回归模型的统计检验 - 第三节回归模型的统计检验
多元线性回归的统计检验

2
R
1
(1
R2 )
n 1
n k 1
2.方程总体线性的显著性检验(F检验)
方程显著性F检验的模型:
Yi 0 1X1i 2 X 2i ... k X ki ui
检验参数k是否显著为零。 按照假设检验的原理和程序,原假设与备择假
2是随机干扰项的方差,实际计算中用 代
替。
服从正态分布如下:
j
j N(j, 2cjj )
t j j
S
j
j j
c jj
ee n k 1
t(n k 1)
t 检验
在变量显著性检验中,针对 假设为:
设X j计的原假设和备择
H0 : j 0
给定一个显著H性1:水平j α,0得到临界值t 2
或者
2
R
F
k
2
(1 R )
(n k 1)
变量的显著性检验( t 检验)
多元线性回归模型,方程的总体线性关系式显 著的,并不能说明每个解释变量对被解释变量 的影响都是显著的。因此必须对每个解释变量 进行显著性检验,以决定是否作为解释变量被 保留在模型中。
t 统计量
参数估计量的方差:
cCoj表jv(示) 矩 2阵(X( XXX)1)主1 V对ar角(线j) 上 的2c jj第j个元素。 2
因此,在多元回归模型之家比较拟合优度,R2 不是一个合适的指标。
可调整的可决系数
思路:在样本容量一定的情况下,增加解释变 量必定使得自由度减少,所以要将残差平方和 与总离差平方和分别除以各自的自由度,剔除 变量个数对拟合优度的影响。公式如下:
RSS
2
第三节:多元线性相关与回归分析

第三节 多元线性相关与回归分析一、标准的多元线性回归模型上一节介绍的一元线性回归分析所反映的是1个因变量与1个自变量之间的关系。
但是,在现实中,某一现象的变动常受多种现象变动的影响。
例如,消费除了受本期收入水平的影响外,还会受以往消费和收入水平的影响;一个工业企业利润额的大小除了与总产值多少有关外,还与成本、价格等有关。
这就是说,影响因变量的自变量通常不是一个,而是多个。
在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。
这就产生了测定与分析多因素之间相关关系的问题。
研究在线性相关条件下,两个和两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。
多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型相类似,只是在计算上比较麻烦一些而已。
限于本书的篇幅和程度,本节对于多元回归分析中与一元回归分析相类似的内容,仅给出必要的结论,不作进一步的论证。
只对某些多元回归分析所特有的问题作比较详细的说明。
多元线性回归模型总体回归函数的一般形式如下:t kt k t t u X X Y ++⋯++=βββ221 (7.51)上式假定因变量Y 与(k-1)个自变量之间的回归关系可以用线性函数来近似反映.式中,Y t 是变量Y 的第t个观测值;X jt 是第j 个自变量X j 的第t个观测值(j=1,2,……,k);u t 是随机误差项;β1,β2,… ,βk 是总体回归系数。
βj 表示在其他自变量保持不变的情况下,自变量X j 变动一个单位所引起的因变量Y 平均变动的数额,因而又叫做偏回归系数。
该式中,总体回归系数是未知的,必须利用有关的样本观测值来进行估计。
假设已给出了n个观测值,同时1ˆβ,2ˆβ…,k βˆ为总体回归系数的估计,则多元线性回归模型的样本回归函数如下:t kt k t t e X X Y ++⋯++=βββˆˆˆ221 (7.52)(t =1,2,…,n)式中,e t 是Y t 与其估计t Y ˆ之间的离差,即残差。
第三章--回归模型的检验

对于中国居民人均消费支出的例子:
一元模型:F=285.92
二元模型:F=2057.3 给定显著性水平 =0.05,查分布表,得到临界 值:
一元例:F(1,21)=4.32 二元例: F(2,19)=3.52 显然有 F F(k,n-k-1) 即二个模型的线性关系在95%的水平下显著成立。
99.4
96.9
2758.9
1637.2
157.0
117.7
1999 4615.9 1932.1
98.7
95.7
2723.0
1566.8
169.5
123.3
2000 4998.0 1958.3
100.8
97.6
2744.8
1529.2
182.1
128.1
2001 5309.0 2014.0
100.7
2、关于拟合优度检验与方程显著性检
验关系的讨论
由
R2 1 RSS
TSS
与
F
ESS / k
RSS / n k
1
可推出: R2
kF
n k 1 kF
或
F
R2 / k
1 R2 / n k 1
三、变量的显著性检验(t检验)
方程的总体线性关系显著每个解释变量对被 解释变量的影响都是显著的
因此,必须对每个解释变量进行显著性检验, 以决定是否作为解释变量被保留在模型中。
问题:
由增加解释变量个数引起的R2的增大与拟合 好坏无关,R2需调整。
调整的可决系数(adjusted coefficient of determination)
多元线性回归模型

第二节 多元线性回归模型的参数估计
一、多元线性回归参数的最小二乘估计
二、最小二乘估计量的数值性质
三、最小二乘估计量的统计性质
四、参数的估计误差与置信区间
二 、最小二乘估计量的数值性质
ˆ ˆ ˆ 1.样本均值点在样本平面上,即Y 0 1 X 1 2 X 2
2.剩余项(残差)ei的均值为零,即 e
另外两个要求 假定8:无设定偏误,模型被正确地设定。
假定9:解释变量之间不存在完全共线性,没有精确的线性
关系。
三、多元线性回归模型的基本假定
无多重共线性假定: 各解释变量之间不存在严格的线性关系,或者说各解
释变量之间线性无关;亦即解释变量之间不存在精确的线
性关系,即是说不存在一列不全为0的数 1 , 2 , , k , 能使下式成立:
其中,残差项ei是随机扰动项ui的估计。
二 、样本线性回归模型
特别地,当K=2时,二元线性样本回归函数为
ˆ ˆ ˆ ˆ Yi 0 1 X 1i 2 X 2i
二元线性样本回归模型为:
ˆ ˆ ˆ Yi 0 1 X 1i 2 X 2i ei
2 ei ˆ X X ) 0 2X 2i Yi ( 0 1 1i 2 2i ˆ 2
e i 0 ei X 1i 0 e i X 2 i 0
2.化简得正规方程
ˆ ˆ ˆ n 0 X 1i X 2i Y i
四、参数的估计误差与置信区间
三、最小二乘估计量的统计性质
在古典线性回归模型的基本假定下,一元线性回 归模型的OLS估计量是最优线性无偏估计量,这个性
多元线性回归模型的统计检验

上的线性关系不显著。
12ቤተ መጻሕፍቲ ባይዱ
❖F检验只是把模型作为一个整体,对总体 线性关系进行检验;
❖方程在总体上存在显著的线性关系 每个解释变量对被解释变量都具有显著影响
❖还应对模型中的各个解释变量进行显著性 检验,以决定它们是否应当作为解释变量 被保留在模型之中。
可决系数R2 ESS 1 RSS
TSS
TSS
R2越接近于1,模型的拟合效果越好。
2
问题
❖ 如果在模型中增加一个解释变量,R2往往会 增大(Why?)
❖ 容易产生错觉:要使模型拟合得好,只要增 加解释变量即可。
❖ 但实际上,通过增加解释变量引起的R2的增 大与拟合好坏无关。
❖ R2度量模型拟合效果失真,R2需调整 。
9
若H0 成立,则有:
F
ESS / k
RSS /n k
1
~
F (k
,
n
k
1)
由样本数据求出F统计量的值。
(3)给定显著性水平,查表得到临界
值F(k , n-k-1)。
10
F检验的拒绝域
f (F)
1-
F F
11
(4)比较、判断 ❖ 若F F (k , n-k-1),拒绝H0,接受H1 ,模型
开关
类型,尽量选择平头
键
类的按键,以防按键
下陷。
2.开关按键和塑胶按
F检验的思想来自于TSS的分解: TSS = ESS + RSS
其中,ESS表示X对Y的线性作用结果。
考虑比值:ESS / RSS 如果这个比值较大,则X对Y的解释程 度较高,可认为二者在总体上存在线性 关系;
《计量经济学》课程标准

《计量经济学》课程标准1. 课程的性质与设计思路1.1课程的性质《计量经济学》是教育部规定经济类专业核心课程之一, 是经济类专业的专业必修课。
在经济类的各个专业的教学中占有非常重要的地位。
《计量经济学》课程的主要特点是理论与实际应用并重, 既要认真学习基本理论知识, 又要注重经济计量方法在实践中的应用。
在教学中可以抛开复杂的数学计算以及繁琐的推导和证明, 但要将深入浅出的理论分析贯彻始终。
其目的是, 通过学习、掌握计量经济学的基本原理和常用方法, 研究经济中的有关问题, 训练学生运用计量方法、经济计量模型进行创造的思维方法。
并在此基础上, 培养学生利用经济计量学的方法, 学习和实践现代经济学的基本理论以及用定量的方法分析、解决实际经济生活中有关经济学问题的能力。
课程在内容与应用上与概率论与数理统计、统计学、时间序列分析、经济学等课程有关联。
所以, 学习本课程, 必须要先学习《微积分》、《线性代数》、《概率论和数理统计》、《西方经济学》等课程, 同时, 学习者要关注在经济计量学领域的一些最新发展。
只有这样, 才能在更好地理解和掌握课程内容与方法的基础上使经济计量模型的应用更具实践性。
1.2设计思路《计量经济学》建立在经济、统计学和数理统计的基础上, 是经济学中的一门重要的独立学科。
计量经济学结合数量方法来对经济活动进行认识分析, 并辅助于计算机专门软件, 具有较强的应用性和可操作性。
本课程主要介绍了计量经济学的一般概念及工作步骤、模型估计的基本方法、模型检验与修正方法, 典型计量经济模型专题讨论、联立方程组模型的基本知识(包括模型的识别、估计、检验及应用)、计量经济模型的应用案例。
学生在学习本课程之前, 应先学习了《微积分》、《线性代数》、《经济学》(包含微观经济学和宏观经济学)、《概率论与数理统计》和《经济统计学》等课程。
教师在讲授本课程时, 首先应特别注重对经济理论的认识和经济现象的分析, 强调已学的《经济学》基础;其次突出计量经济建模基本思想的讲授, 侧重在计量经济学研究对象的理解和《经济学》、《经济统计学》与《数学》相结合的知识背景上;再次应避免在理论部分的繁杂的纯数学证明, 但对于表述基本原理和模型应用分析中的数学推导是必要的, 故应强调《微积分》、《线性代数》与《概率论与数理统计》的基础知识;最后应加强对计量经济学概念的总结和应用实例的分析, 包括计量经济专门分析软件(Eviews)的应用操作。
最大似然估计及三大检验(Wald-LM-LR)资料

第二章 线性回归模型回顾与拓展 (12-15学时)第四节 三大检验(LR Wald LM ) 一、极大似然估计法(ML )(一)极大似然原理假设对于给定样本{},Y X ,其联合概率分布存在,(),;f Y X ξ。
将该联合概率密度函数视为未知参数ξ的函数,则(),;f Y X ξ称为似然函数(Likelihood Function )。
极大似然原理就是寻找未知参数ξ的估计ˆξ,使得似然函数达到最大,或者说寻找使得样本{},Y X 出现的概率最大ˆξ。
(二)条件似然函数VS 无条件似然函数()()(),;;;f Y X f Y X f X ξθϕ=若θ与ϕ没有关系,则最大化无条件似然函数(),;f Y X ξ等价于分别最大化条件似然函数();f Y X θ和边际似然函数();f X ϕ,从而θ的最大似然估计就是最大化条件似然函数();f Y X θ。
(三)线性回归模型最大似然估计Y X u β=+,2(0,)u N I σ→2222()()(,;,)(2)exp{}2nY X Y X L Y X βββσπσσ-'--=-对数似然函数:22()()2222n n Y X Y X l LnL Ln Ln ββπσσ'--==---于是 22241ˆ(22)0ˆˆ21ˆˆ()()0ˆˆˆ22l X Y X X l n Y X Y X βσβββσσσ∂⎧''=--+=⎪⎪∂⎨∂⎪'=-+--=⎪∂⎩得到 12ˆ()1ˆMLML X X X Y e e n βσ-⎧''=⎪⎨'=⎪⎩(三)得分(Score )和信息矩阵(Information Matrix )(;,)lf Y X θθ∂=∂称为得分; 12...k l l l l θθθθ∂⎡⎤⎢⎥∂⎢⎥∂⎢⎥⎢⎥∂⎢⎥∂⎢⎥=∂⎢⎥⎢⎥⎢⎥⎢⎥∂⎢⎥⎢⎥∂⎣⎦得分向量;(Gradient ) 海瑟矩阵(Hessian Matrix ):2l H θθ∂='∂∂信息矩阵:三*、带约束条件的最小二乘估计(拉格朗日估计)在计量经济分析中,通常是通过样本信息对未知参数进行估计。
一元线性回归模型的统计检验

3. 怎样进行拟合优度检验 (1)总离差平方和的分解 已知有一组样本观测值( Xi ,Yi )(i 1, 2, , n),得到 如下样本回归直线:
Yˆi ˆ0 ˆ1Xi
Y的第i个观测值与样本均值的离差yi Yi Y 可分 解为两部分之和:
yi Yi Y Yi Yˆi Yˆi Y ei yˆi (1)
规则:p值越小,越能拒绝原假设H0.
三、回归系数的置信区间
对参数作出的点估计虽然是无偏估计,但一 次抽样它并不一定等于真实值,所以需要找到包 含真实参数的一个范围,并确定这个范围包含参 数真实值的可靠程度。
在变量的显著性检验中已经知道:
t ˆi i ~ t(n 2) i=0,1
Sˆi
给出置信度1,查自由度为(n 2)的t分布表,
假设检验的步骤: (1)提出原假设和备择假设; (2)根据已知条件选择检验统计量; (3)根据显著性水平确定拒绝域或临界值; (4)计算出统计量的样本值并作出判断。
(2)变量的显著性检验
对于最小二乘估计量ˆ1,已经知道它服从正态分布
ˆ1 ~ N(1,
2
xi2 )
由于真实的 2未知,在用它的无偏估计量ˆ 2
在上述收入——消费支出的例子中,如果给定
=0.01,查表得:
t 2 (n 2) t0.005 (8) 3.355
由于
Sˆ1 0.042
Sˆ0 98.41
于是,计算得到1、0的置信区间分别为:
(0.6345,0.9195)
(-433.32,226.98)
则
TSS RSS ESS
Y的观测值围绕其均值的总离差可分解为两部 分:一部分来自回归线(RSS),另一部分则来自随 机势力(ESS)。因此,我们可以用回归平方和RSS 占Y的总离差平方和TSS的比例来度量样本回归线 与样本观测值的拟合优度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意的问题
判定系数只是说明列入模型的所有解释变量对被 解释变量的联合的影响程度,不说明模型中每个 解释变量的影响程度(在多元中) 回归的主要目的如果是经济结构分析,不能只追 求高的判定系数,而是要得到总体回归系数可信 的估计量。判定系数高并不一定每个回归系数都 可信。 如果建模的目的只是为了预测被解释变量值,不 是为了正确估计回归系数,一般可考虑有较高的 判定系数。
判定系数与相关系数的关系
联系:数值上判定系数是相关系数的平方。 区别: ⑴前者就模型而言,后者就两个变量而言。 ⑵前者说明解释变量对被解释变量的解释程度, 后者说明两变量线性依存程度。 ⑶前者度量的不对称的因果关系,后者度量的不 含因果关系的对称相关关系。 ⑷前者取值[0,1]非负,后者取值[-1,1],可正可 负。
2 2 2 ˆ ˆ y y y y y y i i i i
y
yi
ei
yi y
ˆi y y
SRF
y
xi
x
TSS ( yi y ) 2 ˆi y )2 ESS ( y ˆi )2 RSS ( yi y
2
补充:关于假设检验(在进行F/T统计检 验之前)
假设检验是统计推断的一个主要内容,它的基本任务是根 据样本所提供的信息,对未知总体分布的某些方面的假设 作出合理的判断。 假设检验的程序是,先根据实际问题的要求提出一个论断, 称为统计假设;然后根据样本的有关信息,对假设的真伪 进行判断,作出拒绝或接受假设的决策。 假设检验的前提是知道所估计的样本回归系数概率分布性 质,即对总体回归系数某种原假设成立时。 假设检验的基本思想是概率性质的反证法。 概率性质的反证法的根据是小概率事件原理,该原理认为 “小概率事件在一次试验中几乎是不可能发生的,如果该小 概率事件竟然发生了,就认为原假设不正确,而拒绝原假 设,不拒绝备则假设”。 下面讲授的模型的显著性检验及解释变量的显著性检验都 基于此基础。
案例2.4
p45
⒈总变差的分解
设估计的多元线性回归模型为:
ˆ ˆ x ˆ x ˆ x e yi 0 1 1i 2 2i k ki i
分析Y的观测值、估计值和平均值的关系
ˆi y yi y ˆi yi y y
因为 yi y 0 ,将上式两边平方加总,可 证得
H 0 : 1 2 , k 0
即模型线性关系不成立。备择假设为: H1 : 1, 2 ,, k 不全为零
对于一元线性回归模型,假设为: H 0 : 1 0 H1 : 1 0 然后根据样本观测值和估计值,计算 F 统计量 的数值:
F ESS RSS k
Yi 由于Yi 服从正态分布,根据数理统计学中的定义, 的一
组样本的平方和服从 2 分布。所以有:
2 ˆ Y )2 ESS (Y i ~ (k )
2 ˆ )2 RSS (Yi Y i ~ ( n k 1)
即回归平方和、 残差平方和分别服从自由度为k
2
和
( n k 1)
ห้องสมุดไป่ตู้
对于一元回归模型,
S ˆ
1
误差项方差的估计量, 对于二元回归模型,
ˆ2
2 ˆ x ,其中 为随机
2 i
ˆ2
ˆ Yi Y i
n k 1
y
2
2 i
n2
ˆ 2 x2 1 i
ˆ ) SE ( 1 ˆ ) SE ( 2
x x x x x ˆ x x x x
t 如果
t ) (n k 1 < 2 ,则在(1-α )的置
信概率下接受原假设 H0,表明在(1-α ) 的置信概率下,与 0 没有什麽差别, 即变量 Xi 对被解释变量的影响是不显著 的。
用P值判定参数的显著性
假设检验的p值 p值是根据既定的样本数据所计算的统计量,拒绝原 假设的最小显著性水平。 统计软件中(EViews,SPSS,SAS)通常都给出了检验的 p值。 方法:将给定的的显著性水平与p值比较: 若>p, 则在显著性水平下拒绝原假设H0,即认为X对Y 有显著影响。 若<=p, 则在显著性水平下接受原假设H0,即认为X对 Y没有显著影响。 规则:当p< 时,p值越小,越能拒绝原假设H0。
i
标准差。
2 ˆ
n k 1 2 2 2 ˆ e y y i i i
2 2 2 2 2 ˆ ˆ ˆ yi 1 x1i 2 x2i
2 e
计算出 t 统计量后,要选定一个显著性水平 , 结合自由度 (n k 1) ,由 t 分布表(见书后附表) ,
第三节 回归模型的统计检验
对于样本回归模型拟合总体模型,我们通常要进 行经济检验、统计检验、计量检验等。 统计检验则是在一定概率下求出参数,检验样本 对总体的代表性、影响关系是否显著等问题。主 要通过一些统计检验方法来保证模型在统计意义 上(即以样本推断总体)的可靠性。 我们所要进行的统计检验包括两方面,一方面检 验回归方程对样本数据的拟合程度,通过可决系 数;另一方面检验回归方程的显著性,通过假设 检验对模型中被解释变量与解释变量之间的线性 关系在总体上是否显著成立作出判断,包括对回 归方程线性关系的检验和对回归系数显著性的检 验。
的
分布。
进一步根据数理统计学中的定义,如果构造一个统计量
ESS F RSS k
(n k 1)
则该统计量服从自由度为(k,n-k-1)的F分布。
2、方程显著性 F 检验的步骤
对回归方程线性关系显著性的检验采用 F 检验,检验 依据样本估计的回归方程所体现的被解释变量与解释 变量之间的线性关系在总体上是否显著成立, 即是检验 总体模型 Yi 0 1 X 1i 2 X 2i k X ki i i=1,2,…,n 中的参数是否显著不为 0。 按照假设检验的原理与程序, 首先提出假设,原假设为:
在应用过程中我们会发现,如果在模型中增加一 个解释变量,模型的解释功能增强了,可决系数 R 2 计
2 ˆ y y 算公式中的分子——回归平方和 i 就会增大,
因而 R 就增大。这就给人一种错觉:似乎要使模型拟 合得好,就必须增加解释变量。但是,在样本容量一 定的情况下,增加解释变量必定使得自由度减少。所 以,用以检验拟合优度的统计量必须能够防止这种倾 2 2 R R 向,我们可以用自由度来调整 ,用 来表示调整 后的可决系数,以剔除解释变量数目与样本容量的影 响,使具有不同样本容量和解释变量数目的回归方程 可以进行拟合优度的比较。
F检验与R2的关系
根据二者关系,有需注意的几个问题: ⑴F检验实际上也是判定系数的显著性检验。 ⑵如果模型对样本有较高的拟合优度,F检 验一般都能通过。 ⑶实际应用中不必过分苛求R2值的大小, 重要的是考察模型的经济意义是否合理。
如果所计算的 F > F ( k , n k 1) ,则在(1- ) 的置信概率下拒绝原假设 H 0 , 即模型的线性关系显 著成立,模型通过方程显著性检验。如果所计算的
2、拟合优度检验统计量:可决系数(判
定系数)R2和校正可决系数 R2
(1)可决系数
2 R 用可决系数 进行拟合优度检验,可决系
数的计算公式为:
2 ˆ y y R2 i 2 y y i
0 R 2 1 ,该统计量越接近于 1,模型
的拟合优度越高。
判定系数不仅反映了模型拟合程度的优劣,而且有 直观的经济含义:它定量地描述了y的变化中可以 用回归模型来说明的部分,即在被解释变量的变动 中,由模型中解释变量所引起的比例。 见前一节例题,解释意义 判定系数的特点: ⑴判定系数取值范围[0,1]。 ⑵随抽样波动,样本判定系数是随抽样而变动的随 机变量。 ⑶判定系数是非负的统计量。
t ( n k 1) 查得临界值 。
2
t ( n k 1 ) t t 如果计算出的 统计量的绝对值 > ,
2
则在(1-)的置信概率下拒绝原假设 H 0 。表
ˆ 明在(1-)的置信概率下, i 不是由 i 0 这样的
总体产生的,i 显著地不为 0,即变量X i 对被 解释变量的影响是显著的;
一、模型的拟合优度检验
所谓拟合优度,即模型对样本数据的近似 程度。由于实际观察得到的样本数据是对 客观事实的一种真实反映,因此,模型至 少应该能较好的描述这一部分客观实际情 况。为了考察模型的拟合优度,需要构造 一个指标——判定系数(可决系数)。 认识判定系数之前让我们回顾一下关于样 本与总体回归函数,了解总离差分解。
F < F ( k , n k 1) ,则在(1- )的置信概率下接受
原假设 H 0 ,即模型的线性关系显著不成立,模型未 通过方程显著性检验。
见书例题
三、解释变量的显著性检验
解释变量显著性检验即对回归系数的显著性 进行检验,如果变量是显著的,那么回归系 数应该显著地不为0。于是,在变量显著性 检验中设计的原假设为: H0:i=0 而备择假设为: H1: i0 其中 的下角标i,在一元回归模型中取值1: 在二元回归模型中取值1、2。
2
( n k 1)
ˆi y / k y 2 ˆ y y i i / n k 1
R /k F 2 1 R / n k 1
2
k 为模型中解释变量的个数, R 2 为判定系数, 其中,
n 为样本容量。
F 统计量服从自由度为 ( k , n k 1) 的 F 分布。选定 一个显著性水平 ,查 F 分布表(见本书附录) , 可以得到一个临界值 F ( k , n k 1) 。