算法分析与设计实验报告实验2:回溯法的应用
回溯法应用

bestp=cp;
}
return;
}
if(cw+w[i]<=c) //搜索左子树
{ x[i]=1;
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(Bound(i+1)>bestp)//搜索右子树
{
x[i]=0;
}
Knap K;
K.p = new int[n+1];
K.w = new int[n+1];
K.x = new int[n+1];
K.bestx = new int[n+1];
K.x[0]=0;
K.bestx[0]=0;
for( i=1;i<=n;i++)
{
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
(实验提示
template<class Typew, class Typep>
Typep Knap<Typew, Typep>::Bound(int i)
{//计算上界
Typew cleft = c - cw; //剩余容量
Typep b = cp;
//以物品单位重量价值递减序装入物品
while (i <= n && w[i] <= cleft) {
for(i=1;i<=n;i++)
cin>>w[i];
cout<<"请输入背包容量:"<<endl;
算法设计与分析实验报告——基于回溯法的0-1背包等问题

实验报告. 基于回溯法的0-1背包等问题实验内容本实验要求基于算法设计与分析的一般过程(即待求解问题的描述、算法设计、算法描述、算法正确性证明、算法分析、算法实现与测试),通过回溯法的在实际问题求解实践中,加深理解其基本原理和思想以及求解步骤。
求解的问题为0-1背包。
作为挑战:可以考虑回溯法在如最大团、旅行商、图的m着色等问题中的应用。
实验目的◆理解回溯法的核心思想以及求解过程(确定解的形式及解空间组织,分析出搜索过程中的剪枝函数即约束函数与限界函数);◆掌握对几种解空间树(子集树、排列数、满m叉树)的回溯方法;◆从算法分析与设计的角度,对0-1背包等问题的基于回溯法求解有进一步的理解。
环境要求对于环境没有特别要求。
对于算法实现,可以自由选择C, C++或Java,甚至于其他程序设计语言如Python等。
实验步骤步骤1:理解问题,给出问题的描述。
步骤2:算法设计,包括策略与数据结构的选择。
步骤3:描述算法。
希望采用源代码以外的形式,如伪代码或流程图等;步骤4:算法的正确性证明。
需要这个环节,在理解的基础上对算法的正确性给予证明;步骤5:算法复杂性分析,包括时间复杂性和空间复杂性;步骤6:算法实现与测试。
附上代码或以附件的形式提交,同时贴上算法运行结果截图;步骤7:技术上、分析过程中等各种心得体会与备忘,需要言之有物。
说明:步骤1-6在“实验结果”一节中描述,步骤7在“实验总结”一节中描述。
实验结果步骤1:问题描述。
给定 n个物品,其中第 i 个物品的重量为w i ,价值为 v i 。
有一容积为 W 的背包,要求选择一些物品放入背包,使得物品总体积不超过W的前提下,物品的价值总和最大。
0-1背包问题的限制是,每种物品只有一个,它的状态只有放和不放两种。
0-1背包问题是特殊的整数规划问题,其可用数学语言表述为:对于给定 n >0,W >0,v,w (v i ,w i >0,1≤i ≤n),找出一个 n 元0-1向量x =( x 1, x 2,⋯, x n ) 其中x i ∈{0,1},1≤i ≤n ,使得∑v i n i=1x i 最大,并且∑w i n i=1x i ≤W ,即:max x (∑v i ni=1x i ) s.t.∑w i ni=1x i ≤W, x i ∈{0,1},1≤i ≤n步骤2:算法设计,即算法策略与数据结构的选择。
算法设计与分析实验指导4_回溯法

防卫点
角色
1
2
3
4
5
1
60
40
80
50
60
2
90
60
80
70
20
3
30
50
40
50
80
4
90
40
30
70
5
60
80
90
60
50
2.0-1背包问题(选做)
编程实现0-1背包问题的回溯算法。
数据文件见附件。
四、实验报告
1.实验报告只写实验⑴。
2.写出算法思想、主要程序代码、算法复杂性分析。
void Print1(Type a[],int n)
{
for(int i=1; i<=n; i++)
cout<<a[i]<<' ';
cout<<endl;
}
三、实验内容及要求:
1.排兵布阵问题
某游戏中,不同的兵种处在不同的地形上其攻击能力不一样,现有n个不同兵种的角色{1,2,...,n},需安排在某战区n个点上,角色i在j点上的攻击力为Aij。试设计一个布阵方案,使总的攻击力最大。
void TwoDimArray(Type** &p,int r,int c)
{
p=new Type *[r];
for(int i=0; i<r; i++)
p[i]=new Type[c];
for(int i=0;i<r;i++)
for(int j=0;j<c;j++)
回朔法实验报告

一、实验目的1. 理解回溯法的基本原理和适用场景。
2. 掌握回溯法在解决实际问题中的应用。
3. 通过实验,提高编程能力和算法设计能力。
二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。
它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。
回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。
三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。
1. 实验环境:Windows操作系统,Python 3.7以上版本。
2. 实验工具:Python编程语言。
3. 实验步骤:(1)定义背包容量和物品重量、价值列表。
(2)定义回溯法函数,用于遍历所有可能的解。
(3)在回溯法函数中,判断当前解是否满足背包容量约束。
(4)若满足约束,则计算当前解的价值,并更新最大价值。
(5)若不满足约束,则回溯至前一步,尝试下一个解。
(6)输出最优解及其价值。
四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。
2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。
(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。
(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。
五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。
在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。
在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。
算法设计与分析:回溯法-实验报告

应用数学学院信息安全专业班学号姓名实验题目回溯算法实验评分表指导教师评分标准序号评分项目评分标准满分打分1 完成度按要求独立完成实验准备、程序调试、实验报告撰写。
202 实验内容(1)完成功能需求分析、存储结构设计;(2)程序功能完善、可正常运行;(3)测试数据正确,分析正确,结论正确。
303 实验报告内容齐全,符合要求,文理通顺,排版美观。
404 总结对实验过程遇到的问题能初步独立分析,解决后能总结问题原因及解决方法,有心得体会。
10实验报告一、实验目的与要求1、理解回溯算法的基本思想;2、掌握回溯算法求解问题的基本步骤;3、了解回溯算法效率的分析方法。
二、实验内容【实验内容】最小重量机器设计问题:设某一个机器有n个部件组成,每个部件都可以m个不同供应商处购买,假设已知表示从j个供应商购买第i个部件的重量,表示从j个供应商购买第i个部件的价格,试用回溯法求出一个或多个总价格不超过c且重量最小的机器部件购买方案。
【回溯法解题步骤】1、确定该问题的解向量及解空间树;2、对解空间树进行深度优先搜索;3、再根据约束条件(总价格不能超过c)和目标函数(机器重量最小)在搜索过程中剪去多余的分支。
4、达到叶结点时记录下当前最优解。
5、实验数据n,m,]][[jiw,]][[ji c的值由自己假设。
三、算法思想和实现【实现代码】【实验数据】假设机器有3个部件,每个部件可由3个供应商提供(n=3,m=3)。
总价不超过7(c<=7)。
部件重量表:重量供应商1 供应商2 供应商3 部件1 2 3 3部件2 1 2 2部件3 3 4 1部件价格表:价格供应商1 供应商2 供应商3 部件1 2 3 3部件2 1 3 1部件3 1 1 3【运行结果】实验结果:选择供应商1的部件1、供应商1的部件2、供应商3的部件3,有最小重量机器的重量为4,总价钱为6。
四、问题与讨论影响回溯法效率的因素有哪些?答:影响回溯法效率的因素主要有以下这五点:1、产生x[k]的时间;2、满足显约束得x[k]值的个数;3、计算约束函数constraint的时间;4、计算上界函数bound的时间;5、满足约束函数和上界函数约束的所有x[k]的个数。
算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
算法实验报告:回溯法(C语言)

实验报告
(2015/ 2016学年第一学期)
课程名称算法设计与分析
实验名称回溯法
实验时间2016年5月5日指导单位计算机软件学院
指导教师费宁
学生姓名罗熊班级学号B14050123
学院(系)自动化专业自动化
实验报告
NQUEENS(0);
printf("%d", sum);
system("pause");
return 0;
}:
实验结果:
四、实验小结
回溯法以深度优先次序生成状态空间树中的结点,并使用剪纸函数减少实际生成的结点数,回溯法是一种广泛适用的算法设计技术。
是要问题的解是元组形式,可用状态空间树描述,并采用判定函数识别答案结点,就能采用回溯法求解。
回溯法使用约束函数剪去不含可行解的分枝。
当使用回溯法求最优化问题时,需要设计界限函数用于剪去分枝。
五、指导教师评语
成绩批阅人日期。
回溯算法实验报告

回溯算法实验报告实验目的:回溯算法是一种递归算法,通常用于解决有限集合的组合问题。
本实验旨在通过实现回溯算法来解决一个具体的问题,并对算法的性能进行评估。
实验内容:本实验将以八皇后问题为例,展示回溯算法的应用。
八皇后问题是一个经典的问题,要求在一个8x8的棋盘上放置8个皇后,使得任意两个皇后不能在同一行、同一列或同一对角线上。
算法步骤:1. 创建一个二维数组,表示棋盘。
初始化所有元素为0,表示棋盘上无皇后。
2. 逐行进行操作,尝试在每一列放置皇后。
在每一列,从上到下逐个位置进行尝试,找到一个合适的位置放置皇后。
3. 如果找到合适的位置,则将该位置标记为1,并向下一行进行递归操作。
4. 如果当前位置无法放置皇后,则回溯到上一行,尝试放置皇后的下一个位置。
5. 当所有皇后都放置好后,得到一个解。
将该解加入结果集中。
6. 继续回溯,尝试寻找下一个解。
7. 当所有解都找到后,算法终止。
实验结果:在本实验中,我们实现了八皇后问题的回溯算法,并进行了性能测试。
根据实验结果可以看出,回溯算法在解决八皇后问题上表现出较好的性能。
实验中,我们使用的是普通的回溯算法,没有进行优化。
对于八皇后问题来说,回溯算法可以找到所有解,但是随着问题规模的增加,算法的执行时间也会大大增加。
回溯算法是一种非常灵活的算法,可以用于解决各种组合问题。
对于规模较大的问题,回溯算法的时间复杂度很高,需要考虑优化算法以提高性能。
在实际应用中,可以结合其他算法,如剪枝等技巧,来改进回溯算法的性能。
回溯算法是一种非常有价值的算法,值得进一步研究和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
if(queen[i]==queen[row]||queen[i]-queen[row]==i-row||queen[i]-q ueen[row]==row-i)
{ return 0;
} } return 1; } /* print 函数输出摆放结果 */ void print(int n) { printf("(");
que[k]++; while(que[k]<n && judge(que,k)==0) {
que[k]++; } if(que[k]<n && k==n-1)
{ output(que,n); count++;
} if(que[k]<n && k<n-1) {
k++; } else {
que[k]=-1; k--; }
境
(1)n 皇后问题
2018/4/2
在一个 n×n 格的棋盘上放置 n 个皇后,使得它们彼此不受攻击。按照国际象
棋的规则,一个皇后可以攻击与之处在同一行或同一列或同一斜线上的其他任
实
验
何棋子。因此,n 皇后问题等价于要求在一个 n×n 格的棋盘上放置 n 个皇后,
内
使的任何 2 个皇后不能被放在同一行或同一列或同一斜线上。编写算法求出所
课程实验报告
课程名称 算法分析与设计 班级 计算 161 实验日期
姓名
何严鸿
学号 20160701 实验成绩 9
实验名称
实验 2:回溯法的应用
实
1.理解状态空间树的剪枝搜索策略;
验
目
2.掌握用回溯法解题的算法框架;
的
3.掌握回溯法的基本思想。
及
要
求
实
操作系统:Windows
验
环
IDE:Visual C++
return 0; }
容
有的可能的摆放方法。要求用递归和非递归两种方法完成。
例如:
输入:4
输出:(2,4,1,3)、(3,1,4,2)
(2)奇怪的比赛
某电视台举办了低碳生活大奖赛。题目的计分规则相当奇怪:每位选手需要回
答 10 个问题(其编号为 1 到 10),越后面越有难度。答对的,当前分数翻倍;
答错了则扣掉与题号相同的分数(选手必须回答问题,不回答按错误处理)。每
tag=1; for(int i=1;i<=10;i++) {
printf("%d",result[i]); } printf("\n"); return; } else if(n>=11||sum<=0) { return; } result[n]=1; func(sum*2,n+1,score); result[n]=0;
总
而这种减少不是一个一个解的减少,而是对搜索空间进行大规模剪枝,从而使
结
得实际搜索空间远远小于问题的解空间。
1.1(非递归) #include<stdio.h>
附
录
int count=0;
int judge(int que[],int k)
{
int i;
for(i=0;i<k;i++)
{
if(que[i]==que[k]
print(n); count++; return; } for(int col=1;col<=n;col++) //从第一列开始遍历到最后一列 { queen[row]=col; /*如果符合摆放条件,进入递归,摆放下一行*/ if(judge(row)==1) {
func(n,row+1); } /*不符合条件,则进行下一次循环,重新寻找摆放位置*/ } } int main() {
||
que[i]-que[k]==i-k
||
que[i]-que[k]==k-i)
{
return 0;
}
}
return 1;
}
void output(int que[],int n)
{
printf("( ");
for(int i=0;i<n;i++)
{
printf("%d ",que[i]+1);
} printf(")\n"); } void queen(int que[],int n) { int k=0; while(k>=0) {
位选手都有一个起步的分数为 10 分。某获胜选手最终得分刚好是 100 分,如
果不让你看比赛过程,你能推断出 Ta 的答题情况吗?
例如:
输入:100
输出:
1011010000
0111010000
0010110011
输入:92
No Answer
1.
调
试Leabharlann 过程及实
验
2.
结
果
回溯法是有组织的进行穷举,在试探过程中不断通过题设要求减少搜索空间,
1.2(递归) #include<stdio.h>
int queen[50]={0}; //初始化皇后摆放的位置
int count=0;
//存放摆法的种类
/* 判断第 row 行皇后是否符合要求 */
int judge(int row)
{
int i;
for(i=0;i<row;i++)
{
/* 判断与前 i 个已经摆放的元素是否处于同一列和同一斜线 */
for(int i=0;i<n-1;i++) {
printf("%d,",queen[i]); } printf("%d)\n",queen[n-1]); }
void func(int n,int row) //参数 row 表示当前从第 row 行开始摆放,n 表示 一共有 n 个皇后 {
if(n==row) //摆放完 n 个皇后,输出结果 {
}
} int main() {
int n,que[50]; for(int i=0;i<50;i++) {
que[i]=-1; } printf("请输入皇后的个数:"); scanf("%d",&n); queen(que,n); printf("结果数:%d\n",count);
return 0; }
func(sum-n,n+1,score); } void fn(int sum,int n,int score) {
func(sum,n,score); if(tag==0) {
printf("No Answer\n"); } } int main() { int n; printf("请输入某选手的分数:"); scanf("%d",&n); fn(10,1,n);
int n; printf("请输入一共有几个皇后:"); scanf("%d",&n); func(n,0); printf("结果数:%d\n",count); return 0; } 2.#include<stdio.h> int result[11]={0}; int tag=0; void func(int sum,int n,int score) { if(sum==score&&n==11) {