价值V = Σ(v_i x_i)约束条件:- 背包容量约束:Σ(w_i x_i) ≤ C- 决策变量约束:x_i ∈ {0,1} (i=1,2,...,n)分支定界算法求解过程:1. 问题建模:根据背包问题的描述,建立整数规划模型。

2. 分支策略:选择重量最大的物品作为分支变量,将x_i分别取0和1,得到两个子问题。

分支定界法知识

分支定界法知识

分支定界(branch and bound) 算法是一种在问题的解空间树上搜索问题的解的方法。

但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。

利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是:1 .产生当前扩展结点的所有子结点;2 .在产生的子结点中,抛弃那些不可能产生可行解(或最优解)的结点;3 .将其余的子结点加入活结点表;4 .从活结点表中选择下一个活结点作为新的扩展结点。

如此循环,直到找到问题的可行解(最优解)或活结点表为空。

分支定界法本质还是一种枚举法,但是是隐枚举法。

它是整数规划领域中非常重要的一类算法思想。

是很多重要算法的源头。

它能解决的实际问题很多,最著名的一个应该就是求解背包问题。

定义分支定界法(branch and bound)是一种求解整数规划问题的最常用算法。

这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。

算法步骤第1步:放宽或取消原问题的某些约束条件,如求整数解的条件。

如果这时求出的最优解是原问题的可行解,那么这个解就是原问题的最优解,计算结束。

否则这个解的目标函数值是原问题的最优解的上界。

第2步:将放宽了某些约束条件的替代问题分成若干子问题,要求各子问题的解集合的并集要包含原问题的所有可行解,然后对每个子问题求最优解。

这些子问题的最优解中的最优者若是原问题的可行解,则它就是原问题的最优解,计算结束。

否则它的目标函数值就是原问题的一个新的上界。

另外,各子问题的最优解中,若有原问题的可行解的,选这些可行解的最大目标函数值,它就是原问题的最优解的一个下界。

第3步:对最优解的目标函数值已小于这个下界的问题,其可行解中必无原问题的最优解,可以放弃。

对最优解的目标函数值大于这个下界的子问题,都先保留下来,进入第4步。

第4步:在保留下的所有子问题中,选出最优解的目标函数值最大的一个,重复第1步和第2步。

最短路径问题的分支定界算法

最短路径问题的分支定界算法

最短路径问题的分支定界算法最短路径问题是图论中的重要问题之一,它在许多实际应用中具有广泛的意义。

为了解决最短路径问题,我将介绍一种有效的算法——分支定界算法。

一、问题描述最短路径问题是要找到图中两个顶点之间的最短路径。

给定一个带权有向图,其中顶点表示路径上的地点,边表示路径的长度。

我们需要找到从起点到终点的最短路径。

二、分支定界算法原理分支定界算法是一种穷举搜索算法,通过分解问题的解空间,并确定每个子问题的解上下界,以逐步缩小搜索空间。

以下是分治定界算法的基本步骤:1. 初始化a. 定义一个队列,用于存放候选路径;b. 设置初始最短路径长度为正无穷;c. 将起点加入队列。

2. 分支定界a. 从队列中取出当前路径,并计算路径长度;b. 如果当前路径长度大于等于当前最短路径长度,则剪枝,继续下一个路径;c. 如果当前路径的终点是目标终点,则更新最短路径长度和最短路径,继续下一个路径;d. 否则,扩展当前路径,将其邻节点添加到队列中。

3. 终止条件a. 当队列为空时,终止搜索,得到最短路径。

三、算法实现以下是使用分支定界算法解决最短路径问题的伪代码:```初始化队列;初始化最短路径长度为正无穷;将起点加入队列;while (队列非空) {取出当前路径,并计算路径长度;if (当前路径长度大于等于当前最短路径长度) {剪枝,继续下一个路径;}if (当前路径的终点是目标终点) {更新最短路径长度和最短路径;继续下一个路径;}扩展当前路径,将其邻节点添加到队列中;}返回最短路径;```四、案例分析为了更好地理解分支定界算法的应用,我们以一个简单的案例来说明。

假设有一个城市地图,其中包含多个地点,我们需要找到从起点到终点的最短路径。

首先,我们将起点添加到队列,并初始化最短路径长度为正无穷。

然后,通过不断从队列中取出路径,并计算路径长度,进行分支定界操作。

在每一步分支定界操作中,我们根据当前路径长度与最短路径长度的比较,以及当前路径终点是否为目标终点,来进行剪枝或更新最短路径。

分枝定界法

分枝定界法

2x1 + 2.5x2 ≤ 25 LP4 : x1 ≥ 4,x2 ≤ 6,x1 ≤ 4 x1 , x2 ≥ 0 即x1 = 4, 可行域是一条线段
6
LP1 LP3
max Z = 4 x1 + 3x2
LP5:X=(5,5),Z5=35 1.2 x1 + 0.8x2 ≤ 10
C o 3 4 5 10
B
1.2x1 + 0.8x2 ≤ 10 2 x1 + 2.5x2 ≤ 25 LP1 : x1 ≤ 3 x1 , x2 ≥ 0 max Z = 4 x1 + 3x2
LP1
LP2:X=(4,6.5),Z2=35.5
LP2
C o 3 4 10
1.2x1 + 0.8x2 ≤ 10 2 x1 + 2.5x2 ≤ 25 LP2 : x1 ≥ 4 x1 , x2 ≥ 0
x1
x2 ① ② 10 A
选择目标值最大的分枝 2进行分枝,增加约束 LP x2 ≤ 6及x2 ≥ 7,显然x2 ≥ 7不可行,得到线性规划
max Z = 4 x1 + 3x2
x2 ≥ 7不可行
B 6
LP1 LP3
1.2 x1 + 0.8x2 ≤ 10 2x1 + 2.5x2 ≤ 25 LP3 : x1 ≥ 4,x2 ≤ 6 x1 , x2 ≥ 0
1.2x1 + 0.8x2 = 10
10 A B
松弛问题LP0的最优解 X=(3.57,7.14),Z0=35.7
2x1 + 2.5x2 = 25
C o 10 x1
x2 ① ② 10 A
增加约束x1 ≤ 3及x1 ≥ 4得到两个线性规划

分支定界法——精选推荐

分支定界法——精选推荐

分⽀定界法分⽀定界法(branch and bound)是⼀种求解离散数据组合的最优化问题。

该算法执⾏的效率取决于你所找的问题解空间的上下界,如果找到⼀个很紧凑的上下界进⾏剪枝操作,该算法的执⾏效率会⾮常⾼,因此它是最有可能在多项式时间内求解NP问题的算法。

使⽤分⽀定界算法的⼀般步骤为:构造⼀棵搜索树,该搜索树指的是所有解空间,因此通过遍历该搜索树可以遍历到所有的解;构造问题解的上下界,上界⼀般为之前求出的最优解,下界为⽆约束条件下当前搜索路径的最优解,上下界的主要作⽤是对搜索树进⾏剪枝;通过回溯法遍历搜索树,并且不断更新上下界,如果当前解的下界已经超过上界,则进⾏剪枝;遍历结束时,所求的解为最优解。

接下来通过⼀个实例来讲解分⽀定界算法:某公司于⼄城市的销售点急需⼀批成品,该公司成品⽣产基地在甲城市。

甲城市与⼄城市之间共有 n 座城市,互相以公路连通。

甲城市、⼄城市以及其它各城市之间的公路连通情况及每段公路的长度由矩阵M1 给出。

每段公路均由地⽅政府收取不同额度的养路费等费⽤,具体数额由矩阵 M2 给出。

请给出在需付养路费总额不超过 1500 的情况下,该公司货车运送其产品从甲城市到⼄城市的最短运送路线。

(题⽬来源:北航研究⽣算法课)⾸先构造⼀棵搜索树,该搜索树并不需要显⽰的构建,⽽是在搜索过程中所遵循的⼀种搜索规则。

对于上述问题,以甲城市为根节点构建⼆叉树,其它节点由剩余城市表⽰,树的左⼦树表⽰当前路径包含该⽗节点,树的右⼦树表⽰当前路径不包含该⽗节点。

如图所⽰该搜索路径所表⽰的实际路径为1-3-4,即路径中不包含城市2。

然后分析该问题解的上下界:搜索路径的上界为当前已经求出的满⾜条件的最短路径长度。

搜索路径的下界为当前路径长度与⽆约束条件下路径终点到城市⼄的最短路径长度之和。

若上界⼤于下界,则可以继续搜索;若上界⼩于下界,则表⽰⽆更优解,此时可进⾏剪枝操作。

其中⽆约束条件下的任意点到城市⼄的最短路径长度可以使⽤Dijkstra或Floyd算法预先求出。

第七章 分支限界法

第七章 分支限界法

旅行售货员问题
2. 问题分析
可能解空间: 可能解集合S={1,∏, 1} ∏是{2,3,……,n}的一个排列;
所以可能解的总数 |S| = (n-1)! (n-1)!。 当n=4时,其状态解空间一共有3!=6 条路径。
对此设计代价函数: 1)C(x)=从根到节点x的距离(x为叶子) 2)C(x)=x的子树中最小代价的叶子节点的代价(x为 内部节点)
生成问题状态的基本方法
扩展结点: 扩展结点:一个正在产生儿子的结点称为扩展结点 活结点: 活结点:一个自身已生成但其儿子还没有全部生成的节点称 做活结点 死结点: 死结点:一个所有儿子已经产生的结点称做死结点 深度优先的问题状态生成法:如果对一个扩展结点R,一旦 深度优先的问题状态生成法:如果对一个扩展结点R 产生了它的一个儿子C 就把C当做新的扩展结点。 产生了它的一个儿子C,就把C当做新的扩展结点。在完成 对子树C 为根的子树)的穷尽搜索之后, 对子树C(以C为根的子树)的穷尽搜索之后,将R重新变成 扩展结点,继续生成R的下一个儿子(如果存在) 扩展结点,继续生成R的下一个儿子(如果存在) 宽度优先的问题状态生成法: 宽度优先的问题状态生成法:在一个扩展结点变成死结点 之前, 之前,它一直是扩展结点 回溯法:每当出现死节点就进行回溯, 回溯法:每当出现死节点就进行回溯,通过继续扩展父节 点产生新的活节点,直至找到最优解。 点产生新的活节点,直至找到最优解。 分支限界法:每个活节点有且只有一次机会变成扩展节点、 分支限界法:每个活节点有且只有一次机会变成扩展节点、 当一个节点变为扩展节点时,则生成所有的子节点( 当一个节点变为扩展节点时,则生成所有的子节点(分 支)。
剪枝操作。根据约束条件、目标函数的界来设计剪枝操 作。 优先队列。设计待检测结点的优先级。 2.分枝限界法的基本思想 树的优先队列优先搜索 + 剪枝
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分枝定界搜索算法
通过穷举法搜索进行的特征选择会导致计算量过高,而在分枝定界搜索算法帮助下,有可能不需要显示评估所有d 个特征的可能组合而确定最优特征集。

此算法的应用需假定特征选择准则满足单调性。

用()j x 表示含有j 个特征的候选特征集,单调性指的是对于具有下列嵌套关系的特征集()j x
()()()()12j D x x x x ⊂⊂⊂⊂ 其准则函数()()j J x 应满足
()()()()()()12D J x J x J x ≤≤≤
这点由构造特征评判准则的定义可得到保证。

为引出分枝定界搜索算法的基本观点,考虑从5个特征中挑选2个特征值的问题。

特征中所有可能组合如下图的树表示,顶称为根节点,底称为叶节点,中间称为枝节点,共有1D d -+层。

图 分枝定界搜索算法示意图
现假设自底向上,再由上向下的搜索方式从最右节点开始在树的每个节点评估特征,进行特征选择。

设初始叶节点的J 为0J (为45x x
的准则函数),在每个节点处,将节点的准则函数值和目前最优特征集的J 值进行比较,如果节点准则函数值大于0J ,则还有发现更佳特征集的机会,而且必须继续沿着最右边的未勘探分枝搜索。

如果到达了树底的叶节点且相应准则值大于0J ,则此结点定义了当前新的最佳特征集,而0J 则作为相应更新。

另一方面,如果在某节点的准则函数值小于0J ,则以此节点为起始点的分支就不需勘探。

因为根据单调性,再往下的特征组合将导致准则函数值的进一步减小。

如此按这一规律,由底向上,再自上而下,从右向左搜索全树,可获得最佳的二特征组合。

此搜索算法特别快捷有效。

12x 13235x 45342414251535。

相关文档
最新文档