C2 devicenet 配置

合集下载

KUKA KRC2机器人焊机配置说明

KUKA KRC2机器人焊机配置说明

Pages1/8广州蓝姆汽车设备有限公司2014.6Pages2/81.准备工作①.焊机的输入输出大小(本例Input=40bit=5Byte,Output=24bit=3Byte)②.机器人及焊机节点号,波特率及相对应的拨码(本例节点号:1拨码对应,波特率500)2.其他①:机器人端后台逻辑编写:R/KRC/R1/System/sps.sub在此可编写逻辑,进行程序或者IO 控制.VB 语法编写.按上诉文档配置完毕后打开配置-输出输出驱动程序--输入/输出重新配置回车.6焊机IO配置打开如图7进入后根据焊机IO进行配置例:正在焊接..焊机那边是焊机输出第一位在机器人这边就是64+1=65位以此类推,进行设置.8完成后进行备份荻原项目博世力士乐焊机启动顺序:机器人To焊机程序Code(out81-out88组成)机器人To焊机程序Code确认(out66)焊机To机器人确认反馈(in66)机器人To焊机焊接启动(out65)焊机完成机器人焊接结束信号(in65)其他信号依据博世说明书配置荻原项目SPS程序追加说明:LOOPif($out[81]or$out[82]or$out[83]or$out[84]or$out[85]or$out[86]or$out[87]or$out[88]and not$in[66])then if$out[72]==true then$out[66]=true$out[72]=falseelse$out[66]=false$out[72]=trueendifEndifENDLOOP如果焊接Code不为0判断out72(此处为中间变量,临时采用机器人To焊机备用输出代替)是否为1进行交替输出OUT660和1LOOP-------ENDLOOP为循环扫描语句.务必在其间编写程序.主要目的:KUKA Servo TC软件包没有程序号确认功能.编写此程序进行控制.。

DeviceNet阀岛快速配置手册_OMRON_AB参考

DeviceNet阀岛快速配置手册_OMRON_AB参考
30V 4 接地
CP 安装系统的连接
CP 经济型总线节点→ CP 总线型 CPV 或输出模块→
输入模块
!从总线节点到最后一个输入模块,连接电缆线总长限制为 10m 2
CP 安装系统
电气连接
CP 总线节点面板
1 总线连接口
2 BUS POWER(总线电源) BUS STATUS(总线状态) BUS ERROR(总线错误) POWER (模块电源) POWER V(输出电源) 分支状态 LED
故障排除
z 检查针脚 1
z 检查针脚 2
故障排除
z 检查针脚 1
z 检查针脚 2
16
CPV Direct
电气连接
硬件设置
软件组态
常见故障
LED
颜色
红色 常亮
红绿 闪烁
可能故障原因
故障排除
/
/
LED LED
颜色
熄灭
可能故障原因
工作电源未开启
绿色 闪烁
颜色
熄灭
-CP 阀岛负载电压<20.4(Vval)或 <10V(Voff) - CP 扩展负载电压<20.4(Vval) - CP 扩展输出<10V
可能故障原因
工作电源未开启
绿色 闪烁
-CP 阀岛负载电压<20.4(Vval)或
<10V(Voff) - CP 扩展负载电压<20.4(Vval) - CP 扩展输出<10V
03/04 型阀岛
P54
P34
P56
软件组态
P4
P13
P39
P59
常见故障
P8
P16
P45
P63

DeviceNet系统快速参考说明书

DeviceNet系统快速参考说明书

DeviceNet System Quick ReferenceImportant User InformationSolid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for Application, Installation, and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell Automation sales office or online at ) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams. No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual. Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.Throughout this manual, when necessary, we use notes to make you aware of safety considerations.WARNING Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury ordeath, property damage, or economic loss.IMPORTANT Identifies information that is critical for successful application andunderstanding of the product.ATTENTION Identifies information about practices or circumstances that can lead topersonal injury or death, property damage, or economic loss. Attentions helpyou identify a hazard, avoid a hazard, and recognize the consequence.SHOCK HAZARD Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.BURN HAZARD Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.Table of ContentsTopic PageDesign 3 Select 4 Install 5 Configure 6 193-DNCT Handheld Configuration Device 6Node Commissioning on Your DeviceNet Network 6Starting the 193-DNCT Terminal 7Change Node Number 63 to Node Number 1 8Create the 1756-DNB and 1769-SDN Scanlist by Using AutoScan 9Example: Configure the E1 Overload12Maintain 13 Diagnostics and Troubleshooting 13DesignFor this manual, we are looking at a system with these constraints. They do not represent networkmaximums. The DeviceNet network has these capabilities:•Cable length of 100 m (328 ft)•Maximum of 64 nodes•Power supply limited to 4 A (Class 2)Example Media ConfigurationThis example illustrates the layout of a drop system configuration.For detailed wiring information, refer to the Industrial Automation Wiring and Grounding Guidelines,publication 1770-4.1.SelectUse this table to select the appropriate media for your system. For other media choices, refer to Chapter 6 in the On-Machine Connectivity Catalog, publication M116-CA001.Description Cat. No.DeviceNet handheld configuration terminal 193-DNCTIP20 flat media 1485-P1W100Trunk-line connector, IDC 1485P-K1TG4Drop-line connector, IDC 1485P-K1DL4Terminating resistor, IDC 1485P-K1TR4Terminal block, IDC 1485P-K1TLR4Flat-to-thin round cable converter, IDC 1485P-K1GK45-pin open style connector, IDC 1485P-K1G4-Y5Manual crimp tool 1485A-KCRIMPControlLogix DeviceNet scanner module 1756-DNBCompactLogix DeviceNet scanner module 1769-SDN4-in/2-out block I/O 120V AC relay DSA 100-DNY41R4-in/2-out block I/O 24V DC relay DSA 100-DNY42RAC/DC DIN-rail mount power supply, DeviceNet 4 A 1606-XLDNET4E1 DeviceNet module for 193 E1 plus overload relay 193-EDNPowerFlex DeviceNet communication interface 22-COMM-DThin round cable, 50 m (164 ft) roll 1485-P1C50Terminating resistor 1485A-C2InstallLocate and mount the modules. Follow these steps to crimp the connectors.For thin round media, refer to the DeviceNet Media Design Installation Guide,publication DNET-UM072.Important: •Do not crimp the edge of the connector cover.•Do not crimp at the back of the crimp block.•Be sure to set the connector in the correct orientation.1. Set the center of the connector cover (see arrows) in the center of the crimp block of the crimp tool.2. Crimp the connector until you hear the connector lock into place.Configure193-DNCT Handheld Configuration Device, Revision 2.1 or LaterThe 193-DNCT DeviceNet configuration terminal is a handheld device that can configure, program, retrieve historical data, and monitor DeviceNet components, while directly connected to the network. Commissioning is made simple with the capability to upload, store, and download complete device configurations, while online with the network. This tool also aides in troubleshooting by providing physical layer diagnostics and network bandwidth statistics.Node Commissioning on Your DeviceNet NetworkOnce the DeviceNet media and/or cabling system is installed, you need to assign a unique node number, between 0 and 63, to every device on the DeviceNet network. You can do this by setting the rotary or dip switches or by using the Node Commission function via software or a handheld device. Set each device on the network to the same communication rate: 125, 250, 250, or 500 Kbps.Important: The factory default for each device is 125 Kbps, set to node number 63 with autobaud enabled.Starting the 193-DNCT TerminalAttach and connect the 193-DNCT terminal to the DeviceNet network. This display appears for10 seconds.Important: The DeviceNet configuration terminal is shipped so that when it is placed on a DeviceNet network for the first time, it automatically sets its baud rate to that of thetraffic on the network. Auto Addressing automation assigns an unused network nodeaddress to the terminal.After 10 seconds, a Network Who dialog box similar to the one shown below appears with all nodes and associated devices on the network.Notice that the node number in the upper right corner constantly changes. This shows the node number that the 193-DNCT terminal is currently scanning during the active network browse it is performing.If the Network Who dialog box does not appear after 10 seconds, the 193-DNCT terminal is set to Autobaud Enabled and cannot determine a communication rate as no communication is currently occurring on the network.Follow these steps to disable Autobaud.1. On the 193-DNCT keypad, press ESC .2. Select AutoBaud and press the <Up Arrow> to choose Disable.Follow these steps to set the communication rate to 125 Kbps.1. Press SEL to advance to BaudRate.2. Select BaudRate and press the Up Arrow to choose 125 Kbps.3. Press ESC to exit Setup.Change Node Number 63 to Node Number 1No entry exists for node 1 in the Network Who dialog box because the device is currently at node 63. Follow these steps to change to node number from 63 to 1.1. On the 193-DNCT keypad, press the Down Arrow to scroll through the list and select ‘63 – NoProduct Name’.2. Press Enter to advance to the configuration dialog box.3. Press the Down Arrow to select Tools.4. Press Enter .A dialog box appears with NodeComm selected.5. Press Enter again.The Node Commissioning dialog box appears with BaudRate selected.6. Press SEL to advance to Address and select it.7. To change the Address, press 1 and then Enter .An Apply Changes dialog box appears.Tip: You can use the Up Arrow and Down Arrow to scroll through the node numbers.8. Press SEL and then Enter to complete the node commissioning.After approximately 2 seconds the 193-DNCT terminal re-initializes. In another 10 seconds, the terminal again displays the Network Who dialog box with node 1 now visible.Create the 1756-DNB and 1769-SDN Scanlist by Using AutoScanThe DeviceNet network AutoScan feature allows a scanner to automatically map a network of slave devices into its scanlist without the use of RSNetWorx for DeviceNet software. This greatly improves the ease of setting up a DeviceNet network, especially networks comprised of simple devices.When you enable AutoScan, the 1756-DNB or 1769-SDN scanner module searches for devices on the network that are not yet mapped. Once a qualifying device is found, the scanner adds the device to its scanlist and maps its I/O data into a predefined location in the scanner’s I/O memory table. This location is based on the device’s node address and the mapping size.AutoScan is not enabled initially. You must enable AutoScan so that devices are automatically added to the scanlist whenever the scanner module is in Idle mode. The mapping size provides the scanner module with the number of bytes per node to allocate in the I/O tables. Set the mapping size so that it is higher than the maximum input or output size of every device on the network. If a device found on the network has an input or output size larger than the mapping size you set, it will not be added to the scanlist.In this example, the mapping size is set to 32 bytes per node. The 193-DNCT terminal configures and originates AutoScan from a special menu, created specifically for that purpose.1. Turn the key on the front of the 1756-L63 controller (in slot 2) completely clockwise.This puts the ControlLogix controller into Program mode, which also puts the scanner module into Idle mode.2. In the Network Who dialog box, press the Up Arrow to navigate to and select the first line(0 – 1756-DNB DeviceNet Scanner).3. Press Enter to go to its configuration dialog box.4. Press the Down Arrow to navigate to and select Scanner and press Enter .5. Press the Down Arrow to navigate to and select AutoScan and press Enter .This AutoScan Setup dialog box appears.6. If AutoScan is selected and set to Disable, press the Up Arrow to change to Enable.7. Press SEL to select Mapping and press 3, 2, and then Enter .8. Press SEL and then Enter to save your changes.AutoScan begins and the Active Nodes value increments. When the value reaches a node count of 6, AutoScan is finished and found all 6 nodes on the network.9. Select AutoScan and press the Up Arrow to change to Disable.10. Press SELtwice and then press Enter to save your changes.AutoScan is disabled in the scanner.11. Press ESC three times to return to the Network Who dialog box on the 193-DNCT terminal.12. Turn the key on the front of the 1756-L63 controller (in slot 2) completely counter-clockwise.This puts the ControlLogix controller back into Run mode, which will also put the scanner module into Run mode, provided that the scanner run bit is set by the logic or data table.View the I/O Mapping InformationOnce all of the devices have been added to the scanlist via AutoScan, you can check the I/O data mapping that was generated by AutoScan. The 193-DNCT terminal can view the input and output data sizes along with the input and output data mapping assignments for each device.1. In the Network Who dialog box, press the Up Arrow to navigate to and select the first line(0 – 1756-DNB DeviceNet Scanner).2. Press Enter to go to its configuration dialog box.3. Press the Down Arrow to navigate to and select Scanner and press Enter .4. Press the Down Arrow to navigate to and select ScanList and press Enter .This ScanList dialog box appears.5. Press the Down Arrow to navigate to and select 5 – E1 Plus and press Enter .A dialog box appears with the mapping details of the E1 Plus devices scanlist entry. You cantemporarily disable the 1756-DNB scanner scanlist entry.6. Press SEL to select Mapping.This entry lets you modify the size of the native data location for the controller you are using.For example, the Logix-based controllers use a 32 bit Dword for each location in their data table while some other controllers may use only a 16 bit word. Depending on the native data size of the controller you are using, you may need to modify this entry, to accurately view the data mapping assignments for a device in the scanlist.•The input mapping line displays an 8 to signify an input size of 8 bytes of data going back to the scanner.•The next line displays D40:0 --- D41:31 to signify that the data starts at Dword 40, bit 0 of the input table and continues contiguously to Dword 41, bit 31. Therefore the mapping takestwo complete, 32 bit, Dword locations in the data table. The output mapping line displays a 1to signify an output size of 1 byte of data coming from the scanner.•The last line displays D40:0 --- D40:7 to signify that the data starts at Dword 40, bit 0 of the output table and continues contiguously to Dword 40, bit 7.7. Press the Down Arrow to change the mapping value.Notice the effect this change has on the mapping details.8. Press ESC four times to return to the Network Who dialog box on the 193-DNCT terminal.Example: Configure the E1 OverloadWith your fully wired and operational network, there is usually some configuration required for one or more of the devices, including how the device will behave on the DeviceNet network or how the device will act as its main function. The 193-DNCT terminal can configure and monitor parameters in the devices connected to the network. In this example, the 193-DNCT terminal changes the OverLoad Warning Level parameter in the E1 Plus overload unit.1. In the Network Who dialog box, press the Down Arrow to navigate to and select 5 – E1 Plus.2. Press Enter to go to the E1 Plus configuration dialog box.3. Press the Down Arrow to navigate to and select Params and press Enter.Device parameters can be viewed by Groups of similar functions or as a Numerical Listing.4. Press the Down Arrow to navigate to and select Num List and press Enter.The 193-DNCT terminal now displays parameter 1, the Average %FLA parameter.Important: Additional information is provided at the bottom of the display for each parameter display, including the parameter description (that scrolls continuously), minimum andmaximum values, and if the parameter is read only.5. Press 1, then 7, and press Enter to display parameter 17 (the OL Warning Level configuration).The OL Warning Level parameter 17 displays with a value of 80%.6. Press the SEL , then press 9, 0, and Enter to change the value to 90%.Notice how the configuration value changes to 90% on the display. This value was actually written to the E1 Plus and has been stored into nonvolatile memory within the device.MaintainDiagnostics and TroubleshootingThe 193-DNCT terminal has some diagnostics built in that can be used to troubleshoot a DeviceNet network. These diagnostics include bus voltages, bandwidth utilization percentage, and CAN error counts.1.Press the Down Arrow to navigate to Node 62 This DeviceNet HIM.2. Press Enter to select the HIM.3.Press the Down Arrow to navigate to and select the Network group and press Enter . This dialog box, with similar values, appears on the 193-DNCT terminal.The Max Bus % Load and CAN Errors/Sec parameters are not easily measured by other means and are valuable for troubleshooting the network. The Max Bus % Load parameter shows the maximum network bandwidth that has ever been used. If this value goes too high, communication anomalies could occur on the network due to devices being ‘starved’ for bandwidth. The CAN Errors/Sec parameter is generated if packets are being corrupted on the network, such as due to electrical noise or a bad device. This value, which should be zero on a healthy network, is a good barometer of the general health of the DeviceNet packet-delivery mechanism.Allen-Bradley, Rockwell Automation, PowerFlex, ControlLogix, CompactLogix, and RSNetWorx for DeviceNet are trademarks of Rockwell Automation, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies.Publication DNET-QR001A-EN-E – March 2009Copyright©2009 Rockwell Automation, Inc. All rights Reserved. Printed in USA.。

devicenet模块手册

devicenet模块手册

DeviceNet模块手册一、概述DeviceNet是一种用于工业自动化领域的网络通信协议,它基于CAN总线技术,专为工业设备之间的数据交换而设计。

通过使用DeviceNet模块,可以实现设备之间的快速、可靠的数据传输,支持多种通信速率和传输介质。

二、DeviceNet模块特点1、支持多种通信速率:DeviceNet模块支持多种通信速率,可以根据实际需求选择合适的通信速率,以满足不同设备的通信需求。

2、支持多种传输介质:DeviceNet模块支持多种传输介质,如双绞线、光纤等,可以根据实际应用场景选择合适的传输介质,以确保数据传输的稳定性和可靠性。

3、高效的数据传输:DeviceNet模块采用高效的通信协议,支持实时数据传输和广播通信,可以实现设备之间的快速数据交换。

4、灵活的连接方式:DeviceNet模块采用即插即用的连接方式,可以方便地连接各种工业设备,如传感器、执行器、控制器等。

5、可靠的故障检测机制:DeviceNet模块具有可靠的故障检测机制,可以实时检测通信故障,并及时进行故障隔离和恢复,以确保数据传输的可靠性和稳定性。

三、DeviceNet模块应用场景DeviceNet模块广泛应用于各种工业自动化领域,如智能制造、机器人、电力、石油、化工等。

在这些领域中,DeviceNet模块可以用于实现设备之间的数据传输和控制,提高生产效率和管理水平。

四、DeviceNet模块使用注意事项1、确保传输介质的质量:在选择和使用传输介质时,要确保其质量可靠,以满足数据传输的需求。

同时,要注意对传输介质的维护和保养,定期检查其状态。

2、合理配置通信参数:在使用DeviceNet模块时,要根据实际需求合理配置通信参数,如通信速率、数据位长度、停止位长度等。

同时,要注意参数配置的一致性,以确保设备之间的正常通信。

3、避免电磁干扰:在工业环境中,电磁干扰是常见的问题之一。

在使用DeviceNet模块时,要注意避免电磁干扰的影响,采取措施降低干扰的影响,如使用屏蔽线、加装滤波器等。

KUKA机器人培训课件DEVICENET网络配置

KUKA机器人培训课件DEVICENET网络配置
此 页 不 做 任 何 更 改
23
第二部分:配置网络 12、更改从站模块的信息
选择双击或者右击选择设置
此页不做任何更改
24
第二部分:配置网络 12、更改从站模块的信息
此 页 不 做 任 何 更 改
25
第二部分:配置网络 12、更改从站模块的信息
机器人与PLC通讯时 做从站时的的地址
传输波特率 改完之后点击OK 确认即可。
5
第二部分:配置网络 3、新建外部网络
选中“总线结 构”,右击添加 总线的类型。
6
第二部分:配置网络
4、添加网络类型 网络类型有CP5614 卡或者倍福模块
右击添加我们现场的模块的型 号
7
第二部分:配置网络 5、添加主站模块
右击添加主站模块,选中现场的模块类型,双击即可添加到总线结构里面。
8
第二部分:配置网络 6、更改主站模块的信息
选择双击或者右击设置主站模块的信息
9
第二部分:配置网络 6、更改主站模块的信息
此 页 不 做 任 何 更 改
10
第二部分:配置网络 6、更改主站模块的信息
主站模块的地址 波特率
11
第二部分:配置网络 6、更改主站模块的信息
此页不做任何更改
12
第二部分:配置网络 7、添加主站下面的从站模块
选择双击或者右击,在出来的对话框中添加博士焊机的信号(机器人做 主站从站的I\O信号)
用网线将机器人和 电脑连接起来,连接时 将电脑和机器人的IP地 址设在同一网段,打开 项目后,选择文件,查 找项目。 上传机器人原始配 置数据,加载机器人内 的项目。
3
第二部分:配置网络 1、查找项目
箭头所指是我们查 找的项目,选中后点击 右下角打开按钮。

DeviceNet网络节点扫描及配置手册

DeviceNet网络节点扫描及配置手册

RSNETWORX配置说明1、打开总线配置软件 RS NetWorx V 8.00.012、在软件中打开需要配置区域的 *.dnt 文件;如果电脑中没有配置EDS文件,将会出现上述网络中的问号,这时需要配置EDS文件 双击问号点击“是”再点击“下一步’继续点击“下一步“然后选择EDS文件存放的具体位置单击“下一步“再点击“下一步”然后选择“Change icon”改变显示图标然后连续单击“下一步”直至完成3、选择在线按钮浏览网络;4、设定连接的路径 15、选定要扫描的总线段6 软件开始扫描网络,网络扫描后会有在线标志(绿色线条)7、双击网络模块弹出网络模块的属性对话框;8、在 Module 页面下设置该模块的槽位号;9、在 Scan list 页面下设置该模块需扫描的节点;10、配置输入和输出字; 注意:输入的地址于站点号为2倍关系11、把配置下载到PLC 中,OK!12.ET200S 模块的配置过程 (前处理以RCP01为例)12.1步骤同上 先进行站点扫描12.2. 扫描完成后双击RCPO1-ET200S站点,站点地址:20 进行参数uploadINPUT SIZE 25 BYTE OUTPUT SIZE 13 BYTE12.3.双击 1756-DNB站点, 进行参数upload 点击input物理地址 为站点号X2 I:Data【40】 连续字节配置。

RCP01 模块配置为 输入模块4DI 23块,模拟量输入模块 2通道 3块,输出模块4DO 10块,模拟量输出模块 2通道 2块。

(详见图纸 EC-QD08PS-PT01-RCP01)注意:物理地址的第一个byte为耦合器诊断字节,第一个输入点 如下所示 物理地址为 Local:7:I.Data[40].9依次类推,到第23个模块时起始地址为 I:Data【43】其中模拟量模块从一个整byte起始(16位),因此第一个模拟量模块的起始物理地址为Local:7:I.Data[43].9在程序中单独处理利用BTD指令如下其结果 把Local:7:I.Data[43].9 开始的16位 cop到 RTD_Flood_Spraying_Heating.I.PV , 第一个模拟量的第一通道值 为RTD_Flood_Spraying_Heating.I.PV实际显示值的运算 模拟量模块 对应的输入信号为 4~20ma 对应的数字量 0~27648 对应量程为0-400 利用一下运算公式进行处理:400*RTD_Flood_Spraying_Heating.I.PV/27648至此得到实际需要用的值!12.4.点击output输出控制字,直接以物理起始地址开始。

22-COMM-D DeviceNet网络配置-Ver 1.0

22-COMM-D DeviceNet网络配置-Ver 1.0

22-COMM-D DeviceNet网络配置编写:上海慧桥技术部日期:2008-3-18版本: 1.0目录1. DeviceNet网络概述 (1)2. RSNetworx for DeviceNet (2)3. 组态变频器 (4)3.1 变频器DeviceNet适配器介绍 (4)3.2 配置适配器 (5)3.3 配置扫描器 (11)3.4 使用I/O报文 (15)3.5 使用显式报文 (17)1. DeviceNet网络概述DeviceNet是由AB公司开发的一种低成本的总线,其组织机构是ODV A (开放式设备网络供货商协会“Open DeviceNet Vendor Association” )。

DeviceNet总线的技术特点可归纳如下:(1)最大64个节点,125Kbps ~ 500Kbps通信速率;(2)点对点,多主或主/从通信,可带电更换网络节点,在线修改网络配置;(3)采用CAN物理层和数据链路层规约;(4)支持选通、轮询、循环、状态变化和应用触发的数据传送;(5)采用无损位仲裁机制实现按优先级发送信息;(6)既适用于连接低端工业设备,又能连接象变频器、操作终端等复杂设备。

RA的DeviceNet产品包括:◇ ControlLogix,CompactLogix,FlexLogix,PLC,SLC,MicroLogix 1500扫描器◇ 网络组态和诊断软件◇ 丰富的分布式IO平台◇ 物理介质,通讯接口◇ 条形码扫描器,操作员接口◇ 光电传感器,现场按钮站RediStation◇ 交直流变频器,软启动器,智能马达保护器等。

使用DeviceNet产品前,需正确组态该设备。

本文详细介绍了如何组态RA PowerFlex400变频器。

所涉及到的设备及软件如下:◆ 1756框架及电源,处理器1756-L61;◆ 1756-DNB;◆ PowerFlex 400变频器;◆ 22-COMM-D适配器;◆ 22-HIM-C2S操作面板;◆ 电脑;◆ RSLinx软件;◆ RSLogix 5000编程软件;◆ RSNetworx for DeviceNet软件。

OMRON之Devicenet自动分配和手动分配地址

OMRON之Devicenet自动分配和手动分配地址

Devicenet网络固定分配实验设备: CP1H-XA40DR-A CJ1W-EXT01 CJ1W-DRM21 DRT2-AD04实验目的:通过固定分配方式、快速简单的建立扫描表、不需要配置软件操作。

实验步骤:1、系统概述,硬件搭建和接线①网络拓扑图:②Devicenet线缆定义以及接线如下:其中V+和V-要接24V电源。

2、软件设置①打开CX-Integrator,点击网络------自动在线,把PLC连接上软件。

之后右键DRM21模块----连接,如下图所示:②将从站添加到主站模块下,初始默认输入地址是CIO3300开始:实验现象:1、初始默认的输出地址为CIO3300,把DIP开关8号拨on,其它为off设置量程代码0-5V,从CP1H内置模拟量的输出点接线到输入端子,CIO3300 的数据随着210输出值变化如下:2、将PLC 切换至编程模式,把n.01 位(本案例DRM21 单元号为1),即CIO 1525.01 置ON,此时模块面板显示——。

3、待DRM21 面板显示正常后(显示节点号00),置位n.09 位即1525.09置ON,此时DRM21 面板灭了1s 左右后显示88,之后又显示节点号00。

4、启动扫描表的启动开关n.00,即1525.00 置ON,此时就会根据固定分配区域2 来自动分配地址。

此时将PLC 切换至监视/运行模式后,根据CIO3500 的数值随着210变化,在CX-Integrator 软件中上载配置发现,输出开始地址也相应变更为CIO3500。

实验总结:CJ1W-DRM21固定分配地址和对应点位。

Devicenet网络手动分配实验设备: CP1H-XA40DR-A CJ1W-EXT01 CJ1W-DRM21 DRT2-AD04 实验目的:通过手动分配方式,在软件里建立扫描表。

实验步骤:2、系统概述,硬件搭建和接线①网络拓扑图:②Devicenet线缆定义以及接线如下:其中V+和V-要接24V电源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与KUKA机器人的通讯配置
一、与KUKA机器人(KR C2控制柜)的通讯配置
二、https:///a/vihexoo.html
6.1 查看软件安装情况
主要是查看弧焊软件包:ArcTechAnalog是否安装。

查看方法:准备运行—安装附加软件,如果没有安装就按照安装软件步骤进行安装。

6.2 查看DeviceNet驱动是否安装
前提:弧焊软件包ArcTechAnalog已经安装;专家模式。

6.2.1 查看弧焊软件包是否安装
配置——输入/输出驱动程序——驱动复位;如果没有安装DeviceNet驱动会显示“驱动程序没安装!”。

6.2.2 DeviceNet驱动安装
配置——输入/输出驱动程序——驱动复位;此时显示上面的两个图片,同时在界面的左下角有软按键“配置”。

6.3 通讯地址、IO配置
前提:弧焊软件包ArcTechAnalog已经安装、DeviceNet驱动已安装;专家模式。

6.3.1 设置通讯地址
机器人为主站通讯地址为0,焊机、WAGO模块为从站通讯地址大于等于1都可以,但公司已经形成规定,焊机地址为5,WAGO地址为10。

配置步骤:
上图的右下角软按键“配置”,单击进入下面的画面
再按下回车键:
按照上图中的地址配置。

6.3.2 IO地址配置
A:将DeviceNet有效
进入下个界面,将[DRIVERS]下面的“;DEVNET=2,dnInit,dn2drv.0”句首的“;”去掉。

B:进入到上个界面后,往下翻后就可以将焊机通讯IO分配
找到“[DEVNET]”这一行,在这行的下面,输入下面的内容:
C:进入到KRC\R1\System\$config.dat:
打开路径R1/System/$config,就打开了config.dat文件,红色和蓝色语句表示它包含下一级语句,绿色语句是最底层语句无下一级。

将光标移动到ARCTECHANALOG GLBALS,按:编辑——折合——打开/关闭当前折合;
将光标移动到ArcTech Outputs按:编辑——折合——打开/关闭当前折合,按照图配置下面的语句;
将光标移动到ArcTech Outputs按:编辑——折合——打开/关闭当前折合,按照图配置下面的语句。

D:SPS文件配置
打开R1/System/sps,就可以看到sps.sub文件。

光标选择USER PLC,打开折合,可以看到一条前面带“;”的解释语句make your modificationhere。

在这条语句下面输入下面的内容:
6.4 重新配置、重启动
前提:执行上面的所有操作、专家模式。

6.4.1 输入/输出重新配置
配置——输入/输出重新配置。

机器人会自动对输入的信息进行配置,当配置结束时,信息栏会出现相应的提示语句,按确认键确认即可。

6.4.2 重启机器人
完成上述所有步骤后,关机后重新启动机器人。

6.5 查看通讯连接状态
配置——输入/输出驱动程序——驱动复位,DeviceNet前面的状态小灯变成红色,表示已经连接成功。

6.6 通讯测试
显示——输入/输出端——数字输入端或显示——输入/输出端——数字输出端,用Tab键进行切换。

在输出界面下,选择一个输出点,按住白色使能键,同时按回车键,可以手动使这个输出点输出一个高电平,相应的指示灯变红。

再次按住白色使能键,同
时按回车键,高电平消失,指示灯变白。

相关文档
最新文档