高中数学复习数列的极限

合集下载

数列的极限-高中数学知识点讲解

数列的极限-高中数学知识点讲解

数列的极限1.数列的极限【知识点的知识】1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0),那么就说数列{a n}以a 为极限,记作푙푖푚a n=a.(注:a 不一定是{a n}中的项)푛→∞2、几个重要极限:3、数列极限的运算法则:4、无穷等比数列的各项和:(1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =푙푖푚S n.푛→∞(2)1/ 3【典型例题分析】典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4푆푛=(푎푛+1)2,其中S n 表示数列{a n}的前n 项푛和.则푙푖푚푎푛=()푛→∞1A.0 B.1 C.2D.2解:∵4S1=4a1=(a1+1)2,∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2,∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数,∴a n﹣a n﹣1=2.数列{a n}是等差数列,∴a n=2n﹣1.푛푛1∴푙푖푚2푛―1=푙푖푚2―1푎푛=푙푖푚푛→∞푛→∞푛→∞푛=12.故选:C.典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式;(2)设 c n =1푛|푃1푃푛|(푛≥2),求푙푖푚(푐2+푐3+⋯+푐푛)的值;푛→∞(3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,∴b n=2a n+1,a1=0,∵等差数列{a n}的公差为 1(n∈N*),∴a n=0+(n﹣1)=n﹣1.b n=2(n﹣1)+1=2n﹣1.(2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,∴|P1P n| =(푎푛―푎1)2+(푏푛―푏1)2=(푛―1)2+4(푛―1)2=5(푛―1)(n≥2).2/ 3∴c n =1푛|푃1푃푛|=15푛⋅(푛―1)=115(푛―1―1푛),∴c2+c3+…+c n =15[(1―112)+(2―113)+⋯+(푛―1―1푛)]=15(1―1푛),∴푙푖푚(푐2+푐3+⋯+푐푛)=푙푖푚푛→∞푛→∞15(1―1푛)=5;5(3)证明:n≥2,d n=2d n﹣1+a n﹣1,=2d n﹣1+n﹣2,∴d n+n=2(d n﹣1+n﹣1),∴数列{d n+n}为等比数列,首项为d1+1=2,公比为 2,∴푑푛+푛=2푛,∴푑푛=2푛―푛.【解题方法点拨】(1)只有无穷数列才可能有极限,有限数列无极限.(2)运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形)1(3)求数列极限最后往往转化为푛푚(m∈N)或qn(|q|<1)型的极限.(4)求极限的常用方法:①分子、分母同时除以n m 或a n.②求和(或积)的极限一般先求和(或积)再求极限.③利用已知数列极限(如等).④含参数问题应对参数进行分类讨论求极限.∞⑤∞﹣∞,∞,0﹣0,等形式,必须先化简成可求极限的类型再用四则运算求极限.3/ 3。

高考第一轮复习数学:132数列的极限-教案(含习题及答案).

高考第一轮复习数学:132数列的极限-教案(含习题及答案).

13.2 数列的极限●知识梳理1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a|无限地接近于0),那么就说数列{a n }以a 为极限.注:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C=C (C 为常数);②∞→n limn1=0;③∞→n lim q n=0(|q|<1).3.数列极限的四则运算法则:设数列{a n }、{b n },当∞→n lim a n =a, ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b;∞→n lim (a n ·b n )=a ·b; ∞→n limn n b a =ba(b ≠0). 特别提示(1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. ●点击双基1.下列极限正确的个数是①∞→n lim αn 1=0(α>0) ②∞→n lim q n=0 ③∞→n lim n n nn 3232+-=-1 ④∞→n lim C=C (C 为常数) A.2 B.3C.4D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]等于 A.0 B.1C.2D.3解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ] =∞→n lim 22+n n=2. 答案:C 3.下列四个A.若∞→n lim a n 2=A 2,则∞→n lim a n =AB.若a n >0,∞→n lim a n =A ,则A >0C.若∞→n lim a n =A ,则∞→n lim a n 2=A 2D.若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n解析:排除法,取a n =(-1)n,排除A ; 取a n =n1,排除B;取a n =b n =n ,排除D . 答案:C4.(2005年春季上海,2) ∞→n limnn ++++ 212=__________.解析:原式=∞→n lim 2)1(2++n n n =∞→n lim 221212nn n ++=0.答案:05.(2005年春季北京,9) ∞→n lim 32222-+n nn =____________.解析:原式=∞→n lim23221nn -+=21. 答案:21【例1】 求下列极限:(1)∞→n lim757222+++n n n ;(2) ∞→n lim (n n +2-n );(3)∞→n lim (22n +24n+…+22n n ).剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因n n +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.解:(1)∞→n lim 757222+++n n n =∞→n lim 2275712nn n +++=52. (2)∞→n lim (n n +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21. (3)原式=∞→n lim 22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n1)=1. 评述:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n2+n+7), ∞→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )= ∞→n lim n n +2-∞→n lim n=∞-∞=0;②原式=∞→n limn n +2-∞→n lim n=∞-∞不存在.对于(3)要避免出现原式=∞→n lim22n +∞→n lim 24n +…+∞→n lim22n n =0+0+…+0=0这样的错误.【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lga n =lga n -1+lgc ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim 1122+-+-n n nn a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1.∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c c c c nn 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim n n n n cc 323211+---. ①当c=2时,原式=-41; ②当c>2时,原式=∞→n lim c cc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c =21.评述:求数列极限时要注意分类讨论思想的应用.【例3】 已知直线l:x -ny=0(n ∈N *),圆M:(x+1)2+(y+1)2=1,抛物线ϕ:y=(x-1)2,又l 与M 交于点A 、B ,l 与ϕ交于点C 、D ,求∞→n lim 22||||CD AB .剖析:要求∞→n lim 22||||CD AB 的值,必须先求它与n 的关系.解:设圆心M (-1,-1)到直线l 的距离为d,则d 2=1)1(22+-n n .又r=1,∴|AB|2=4(1-d 2)=218nn+. 设点C (x 1,y 1), D (x 2,y 2), 由⎩⎨⎧-==-2)1(0x y ny x ⇒nx 2-(2n+1)x+n=0, ∴x 1+x 2=nn 12+, x 1·x 2=1. ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=214n n +,(y 1-y 2)2=(n x 1-n x 2)2=414n n +, ∴|CD|2=(x 1-x 2)2+(y 1-y 2)2=41n(4n+1)(n 2+1).∴∞→n lim 22||||CD AB =∞→n lim 225)1)(14(8++n n n =∞→n lim 2)11)(14(8nn ++=2. 评述:本题属于解析几何与数列极限的综合题.要求极限,需先求22||||CD AB ,这就要求掌握求弦长的方法.【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N*,a n 与a n+1恰为方程x 2-b n x+c n=0的两根,其中0<|c|<1,当∞→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.解:首先,由题意对任意n ∈N*,a n ·a n+1=c n恒成立. ∴121+++⋅⋅n n n n a a a a =n n a a 2+=n n cc 1+=c.又a 1·a 2=a 2=c.∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c,公比为c 的等比数列.其次,由于对任意n ∈N*,a n +a n+1=b n 恒成立.∴n n b b 2+=132+++++n n n n a a a a =c.又b 1=a 1+a 2=1+c,b 2=a 2+a 3=2c,∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c,公比为c 的等比数列,∴∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim (b 1+b 3+b 5+…)+ ∞→n lim (b 2+b 4+…)=c c -+11+cc-12≤3. 解得c ≤31或c >1.∵0<|c|<1,∴0<c ≤31或-1<c <0. 故c 的取值范围是(-1,0)∪(0,31].评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.●闯关训练 夯实基础1.已知a 、b 、c 是实常数,且∞→n lim c bn can ++=2, ∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是A.2B.3C.21D.6解析:由∞→n lim c bn can ++=2,得a=2b.由∞→n lim b cn c bn --22=3,得b=3c,∴c=31b. ∴ca=6. ∴∞→n lim a cn c an ++22=∞→n lim 22nac n c a ++=ca =6. 答案:D2.(2003年北京)若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n=1,2,…,则∞→n lim (a 1+a 2+…+a n )等于A.2411 B.2417 C.2419 D.2425 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n nn n n n n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n n n∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…).∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419 答案:C3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim 2)1(+n a n=__________________.解析:由题意得n a -1-n a =3 (n ≥2). ∴{n a }是公差为3的等差数列,1a =3. ∴n a =3+(n -1)·3=3n. ∴a n =3n 2.∴∞→n lim 2)1(+n a n =∞→n lim 12322++n n n =∞→n lim21213nn ++=3.答案:34.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q=-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1=_________________. 解析:∵q=-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38.∴a 1=2.答案:25.(2004年湖南,理8)数列{a n }中,a 1=51,a n +a n+1=156+n ,n ∈N*,则∞→n lim (a 1+a 2+…+a n )等于A.52 B.72 C.41 D.254解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n56]+a n .∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ).∵a n +a n+1=156+n ,∴∞→n lim a n +∞→n lim a n+1=0.∴∞→n lim a n =0.答案:C6.已知数列{a n }满足(n -1)a n+1=(n+1)(a n -1)且a 2=6,设b n =a n +n (n ∈N*). (1)求{b n }的通项公式;(2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值.解:(1)n=1时,由(n -1)a n+1=(n+1)(a n -1),得a 1=1.n=2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.要证b n =2n 2,只需证a n =2n 2-n.①当n=1时,a 1=2×12-1=1成立.②假设当n=k 时,a k =2k 2-k 成立.那么当n=k+1时,由(k -1)a k+1=(k+1)(a k -1),得a k+1=11-+k k (a k -1) =11-+k k (2k 2-k -1)=11-+k k (2k+1)(k -1)=(k+1)(2k+1)=2(k+1)2-(k+1). ∴当n=k+1时,a n =2n 2-n 正确,从而b n =2n 2.(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ] =41∞→n lim [1+21-n 1-11+n ]=83. 培养能力7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n lim n n b a =21,求极限∞→n lim (111b a +221b a +…+n n b a 1)的值. 解:{a n }、{b n }的公差分别为d 1、d 2.∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2.又∞→n lim n n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4.∴a n =a 1+(n -1)d 1=2n+1,b n =b 1+(n -1)d 2=4n -2.∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n ). ∴原式=∞→n lim41(1-121+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q,其中p >q 且p≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞→n lim1-n nS S . 解:S n =p p a n --1)1(1+qq b n --1)1(1,.1)1(1)1(1)1(1)1(1111111qq b p p a qq b p p a S S n n n n n n --+----+--=--- 当p >1时,p >q >0,得0<pq <1,上式分子、分母同除以p n -1,得.1])(1[1)11(1)1(1)1(11111111111q p q pb p p a qpq p b p p p a S S n n n n nn n n n --+----+--=-------∴∞→n lim 1-n n S S=p. 当p <1时,0<q <p <1, ∞→n lim 1-n n S S =qb p a qbp a -+--+-11111111=1.探究创新9.已知数列{a n }满足a 1=0,a 2=1,a n =221--+n n a a ,求∞→n lim a n .解:由a n =221--+n n a a ,得2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2.∴a n -32=-21(a n -1-32).∴{a n -32}是公比为-21,首项为-32的等比数列.∴a n -32=-32×(-21)n -1.∴a n =32-32×(-21)n -1.∴∞→n lim a n =32. ●思悟小结1.运用数列极限的运算法则求一些数列的极限时必须注意以下几点: (1)各数列的极限必须存在;(2)四则运算只限于有限个数列极限的运算. 2.熟练掌握如下几个常用极限: (1) ∞→n lim C=C (C 为常数);(2) ∞→n lim (n1)p=0(p >0);(3) ∞→n lim d cn b an k k ++=ca(k ∈N *,a 、b 、c 、d ∈R 且c ≠0);(4) ∞→n lim q n=0(|q|<1).●教师下载中心 教学点睛1.数列极限的几种类型:∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,不要太难了.2.重视在日常学习过程中化归思想、分类讨论思想和极限思想的运用.拓展题例【例题】 已知等比数列{a n }的首项为a 1,公比为q,且有∞→n lim (q a +11-q n)=21,求首项a 1的取值范围.解: ∞→n lim (q a +11-q n)=21, ∴∞→n lim q n一定存在.∴0<|q|<1或q=1.当q=1时,21a -1=21,∴a 1=3.当0<|q|<1时,由∞→n lim (q a +11-q n)=21得q a +11=21,∴2a 1-1=q.∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠21.综上,得0<a 1<1且a 1≠21或a 1=3.。

高中数学中的数列极限求解知识点总结

高中数学中的数列极限求解知识点总结

高中数学中的数列极限求解知识点总结数列极限是高中数学中的重要内容,它是数学分析的基础,也是数学发展的重要方向之一。

掌握数列极限的求解方法和相关知识点,对于高中生提高数学学习水平具有重要的意义。

下面将对高中数学中的数列极限求解知识点进行总结与归纳。

一、数列极限的概念及性质数列极限指的是当数列中的项数趋于无穷大时,数列中的项的极限值。

数列极限的概念基于数列的收敛性,即当数列趋于某个确定的值时,其极限存在。

1.1 数列极限的定义数列{an}的极限为a,记作lim(n→∞) an = a,当且仅当对于任意给定的正数ε,总存在一个正整数N,使得当n>N时,对应的数列项an 与极限a之间的差值小于ε,即|an - a| < ε。

1.2 数列极限的性质(1)唯一性:如果数列的极限存在,则极限值唯一。

(2)有界性:如果数列的极限存在,则数列必定有界。

(3)保序性:如果数列{an}的极限为a,且数列{bn}的极限为b,则当n足够大时,对于数列中的任意项an与bn,都有an ≤ bn。

二、常见数列极限求解方法2.1 基本数列的极限(1)常数数列的极限:对于常数数列{an} = a,其中a为常数,则该常数数列的极限为a,即lim(n→∞)a = a。

(2)等差数列的极限:对于等差数列{an} = a1 + (n - 1)d,其中a1为首项,d为公差,则当公差d≠0时,该等差数列的极限为±∞(取决于公差d的正负性),若公差d=0,则该等差数列的极限为a1。

2.2 数列极限的四则运算法则(1)加减法则:如果数列{an}的极限为a,数列{bn}的极限为b,则数列{an ± bn}的极限为a ± b。

(2)乘法法则:如果数列{an}的极限为a,数列{bn}的极限为b,则数列{an × bn}的极限为a × b。

(3)除法法则:如果数列{an}的极限为a,数列{bn}的极限为b且b≠0,则数列{an ÷ bn}的极限为a ÷ b。

数列的极限知识点归纳总结

数列的极限知识点归纳总结

数列的极限知识点归纳总结数列的极限是高中数学中重要的概念之一,它在解析几何、微积分等数学领域中起着重要的作用。

本文将对数列的极限进行知识点归纳总结,帮助读者更好地理解和掌握这一概念。

一、定义和概念1. 数列的定义:数列是按照一定顺序排列的一组数的集合。

数列可以用公式表示,常用的表示方式为{an}或{an}∞n=1。

2. 数列的极限定义:对于数列{an},如果存在一个实数a,对于任意给定的正数ε,都存在正整数N,使得当n>N时,有|an - a| < ε,那么称数列{an}的极限为a。

3. 数列的收敛和发散:如果数列{an}存在极限,称该数列收敛;否则,称该数列发散。

二、极限的性质1. 极限唯一性:如果数列{an}收敛,那么它的极限是唯一的。

2. 有界性:对于收敛数列{an},存在一个正数M,使得对于任意的n,有|an| ≤ M。

3. 夹逼定理:如果{an} ≤ {bn} ≤ {cn},并且lim an = lim cn = a,那么lim bn = a。

4. 四则运算法则:若数列{an}和{bn}收敛,并且lim an = a,lim bn = b,则有以下运算结果:- lim(an ± bn) = a ± b- lim(an · bn) = a · b- lim(an / bn) = a / b (b ≠ 0)三、重要的数列极限1. 常数数列:对于常数c,数列{an} = c(n为正整数)的极限为c。

2. 等差数列:对于等差数列{an} = a1 + (n - 1)d,其中a1为首项,d为公差,极限为lim an = a1。

3. 等比数列:对于等比数列{an} = a1 · q^(n - 1),其中a1为首项,q为公比,当|q| < 1时,极限为lim an = 0;当|q| > 1时,极限不存在。

4. 幂函数数列:对于幂函数数列{an} = n^p,其中p为实数,当p >0时,极限为正无穷大;当p < 0时,极限为0。

高考高等数学备考指南数列极限计算

高考高等数学备考指南数列极限计算

高考高等数学备考指南数列极限计算在高考高等数学中,数列极限计算是一个重要且具有一定难度的考点。

掌握好数列极限的计算方法,对于在高考中取得优异的数学成绩至关重要。

本文将为大家详细介绍数列极限计算的相关知识和备考策略。

一、数列极限的基本概念首先,我们需要明确数列极限的定义。

对于数列{aₙ},如果当 n 无限增大时,aₙ 无限趋近于一个常数 A,那么我们就说数列{aₙ}的极限是 A,记作lim(n→∞) aₙ = A。

理解数列极限的概念是进行计算的基础。

要注意,数列极限反映的是数列的变化趋势,而不是数列的某一项的值。

二、常见数列极限的类型1、常数数列如果数列{aₙ}的每一项都等于常数 C,那么lim(n→∞) aₙ = C。

2、等差数列对于等差数列{aₙ},其通项公式为 aₙ = a₁+(n 1)d,当 d = 0 时,数列是常数列,极限为 a₁;当d ≠ 0 时,数列的极限不存在。

3、等比数列对于等比数列{aₙ},其通项公式为 aₙ = a₁qⁿ⁻¹。

当|q| < 1 时,lim(n→∞) aₙ = 0;当 q = 1 时,数列是常数列,极限为 a₁;当|q| > 1 时,数列的极限不存在。

三、数列极限的计算方法1、利用定义计算直接根据数列极限的定义,通过分析数列的变化趋势来确定极限。

但这种方法往往比较复杂,在实际解题中不常用。

2、利用四则运算法则如果lim(n→∞) aₙ = A,lim(n→∞) bₙ = B,那么:(1)lim(n→∞)(aₙ ± bₙ) = A ± B(2)lim(n→∞)(aₙ × bₙ) = A × B(3)lim(n→∞)(aₙ / bₙ) = A / B (B ≠ 0)在使用四则运算法则时,要注意先判断极限是否存在。

3、利用重要极限(1)lim(n→∞)(1 +1/n)ⁿ = e(2)lim(n→∞)(1 +x/n)ⁿ =eˣ (x 为常数)这些重要极限在解题中经常会用到,需要牢记。

高三数学数列极限复习指导

高三数学数列极限复习指导

数列极限复习指导一、重点难点分析:(1)常数数列的极限就是其本身;即:C=C。

(2)=0。

(3)当|q|<1时;q n=0。

这三个最基本的极限是求复杂数列极限的基础和化归方向。

2.数列极限四则运算法则:如果a n =A, b n=B, 那么:(a n±b n )=a n ±b n=A±B。

(a n·b n )=a n ·b n=A·B。

==(b n≠0;B≠0)。

==(a n≥0, A≥0)。

应特别注意理解:(1)公式成立的条件:公式成立的前提是{a n}与{b n}都存在极限。

(2)公式的实质:是四则运算与取极限这两种运算可以变换顺序。

(3)公式的推广:公式中的两项的和;差;积可以推广到有限个项;但是它们都不能推广到无限个。

(1)无穷递缩等比数列:当公比|q|<1时无穷等比数列{a n}称为无穷递缩等比数列。

S n ==。

则称这个极限叫做无穷递缩等比数列各项的和;用S表示;即S=。

(3)其它无穷数列各项的和:若无穷数列{b n}不是等比数列;但可求得前n项和 T n ;且T n=t。

则无穷数列{b n}的各项和存在;且为:S=T n=t。

4.求数列极限的方法与基本类型:1).求数列极限的基本思路是“求和——变形——利用极限的运算法则求解”;而在求解前应先化为三个重要的极限。

2).常见的几类数列极限的类型和方法有:①型:分子分母分别求和再化简转化②型:分子分母分别求和再化简转化③已知极限值定参数:待定系数法3).要注意极限运算法则的使用范围;以及特殊极限的使用条件。

4).实际运用中极限思想应引起注意。

二、应用举例:例1.求下列极限:(1) (2)(3)解:(1) ∵∴原式=。

(2)∵=∴原式=。

(3)∵∴原式。

例2.设数列a1,a2,……a n……的前n项和S n与a n 的关系是:;其中b是与n无关的常数且b≠-1。

①求a n和a n-1的关系式。

高中数学中的数列极限证明知识点总结

高中数学中的数列极限证明知识点总结

高中数学中的数列极限证明知识点总结在高中数学学习的过程中,数列极限证明是一个非常重要的知识点。

数列极限证明通过逐步逼近的方式,证明了数列趋向于一个确定的值。

本文将系统总结高中数学中关于数列极限证明的知识点。

一、初等数学运算法则在进行数列极限证明时,常常需要运用初等数学运算法则。

这些法则包括数列加减乘除、幂运算、开方运算等,利用这些运算法则可以对数列进行简化和变形,从而更好地展示数列的性质和极限。

二、数列极限定义数列极限是指当数列的项趋近于无穷大时,数列真正趋近的一个确定的值。

数列极限定义包括数列趋于正无穷、负无穷以及有限值的情况,根据具体的情况可以选择不同的证明方法,如夹逼定理、数列单调有界原理等。

三、数列单调性、有界性在证明数列极限时,常常需要运用数列单调性和有界性的性质。

当数列可以通过严格单调递增或递减的方式进行逼近时,可以通过证明单调有界数列的极限存在来得到极限结果。

四、数列极限存在时的夹逼定理夹逼定理是数列极限证明的常用方法之一。

当我们需要求解一个复杂的数列的极限时,可以通过构造两个趋近于同一个值的数列来夹住原数列,从而确定原数列的极限存在。

五、数列极限存在时的数列收敛性数列收敛性是指数列极限存在且有限,通过证明数列收敛性可以进一步得到数列的极限值。

在证明数列收敛性时,常常运用到初等数学运算、夹逼定理以及极限存在的特点。

六、数列极限不存在时的性质当数列的极限不存在时,需要证明该数列是发散的。

在证明数列发散性的过程中,常常运用到反证法、数列单调性的逆否命题以及数列的性质。

七、利用递推关系式证明数列极限在高中数学中,很多数列都可以通过递推关系式来定义。

当需要证明这类数列的极限存在时,可以通过递推关系式的性质和极限的特点来进行证明。

以上是高中数学中关于数列极限证明的主要知识点总结。

通过学习和应用这些知识点,我们可以更好地理解和掌握数列极限的证明方法,提高数学推理和证明能力。

希望本文对你在高中数学学习中有所帮助。

高中数学中的数列极限知识点总结

高中数学中的数列极限知识点总结

高中数学中的数列极限知识点总结数列是高中数学中的重要概念,而数列的极限是数学分析的核心内容之一。

我们在学习数列时,需要理解和掌握数列极限的相关概念和性质,以提升数学思维和解题能力。

本文将对高中数学中的数列极限知识点进行总结,并提供一些例题进行讲解。

1. 数列与数列极限的基本概念数列是由一列数按照一定规律排列而成的,可以用数学公式表示为 {an},其中n表示序号,an表示第n项。

对于数列来说,我们常常关注的是数列的极限。

数列极限是指数列在无限项情况下逐渐接近的数值,可以用极限符号lim表示。

当数列的极限存在时,我们可以通过计算极限值来求解相关问题。

2. 数列极限的性质数列极限具有以下性质:(1) 唯一性:数列的极限值唯一,即一个数列只有唯一一个极限值。

(2) 有界性:如果数列有极限,那么它一定是有界的,即数列的项在某一范围内。

(3) 保号性:如果数列的极限值大于0(或小于0),那么数列的部分项也大于0(或小于0),反之亦然。

(4) 夹逼性:如果数列的每一项都被两个趋于相同极限的数列夹逼,那么它们的极限也相同。

3. 数列极限的计算方法在实际运用中,我们常常需要计算数列的极限。

对于一些简单的数列,我们可以通过常用的计算方法求解。

(1) 常数数列的极限等于该数列的常数项。

例如:数列 {an} = {2, 2, 2, ...} 的极限等于2。

(2) 等差数列的极限等于首项(a1)。

例如:数列 {an} = {1, 3, 5, ...} 的极限等于1。

(3) 等比数列的极限在一定条件下存在,存在时等于首项乘以公比( |r| < 1)。

例如:数列 {an} = {2, 1, 0.5, ...} 的极限等于0。

4. 数列极限的收敛与发散数列极限可以分为收敛和发散两种情况。

(1) 收敛:如果数列的极限存在,我们称数列是收敛的。

(2) 发散:如果数列的极限不存在,我们称数列是发散的。

例如:数列 {an} = {1, -1, 1, -1, ...} 是发散的,因为其极限不存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●知识梳理1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限.注:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n limn1=0;③∞→n lim q n =0(|q |<1).3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞→n lim a n =a , ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b ;∞→n lim (a n ·b n )=a ·b ; ∞→n limn n b a =ba(b ≠0). 特别提示(1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个.1.下列极限正确的个数是①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0 ③∞→n limnn n n 3232+-=-1 ④∞→n lim C =C (C 为常数)A.2B.3C.4D.都不正确 解析:①③④正确. 答案:B2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]等于A.0B.1C.2D.3解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ] =∞→n lim 22+n n=2. 答案:C3.下列四个命题中正确的是A.若∞→n lim a n 2=A 2,则∞→n lim a n =AB.若a n >0,∞→n lim a n =A ,则A >0C.若∞→n lim a n =A ,则∞→n lim a n 2=A 2D.若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n解析:排除法,取a n =(-1)n ,排除A ; 取a n =n1,排除B;取a n =b n =n ,排除D . 答案:C4.(2005年春季上海,2) ∞→n limnn ++++ 212=__________.解析:原式=∞→n lim 2)1(2++n n n =∞→n lim 221212nn n ++=0.答案:05.(2005年春季北京,9) ∞→n lim 32222-+n nn =____________.解析:原式=∞→n lim23221nn -+=21. 答案:21 思考讨论●典例剖析【例1】 求下列极限: (1)∞→n lim757222+++n n n ;(2) ∞→n lim (n n +2-n );(3)∞→n lim (22n +24n + (22)n ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因n n +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.解:(1)∞→n lim757222+++n n n =∞→n lim 2275712nnn +++=52.(2)∞→n lim (n n +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21. (3)原式=∞→n lim22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n 1)=1. 评述:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n2+n +7), ∞→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )= ∞→n limn n +2-∞→n lim n =∞-∞=0;②原式=∞→n limn n +2-∞→n lim n =∞-∞不存在.对于(3)要避免出现原式=∞→n lim22n +∞→n lim 24n +…+∞→n lim22n n=0+0+…+0=0这样的错误.【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim1122+-+-n nn n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1.∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c n n 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim n n n n cc 323211+---. ①当c =2时,原式=-41; ②当c>2时,原式=∞→n lim cc c n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c =21.评述:求数列极限时要注意分类讨论思想的应用.【例3】 已知直线l :x -ny =0(n ∈N *),圆M :(x +1)2+(y +1)2=1,抛物线ϕ:y =(x -1)2,又l 与M 交于点A 、B ,l 与ϕ交于点C 、D ,求∞→n lim 22||||CD AB .剖析:要求∞→n lim 22||||CD AB 的值,必须先求它与n 的关系.解:设圆心M (-1,-1)到直线l 的距离为d ,则d 2=1)1(22+-n n . 又r =1,∴|AB |2=4(1-d 2)=218nn+. 设点C (x 1,y 1), D (x 2,y 2), 由⎩⎨⎧-==-2)1(0x y ny x ⇒nx 2-(2n +1)x +n =0,∴x 1+x 2=nn 12+, x 1·x 2=1. ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=214n n +,(y 1-y 2)2=(n x 1-n x 2)2=414n n +, ∴|CD |2=(x 1-x 2)2+(y 1-y 2)2=41n(4n +1)(n 2+1). ∴∞→n lim 22||||CD AB =∞→n lim 225)1)(14(8++n n n =∞→n lim 2)11)(14(8nn ++=2.评述:本题属于解析几何与数列极限的综合题.要求极限,需先求22||||CD AB ,这就要求掌握求弦长的方法.【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N *,a n 与a n +1恰为方程x 2-b n x +c n =0的两根,其中0<|c |<1,当∞→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.解:首先,由题意对任意n ∈N *,a n ·a n +1=c n 恒成立.∴121+++⋅⋅n n n n a a a a =n n a a 2+=n n cc 1+=c .又a 1·a 2=a 2=c .∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c ,公比为c 的等比数列.其次,由于对任意n ∈N *,a n +a n +1=b n 恒成立.∴n n b b 2+=132+++++n n n n a a a a =c .又b 1=a 1+a 2=1+c ,b 2=a 2+a 3=2c , ∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c ,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c ,公比为c 的等比数列,∴∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim (b 1+b 3+b 5+…)+ ∞→n lim (b 2+b 4+…)=c c -+11+cc-12≤3. 解得c ≤31或c >1.∵0<|c |<1,∴0<c ≤31或-1<c <0. 故c 的取值范围是(-1,0)∪(0,31].评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.夯实基础1.已知a 、b 、c 是实常数,且∞→n lim c bn can ++=2, ∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是A.2B.3C.21D.6 解析:由∞→n limcbn can ++=2,得a =2b . 由∞→n lim b cn c bn --22=3,得b =3c ,∴c =31b . ∴ca =6. ∴∞→n lim a cn c an ++22=∞→n lim22na c n c a ++=ca =6. 答案:D2.(2003年北京)若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于A.2411 B.2417 C.2419 D.2425 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n n n nn n n n n即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n nn∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…).∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =__________________.解析:由题意得n a -1-n a =3 (n ≥2). ∴{n a }是公差为3的等差数列,1a =3. ∴n a =3+(n -1)·3=3n . ∴a n =3n 2.∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3.答案:34.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1=_________________. 解析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38.∴a 1=2.答案:25.(2004年湖南,理8)数列{a n }中,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等于A.52 B.72 C.41 D.254解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n 56]+a n .∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ).∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0.∴∞→n lim a n =0.答案:C6.已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *). (1)求{b n }的通项公式; (2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值. 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1.n =2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.要证b n =2n 2,只需证a n =2n 2-n . ①当n =1时,a 1=2×12-1=1成立. ②假设当n =k 时,a k =2k 2-k 成立.那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1) =11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1). ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2.(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ] =41∞→n lim [1+21-n 1-11+n ]=83. 能力提高7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limn n b a =21,求极限∞→n lim (111b a +221b a +…+nn b a 1)的值.解:{a n }、{b n }的公差分别为d 1、d 2.∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2.又∞→n limn n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4.∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2. ∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n ). ∴原式=∞→n lim41(1-121+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q ,其中p >q 且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞→n lim1-n nS S . 解:S n =p p a n --1)1(1+qq b n --1)1(1,.1)1(1)1(1)1(1)1(1111111qq b p p a q q b p p a S S n n n n n n--+----+--=--- 当p >1时,p >q >0,得0<p q <1,上式分子、分母同除以p n -1,得 .1])(1[1)11(1)1(1)1(11111111111qp q pb p p a q pq p b p p p a S S n n n n nn n n n --+----+--=-------∴∞→n lim1-n nS S =p . 当p <1时,0<q <p <1, ∞→n lim1-n n S S =qb p a q bp a -+--+-11111111=1. 探究创新9.已知数列{a n }满足a 1=0,a 2=1,a n =221--+n n a a ,求∞→n lim a n . 解:由a n =221--+n n a a ,得2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2.∴a n -32=-21(a n -1-32). ∴{a n -32}是公比为-21,首项为-32的等比数列.∴a n -32=-32×(-21)n -1.∴a n =32-32×(-21)n -1.∴∞→n lim a n =32.教学点睛1.数列极限的几种类型:∞-∞,∞∞,0-0,0等形式,必须先化简成可求极限的类型再用四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,不要太难了.拓展题例【例题】 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求首项a 1的取值范围.解: ∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在.∴0<|q |<1或q =1.当q =1时,21a -1=21,∴a 1=3. 当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q . ∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠21. 综上,得0<a 1<1且a 1≠21或a 1=3.。

相关文档
最新文档