统计回归模型.ppt
合集下载
回归分析实例PPT课件

通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
《基本回归模型》课件

01
多元线性回归模型是一种预测模型,通过多个自变 量来预测因变量的值。
02
它基于最小二乘法原理,通过最小化预测值与实际 值之间的残差平方和来估计参数。
03
多元线性回归模型假设因变量与自变量之间存在线 性关系,且自变量之间不存在多重共线性。
多元线性回归模平方和来估计参 数,使得预测值与实际值之间的 差距最小。
详细描述
在股票市场中,股票价格的波动受到多种因素的影响,如公司财务状况、宏观经济指标、市场情绪等 。通过收集历史股票数据,利用回归分析方法建立模型,可以预测未来股票价格的走势。这种预测可 以帮助投资者制定更合理的投资策略,提高投资收益。
预测房地产价格
总结词
利用回归模型分析房地产市场的相关因 素,如地理位置、建筑年代、周边环境 等,预测未来房地产价格走势,为购房 者和投资者提供决策依据。
调整R方值
考虑到自变量数量的拟合优度指标,用于比 较不同模型之间的优劣。
AIC准则
用于选择最优模型,AIC值越小表示模型越 优。
回归模型的扩展
04
岭回归和套索回归
岭回归(Ridge Regression)
岭回归是一种通过增加一个惩罚项来防止过拟合的线性回归方法。它通过增加一个与系数大小相关的项来调整系 数,以减少模型复杂度并提高预测的稳定性。
1
深度学习与回归模型的结合,旨在利用深度学习 的特征学习和抽象能力,提升回归模型的预测精 度和泛化能力。
2
研究重点在于设计适合回归任务的深度神经网络 结构,以及优化训练算法,以实现更高效和准确 的回归预测。
3
代表性研究包括使用卷积神经网络(CNN)处理 图像数据,循环神经网络(RNN)处理序列数据 等。
02
多元线性回归模型是一种预测模型,通过多个自变 量来预测因变量的值。
02
它基于最小二乘法原理,通过最小化预测值与实际 值之间的残差平方和来估计参数。
03
多元线性回归模型假设因变量与自变量之间存在线 性关系,且自变量之间不存在多重共线性。
多元线性回归模平方和来估计参 数,使得预测值与实际值之间的 差距最小。
详细描述
在股票市场中,股票价格的波动受到多种因素的影响,如公司财务状况、宏观经济指标、市场情绪等 。通过收集历史股票数据,利用回归分析方法建立模型,可以预测未来股票价格的走势。这种预测可 以帮助投资者制定更合理的投资策略,提高投资收益。
预测房地产价格
总结词
利用回归模型分析房地产市场的相关因 素,如地理位置、建筑年代、周边环境 等,预测未来房地产价格走势,为购房 者和投资者提供决策依据。
调整R方值
考虑到自变量数量的拟合优度指标,用于比 较不同模型之间的优劣。
AIC准则
用于选择最优模型,AIC值越小表示模型越 优。
回归模型的扩展
04
岭回归和套索回归
岭回归(Ridge Regression)
岭回归是一种通过增加一个惩罚项来防止过拟合的线性回归方法。它通过增加一个与系数大小相关的项来调整系 数,以减少模型复杂度并提高预测的稳定性。
1
深度学习与回归模型的结合,旨在利用深度学习 的特征学习和抽象能力,提升回归模型的预测精 度和泛化能力。
2
研究重点在于设计适合回归任务的深度神经网络 结构,以及优化训练算法,以实现更高效和准确 的回归预测。
3
代表性研究包括使用卷积神经网络(CNN)处理 图像数据,循环神经网络(RNN)处理序列数据 等。
02
logistic回归分析PPT优秀课件

(2)线性回归分析:由于因变量是分类变量,不能满足 其正态性要求;有些自变量对因变量的影响并非线性。
2
logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研 究某个二分类(或无序及有序多分类)目标变量与有关因素的关 系。
logistic回归的分类: (1)二分类资料logistic回归: 因变量为两分类变量的资料,可用
非条件logistic回归和条件logistic回归进行分析。非条件logistic回 归多用于非配比病例-对照研究或队列研究资料,条件logistic回归 多用于配对或配比资料。 (2)多分类资料logistic回归: 因变量为多项分类的资料,可用多 项分类logistic回归模型或有序分类logistic回归模型进行分析。
比较
调查方向:收集回顾性资料
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
病例
c
病例对照原理示意图
6
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
OR>1,说明 该因素使疾病的危险性增加,为危险因素;
OR<1,说明 该因素使疾病的危险性减小,为保护因素;
2
logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研 究某个二分类(或无序及有序多分类)目标变量与有关因素的关 系。
logistic回归的分类: (1)二分类资料logistic回归: 因变量为两分类变量的资料,可用
非条件logistic回归和条件logistic回归进行分析。非条件logistic回 归多用于非配比病例-对照研究或队列研究资料,条件logistic回归 多用于配对或配比资料。 (2)多分类资料logistic回归: 因变量为多项分类的资料,可用多 项分类logistic回归模型或有序分类logistic回归模型进行分析。
比较
调查方向:收集回顾性资料
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
病例
c
病例对照原理示意图
6
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
OR>1,说明 该因素使疾病的危险性增加,为危险因素;
OR<1,说明 该因素使疾病的危险性减小,为保护因素;
武汉大学数理统计ppt 5回归分析

…,
yn
的总变差为
:
S
2 总
( yi y)2
i 1
y
yi
yˆ 0 1 x
y i yˆ i
aˆ
yˆ
y
o
xi
x
可以证明
n
n
n
S
2 总
( y i y ) 2 ( yˆ i y ) 2 ( y i yˆ i ) 2
i 1
i 1
i 1
n
S
2 回
( yˆ i y ) 2
i 1
n
出检验.
(2)如果方程真有意义,用它预测y时,预测值与
真值的偏差能否估计?
4.线性回归方程的显著性检验
对任意两个变量的一组观察值
(xi , yi), i=1, 2, …, n 都可以用最小二乘法形式上求得 y 对 x的 回归方程, 如果y 与x 没有线性相关关系, 这种形式的回归方程就没有意义 .
i 1
ˆ 0 y ˆ1 x
x
1 n
n i 1
xi
y
1 n
n i 1
yi
n
n
若记பைடு நூலகம்Lxx ( xi x )2 xi2 nx 2
i 1
i 1
n
n
Lxy ( xi x )( yi y ) xi yi nxy
i 1
i 1
n
n
Lyy ( yi y )2 yi2 ny 2
y x 1
高尔顿对此进行了深入研究.他们将观察值在平 面直角坐标系上绘成散点图,发现趋势近乎一条直线, 计算出的回归直线方程为
yˆ 3 3 .7 3 0 .5 1 6 x
在回归分析中, 当自变量只有两个时, 称 为一元回归分析; 当自变量在两个以上时, 称 为多元回归分析. 变量间成线性关系, 称线性 回归,变量间不具有线性关系, 称非线性回归.
《回归分析 》课件

参数显著性检验
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
医学统计学课件:回归分析

利用逐步回归等方法,选择重要 的自变量,优化模型,提高预测 精度。
生存分析模型
生存分析模型概述
生存分析模型是用于研究生存时间与相关因素 之间关系的一种统计分析方法。
模型的建立与拟合
通过Cox比例风险模型等统计技术,拟合生存分 析模型,并评估模型的拟合效果。
生存曲线与影响因素
利用生存曲线描述生存时间与影响因素之间的关系,并评估不同因素对生存时 间的影响。
正态性
误差项应服从正态分布,即近似于钟形曲线。如 果误差项存在偏离正态分布的情况,需要采取措 施进行调整。
多重共线性诊断
定义:多重共线性是指自变量之间存在 较强的线性相关关系,导致模型估计失 真或不稳定。
特征值:如果特征值接近于0,则表明存 在严重的多重共线性问题。
条件指数:条件指数大于10表明模型受 到多重共线性的影响。
模型构建流程
数据清洗
对数据进行预处理,包括缺失值填充、异常值处理等,以确保数 据的质量和可靠性。
模型构建
根据已知的变量和因变量之间的关系,构建线性回归模型。
模型优化
通过逐步回归等方法对模型进行优化,以提高模型的预测精度和 稳定性。
模型评估指标
拟合优度
通过计算模型的R²值等指标,评估模型对数 据的拟合程度。
回归分析的分类
线性回归分析和非线性回归分析。
线性回归模型
线性回归模型的定义
线性回归模型是一种最常用的回归分析模型,其形式为Y = β0 + β1X1 + β2X2 + ... + βnXn。
线性回归模型的基本要素
因变量Y,自变量X1, X2, ..., Xn,以及模型中的系数β0, β1, ..., βn。
生存分析模型
生存分析模型概述
生存分析模型是用于研究生存时间与相关因素 之间关系的一种统计分析方法。
模型的建立与拟合
通过Cox比例风险模型等统计技术,拟合生存分 析模型,并评估模型的拟合效果。
生存曲线与影响因素
利用生存曲线描述生存时间与影响因素之间的关系,并评估不同因素对生存时 间的影响。
正态性
误差项应服从正态分布,即近似于钟形曲线。如 果误差项存在偏离正态分布的情况,需要采取措 施进行调整。
多重共线性诊断
定义:多重共线性是指自变量之间存在 较强的线性相关关系,导致模型估计失 真或不稳定。
特征值:如果特征值接近于0,则表明存 在严重的多重共线性问题。
条件指数:条件指数大于10表明模型受 到多重共线性的影响。
模型构建流程
数据清洗
对数据进行预处理,包括缺失值填充、异常值处理等,以确保数 据的质量和可靠性。
模型构建
根据已知的变量和因变量之间的关系,构建线性回归模型。
模型优化
通过逐步回归等方法对模型进行优化,以提高模型的预测精度和 稳定性。
模型评估指标
拟合优度
通过计算模型的R²值等指标,评估模型对数 据的拟合程度。
回归分析的分类
线性回归分析和非线性回归分析。
线性回归模型
线性回归模型的定义
线性回归模型是一种最常用的回归分析模型,其形式为Y = β0 + β1X1 + β2X2 + ... + βnXn。
线性回归模型的基本要素
因变量Y,自变量X1, X2, ..., Xn,以及模型中的系数β0, β1, ..., βn。
回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。
第九章 相关与回归分析 《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
0.2
0.4
6
7
0.6 x1 8 x2
交互作用影响的讨论 yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2
价格差 x1=0.1
yˆ x10.1 30.2267 7.7558x2 0.6712x22
价格差 x1=0.3
yˆ x10.3 32.4535 8.0513x2 0.6712x22
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y的90.54%可由模型确定 F远超过F检验的临界值
p远小于=0.05
模型从整体上看成立
2的置信区间包含零点 (右端点距零点很近)
x2对因变量y 的 影响不太显著
x22项显著
可将x2保留在模型中
销售量预测 yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22
0.55
9.26
基本模型
y 10
9.5
y ~公司牙膏销售量
9
x1~其它厂家与本公司价格差
8.5 8
x2~公司广告费用
y 0 1x1 2 x2 3 x22
7.5
7
-0.2
0
0.2
0.4
0.6
y 0 1x1 x1
y~被解释变量(因变量)
y 10
9.5
x1, x2~解释变量(回归变量, 自变量) 9 8.5
广告费用,及同期其它厂家同类牙膏的平均售价
销售 周期
1
本公司价 格(元)
3.85
其它厂家 价格(元)
3.80
广告费用 (百万元)
5.50
价格差 (元)
-0.05
销售量 (百万支)
7.38
2
3.75
4.00
6.75
0.25
8.51
29
3.80
3.85
5.80
0.05
7.93
30
3.70
4.25
6.80
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 yˆ 8.2933 (百万支)
区间 [7.8230,8.7636]
yˆ 8.3272 (百万支)
yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2
区间 [7.8953,8.7592]
yˆ 略有增加
预测区间长度更短
两模型yˆ 与x1,x2关系的比较
1
11.1342
[1.9778 20.2906 ]
2
-7.6080
[-12.6932 -2.5228 ]
3
0.6712
[0.2538.8518 -0.1037 ]
R2=0.9209 F=72.7771 p=0.0000
两模型销售量预测比较
控制价格差x1=0.2元,投入广告费x2=6.5百万元
回归模型是用统计分析方法建立的最常用的一类模型
• 不涉及回归分析的数学原理和方法 • 通过实例讨论如何选择不同类型的模型 • 对软件得到的结果进行分析,对模型进行改进
10.1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型 题 预测在不同价格和广告费用下的牙膏销售量
收集了30个销售周期本公司牙膏销售量、价格、
Stats~ 检验统计量
R2,F, p
R2=0.9054 F=82.9409 p=0.0000
结果分析 y 0 1x1 2 x2 3 x22
参数
参数估计值
置信区间
0
17.3244
[5.7282 28.9206]
1
1.3070
[0.6829 1.9311 ]
2
-3.6956
[-7.4989 0.1077 ]
0, 1 , 2 , 3 ~回归系数
8
7.5
~随机误差(均值为零的
正态分布随机变量)
7 5
5.5
6
6.5
x 7
7.5
2
y 0 1x2 2 x22
模型求解 MATLAB 统计工具箱 y 0 1x1 2 x2 3 x22 由数据 y,x1,x2估计
[b,bint,r,rint,stats]=regress(y,x,alpha)
价格差x1=其它厂家价格x3-本公司价格x4
估计x3 调整x4 控制x1
通过x1, x2预测y
控制价格差x1=0.2元,投入广告费x2=650万元
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 8.2933 (百万支)
销售量预测区间为 [7.8230,8.7636](置信度95%)
上限用作库存管理的目标值 下限用来把握公司的现金流
若估计x3=3.9,设定x4=3.7,则可以95%的把握 知道销售额在 7.83203.7 29(百万元)以上
模型改进
x1和x2对y 的影响独立
x1和x2对y 的影响有 交互作用
y 0 1x1 2 x2 3 x22
参数 参数估计值
置信区间
0
17.3244
[5.7282 28.9206]
输入 y~n维数据向量
输出 b~的估计值
x= [1 x1 x2 x22 ] ~n4数
据矩阵, 第1列为全1向量
bint~b的置信区间 r ~残差向量y-xb
alpha(置信水平,0.05)
rint~r的置信区间
参数
0 1 2 3
参数估计值 17.3244 1.3070 -3.6956 0.3486
置信区间 [5.7282 28.9206] [0.6829 1.9311 ] [-7.4989 0.1077 ] [0.0379 0.6594 ]
1
1.3070
[0.6829 1.9311 ]
2
-3.6956
[-7.4989 0.1077 ]
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y 0 1x1 2 x2 3x22 4 x1x2
参数
参数估计值
置信区间
0
29.1133
[13.7013 44.5252]
统计回归模型
10.1 牙膏的销售量 10.2 软件开发人员的薪金 10.3 酶促反应 10.4 投资额与国民生产总值和
物价指数
数学建模的基本方法 机理分析 测试分析
由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型。 通过对数据的统计分析,找出与数据拟合最好的模型
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2
yˆ
yˆ
9
9
8.5
x2=6.5 8.5
8
8
7.5 -0.2
yˆ
10 9.5
9 8.5
8 7.5
5
0
0.2
0.4
6
7
0.6 x1
x1=0.2
8 x2
7.5 -0.2
yˆ
10.5 10 9.5 9 8.5 8 5