多元线性回归的统计检验

合集下载

多元线性回归模型的统计检验

多元线性回归模型的统计检验
在总体上存在显著的线性关系; ❖ 若F F (k , n-k-1),接受H0 ,模型在总体
上的线性关系不显著。
12ቤተ መጻሕፍቲ ባይዱ
❖F检验只是把模型作为一个整体,对总体 线性关系进行检验;
❖方程在总体上存在显著的线性关系 每个解释变量对被解释变量都具有显著影响
❖还应对模型中的各个解释变量进行显著性 检验,以决定它们是否应当作为解释变量 被保留在模型之中。
可决系数R2 ESS 1 RSS
TSS
TSS
R2越接近于1,模型的拟合效果越好。
2
问题
❖ 如果在模型中增加一个解释变量,R2往往会 增大(Why?)
❖ 容易产生错觉:要使模型拟合得好,只要增 加解释变量即可。
❖ 但实际上,通过增加解释变量引起的R2的增 大与拟合好坏无关。
❖ R2度量模型拟合效果失真,R2需调整 。
9
若H0 成立,则有:
F
ESS / k
RSS /n k
1
~
F (k
,
n
k
1)
由样本数据求出F统计量的值。
(3)给定显著性水平,查表得到临界
值F(k , n-k-1)。
10
F检验的拒绝域
f (F)
1-
F F
11
(4)比较、判断 ❖ 若F F (k , n-k-1),拒绝H0,接受H1 ,模型
开关
类型,尽量选择平头

类的按键,以防按键
下陷。
2.开关按键和塑胶按
F检验的思想来自于TSS的分解: TSS = ESS + RSS
其中,ESS表示X对Y的线性作用结果。
考虑比值:ESS / RSS 如果这个比值较大,则X对Y的解释程 度较高,可认为二者在总体上存在线性 关系;

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法

对多元线性回归模型的各种检验方法对于形如u X X X Y k k +++++=ββββ 22110 (1)的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。

特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。

如果拒绝0H ,说明解释变量j X 对被解释变量Y 具有显著的线性影响,估计值j βˆ才敢使用;反之,说明解释变量j X 对被解释变量Y 不具有显著的线性影响,估计值j βˆ对我们就没有意义。

具体检验方法如下:(1) 给定虚拟假设 0H :j j a =β;(2) 计算统计量 )ˆ(ˆ)ˆ()(ˆjj j j j j Se a Se E t βββββ-=-= 的数值; 11ˆ)ˆ(++-==j j jj jj j C C Se 1T X)(X ,其中σβ(3) 在给定的显著水平α下(α不能大于1.0即10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;(4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )ˆ(ˆj jj Se t βββ-=必须服从已知的t 分布函数。

什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。

我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21 =。

这保证了误差u 自身的随机性,即无自相关性,0))())(((=--j j i i u E u u E u Cov 。

(2) 条件期望值为0。

给定解释变量的任何值,误差u 的期望值为零。

多元线性回归模型检验

多元线性回归模型检验

多元线性回归模型检验引言多元线性回归是一种常用的统计分析方法,用于研究两个或多个自变量对目标变量的影响。

在应用多元线性回归前,我们需要确保所建立的模型符合一定的假设,并进行模型检验,以保证结果的可靠性和准确性。

本文将介绍多元线性回归模型的几个常见检验方法,并通过实例进行说明。

一、多元线性回归模型多元线性回归模型的一般形式可以表示为:$$Y = \\beta_0 + \\beta_1X_1 + \\beta_2X_2 + \\ldots + \\beta_pX_p +\\varepsilon$$其中,Y为目标变量,$X_1,X_2,\\ldots,X_p$为自变量,$\\beta_0,\\beta_1,\\beta_2,\\ldots,\\beta_p$为模型的回归系数,$\\varepsilon$为误差项。

多元线性回归模型的目标是通过调整回归系数,使得模型预测值和实际观测值之间的误差最小化。

二、多元线性回归模型检验在进行多元线性回归分析时,我们需要对所建立的模型进行检验,以验证假设是否成立。

常用的多元线性回归模型检验方法包括:1. 假设检验多元线性回归模型的假设包括:线性关系假设、误差项独立同分布假设、误差项方差齐性假设和误差项正态分布假设。

我们可以通过假设检验来验证这些假设的成立情况。

•线性关系假设检验:通过F检验或t检验对回归系数的显著性进行检验,以确定自变量与目标变量之间是否存在线性关系。

•误差项独立同分布假设检验:通过Durbin-Watson检验、Ljung-Box 检验等统计检验,判断误差项是否具有自相关性。

•误差项方差齐性假设检验:通过Cochrane-Orcutt检验、White检验等统计检验,判断误差项的方差是否齐性。

•误差项正态分布假设检验:通过残差的正态概率图和Shapiro-Wilk 检验等方法,检验误差项是否满足正态分布假设。

2. 多重共线性检验多重共线性是指在多元线性回归模型中,自变量之间存在高度相关性的情况。

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法

对多元线性回归模型的各种检验方法对于形如u X X X Y k k +++++=ββββΛΛ22110 (1)的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。

特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。

如果拒绝0H ,说明解释变量j X 对被解释变量Y 具有显著的线性影响,估计值j βˆ才敢使用;反之,说明解释变量j X 对被解释变量Y 不具有显著的线性影响,估计值j βˆ对我们就没有意义。

具体检验方法如下:(1) 给定虚拟假设 0H :j j a =β;(2) 计算统计量 )ˆ(ˆ)ˆ()(ˆjj j j j j Se a Se E t βββββ-=-= 的数值; 11ˆ)ˆ(++-==j j jj jj j C C Se 1T X)(X ,其中σβ(3) 在给定的显著水平α下(α不能大于1.0即10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;(4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )ˆ(ˆj jj Se t βββ-=必须服从已知的t 分布函数。

什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。

我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。

这保证了误差u 自身的随机性,即无自相关性,0))())(((=--j j i i u E u u E u Cov 。

(2) 条件期望值为0。

给定解释变量的任何值,误差u 的期望值为零。

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法多元线性回归模型是常用于数据分析和预测的方法,它可以用于研究多个自变量与因变量之间的关系。

然而,仅仅使用多元线性回归模型进行参数估计是不够的,我们还需要对模型进行各种检验以确保模型的可靠性和有效性。

下面将介绍一些常用的多元线性回归模型的检验方法。

首先是模型的整体显著性检验。

在多元线性回归模型中,我们希望知道所构建的模型是否能够显著解释因变量的变异。

常见的整体显著性检验方法有F检验和显著性检查表。

F检验是通过比较回归模型的回归平方和和残差平方和的比值来对模型的整体显著性进行检验。

若F值大于一定的临界值,则可以拒绝原假设,即模型具有整体显著性。

通常,临界值是根据置信水平和自由度来确定的。

显著性检查表是一种常用的汇总表格,它可以提供关于回归模型的显著性水平、标准误差、置信区间和显著性因素的信息。

通过查找显著性检查表,我们可以评估模型的显著性。

其次是模型的参数估计检验。

在多元线性回归模型中,我们希望知道每个自变量对因变量的影响是否显著。

通常使用t检验来对模型的参数估计进行检验。

t检验是通过对模型的回归系数进行检验来评估自变量的影响是否显著。

与F检验类似,t检验也是基于假设检验原理,通过比较t值和临界值来决定是否拒绝原假设。

通常,临界值可以通过t分布表或计算机软件来获取。

另外,我们还可以使用相关系数来评估模型的拟合程度。

相关系数可以用来衡量自变量与因变量之间的线性关系强度,常见的相关系数包括Pearson相关系数和Spearman相关系数。

Pearson相关系数适用于自变量和因变量都是连续变量的情况,它衡量的是两个变量之间的线性关系强度。

取值范围为-1到1,绝对值越接近1表示关系越强。

Spearman相关系数适用于自变量和因变量至少有一个是有序变量或者都是有序变量的情况,它衡量的是两个变量之间的单调关系强度。

取值范围也是-1到1,绝对值越接近1表示关系越强。

最后,我们还可以使用残差分析来评估模型的拟合程度和误差分布。

经济统计学中的多元线性回归分析

经济统计学中的多元线性回归分析

经济统计学中的多元线性回归分析经济统计学是研究经济现象的一门学科,通过对经济数据的收集、整理和分析,帮助我们了解经济运行规律和预测未来走势。

而多元线性回归分析是经济统计学中一种常用的分析方法,用来研究多个自变量对一个因变量的影响程度。

多元线性回归分析的基本原理是通过建立一个数学模型,来描述自变量与因变量之间的关系。

在经济统计学中,自变量通常是影响经济现象的各种因素,如GDP、通货膨胀率、利率等;而因变量则是我们想要研究的经济现象本身,比如消费水平、投资额等。

通过多元线性回归分析,我们可以了解各个因素对经济现象的贡献程度,从而更好地理解和预测经济运行情况。

在进行多元线性回归分析之前,我们首先需要收集相关的数据。

这些数据可以通过各种途径获得,如调查问卷、统计年鉴、金融报表等。

然后,我们需要对数据进行整理和清洗,以确保数据的准确性和可靠性。

接下来,我们可以使用统计软件,如SPSS、Excel等,来进行回归分析。

多元线性回归分析的核心是建立回归模型。

回归模型可以用数学公式表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示误差项。

回归系数表示自变量对因变量的影响程度,而误差项则代表模型无法解释的部分。

在建立回归模型之后,我们需要进行模型的检验和解释。

模型检验可以通过各种统计指标来进行,如R方、调整R方、F统计量等。

R方表示回归模型对因变量变异的解释程度,数值越接近1,说明模型的拟合程度越好。

F统计量则表示回归模型的整体显著性,数值越大,说明模型的拟合程度越好。

除了模型检验,我们还可以通过回归系数的显著性检验来解释模型。

回归系数的显著性检验可以通过计算t值和p值来进行。

t值表示回归系数与零之间的差异程度,而p值则表示这种差异是否显著。

一般来说,当p值小于0.05时,我们可以认为回归系数是显著的,即自变量对因变量的影响是存在的。

9.3-spss多元回归分析教案

9.3-spss多元回归分析教案

n
n
(yˆi y)2
(yi yˆ)2
R2
i1 n
ห้องสมุดไป่ตู้
1
i1 n
(yi y)2
(yi y)2
i1
i1
说明:R2体现了回归方程所能解释的因变量变差的比例;1-R2则体现了因
变量总变差中,回归方程所无法解释的比例。R2越接近于1,则说明回
归平方和占了因变量总变差平方和的绝大部分比例,因变量的变差主要
由自变量的不同取值造成,回归方程对样本数据点拟合得好。Spss中
1、多重共线性分析(仅多元回归分析检验)
多重共线性是指解释变量之间存在线性相关关系的现象,该现象的 存在会导致:有可能回归方程的F统计量高度显著,而每个t统计量不显 著,严重影响回归效果。测度多重共线性一般有以下方式:
(spass操作:分析-回归-线性-在统计量对话框中选共线性分析) 1、容差越大则与方程中其他自变量的共线性越低,应进入方程. 具有太小容
分布在对角线上,可以判断残差服从正态分布。
2、检验残差的独立性(DW检验)。
n
(et et1)2
DW检验用来检验残差的自相关。 DW t2 n
2(1)
检验统计量为:
et2
t2
◇判断:DW=2表示无自相关,在0-2之间说明存在正自相关,在2-4之
间说明存在负的自相关。一般情况下,DW值在1.5-2.5之间即可说明
残差是指由回归方程计算得到的预测值与实际样本值之间的差距,定
义为: e i y i y ˆ i y i ( 0 1 x 1 2 x 2 . .p x . p )
对于线性回归分析来讲,如果方程能够较好的反映被解释变量的特征 和规律性,那么残差序列中应不包含明显的规律性。

3.3多元线性回归模型的检验

3.3多元线性回归模型的检验
原假设 H0 : 2 = 3 = = k = 0
即所有解释变量联合起来对被解释变量的影响不显著
备择假设 H1 : j ( j = 1,2,k) 不全为0。
回归方程的显著性检验(F-检验)
建立F统计量:
F = ES S (k −1) = RSS (n − k)
(Yˆi (Yi
− Y )2 − Yˆi )2
(j=1,2,……k)
与备择假设 : H1 : j 0
构造统计量t为:
t*
=
ˆ j − j
^
SE
(
ˆ
j
)
=
ˆ
ˆ j
c jj
ቤተ መጻሕፍቲ ባይዱ
~ t(n − k)
给定显著性水平α,查t分布表,得临界值 t 2 (n − k)
回归参数的显著性检验(t-检验)
如t的绝对值大于t 临界值,就拒绝H0 而不拒绝H1
即认为解释变量 Xj对被 解释变量Y的影响是显著的
3.3多元线性回归模型的检验
多元线性回归模型的检验
一、拟合优度检验
定义:在一元线性回归模型中,我们用可决系数R2来衡 量估计的模型对观测值的拟合程度。
拟合优度检验
在多元回归中这一比值称为多重可决系数
用 R2 表示
多元线性回归中 Y 的变差分解式为 TSS = RSS + ESS
拟合优度检验
回归平方和 ESS 越大,残差平方和 RSS就越小,被解释 变量观测值总变差中能由解释变量解释的那部分变差就越大, 模型对观测数据的拟合程度就越高。
如果计算的F值小于临界值 ,则不拒绝零假设,说明回归 模型没有显著意义,即所有解释变量联合起来对Y没有显著影 响。
方程显著性检验
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

βj
βj −βj
S
βj
=
βj −βj
e′e c jj n − k −1
t (n − k − 1)
t 检验
在变量显著性检验中,针对 设计的原假设和备择 Xj 假设为:
H0 : β j = 0
给定一个显著性水平α,得到临界值 根据: t > t (n − k − 1)拒绝原假设H
α
0 2
H1:β j ≠ 0
n −1 R = 1 − (1 − R ) n − k −1
2 2
2.方程总体线性的显著性检验(F检验)
方程显著性F检验的模型:
Yi = β 0 + β1 X 1i + β 2 X 2i + ... + β k X ki + u i
检验参数 βk 是否显著为零。 按照假设检验的原理和程序,原假设与备择假 设:
F > Fα (k , n − k − 1)拒绝原假设H 0 F ≤ Fα (k , n − k − 1)接受原假设H 0
拟合优度与F检验关系1
不同点 1.拟合优度:从已经估计的模型出发,检验它对 样本观测值得拟合程度 2.F检验:从样本观测值出发检验模型总体的线 性关系的显著性。 联系 模型对样本的观测值拟合程度高,模型总体线 性关系的显著性就强
多元线性回归模型的统计检验
1、拟合优度检验 2、方程总体线性的显著性检验(F检验) 3、变量的显著性检验(t检验)
1.拟合优度检验
可决系数与调整可决系数 总离差平方和TSS,回归平方和ESS,残差平方和 RSS
TSS = ∑ Yi − Y
(
)
2
ESS = ∑ Y i − Y
拟合优度与F检验关系2
两个统计量之间的关系式:
n −1 R = 1− n − k − 1 − kF
2
或者
F= R (1 − R )
2 2
k
(n − k − 1)
变量的显著性检验( t 检验)
多元线性回归模型,方程的总体线性关系式显 著的,并不能说明每个解释变量对被解释变量 的影响都是显著的。因此必须对每个解释变量 进行显著性检验,以决定是否作为解释变量被 保留在模型中。
t 统计量ቤተ መጻሕፍቲ ባይዱ
参数估计量的方差:
Cov( β ) = σ 2 ( X ′X ) −1
c jj表示矩阵 XX)−1主对角线上的第j个元素。 ( ′ 2 2 σ 是随机干扰项的方差,实际计算中用 σ 代
替。 β j 服从正态分布如下:
N ( β j , σ 2 c jj )
t=
Var ( β j ) = σ 2 c jj
2
RSS = ∑ Yi − Yi
2
TSS = RSS + ESS
可决系数
回归平方和占总离差的比重即是衡量样本回归 线对样本观测值得拟合程度。
ESS RSS R = = 1− TSS TSS
2
R 越接近1,模型的拟合程度越高
2
可决系数的问题
在实际应用中发现,如果模型中每增加一个解 释变量, 2 往往随之增大。 R 原因:残差平方和往往随着解释变量个数的增 加和减少,至少不会增加。 因此,在多元回归模型之家比较拟合优度, 2 R 不是一个合适的指标。
H 0::β1 =0,β 2 =0,...,β k =0 H1 : β j ( j = 1, 2,..., k )不全为零
F检验
在原假设H0:成立的条件下,统计量:
F = E SS R SS k ( n − k − 1)
服从自由度(k,n-k-1)的F分布。 给定显著性水平α,比较 Fα与F值大小:

2
t ≤ tα (n − k − 1)接受原假设H 0
2
注意
没有绝对的显著性水平。关键仍然是考察经济 变量在经济关系上是否对解释变量有影响,显 著性检验起到验证的作用。同时还要看显著性 水平不太高的变量在模型中及模型应用中的作 用,不要简单剔除变量!!
可调整的可决系数
思路:在样本容量一定的情况下,增加解释变 量必定使得自由度减少,所以要将残差平方和 与总离差平方和分别除以各自的自由度,剔除 变量个数对拟合优度的影响。公式如下:
(n − k − 1) R = 1− TSS (n − 1)
2
RSS
可决系数与调整可决系数的关系
经过计算转化后可决系数与调整后的可决系数 之间的关系:
相关文档
最新文档