第六讲判别分析

合集下载

多元统计分析课件第六章-判别分析例题与操作过程可修改文字

多元统计分析课件第六章-判别分析例题与操作过程可修改文字

.
(一) 操作步骤 1. 在SPSS窗口中选择Analyze→Classify→Discriminate,调 出判别分析主界面,将左边的变量列表中的“group”变量选 入分组变量中,将—变量选入自变量中,并选择Enter independents together单选按钮,即使用所有自变量进行判 别分析。
1
5
50.06 23.03 2.83 23.74 112.52 63.3
1
6
33.24 6.24 1.18 22.9 160.01 65.4
2
7
32.22 4.22 1.06 20.7 124.7 68.7
2
8
41.15 10.08 2.32 32.84 172.06 65.85
2
9
53.04 25.74 4.06 34.87 152.03 63.5
由此表可知,两个Fisher判别函数分别为:
y1 74.99 1.861X1 1.656X 2 0.877 X3 0.798X 4 0.098X 5 1.579X 6 y2 29.482 0.867X1 1.155X 2 0.356X 3 0.089X 4 0.054X 5 0.69 X 6
判别分析例题
例1:设有两个正态总体 G1 和 G2 ,已知:
(1)
ห้องสมุดไป่ตู้
10 15
(2)
20 25
18 12 1=12 32
20 7
2
=
7
5
试用距离判别法判断:样品:
X
20 20
,应归属于哪一类
判别分析例题 解:比较X到两个总体的马氏距离的大小
所以X属于正态总体 G1
例2:

第六章--判别分析

第六章--判别分析

设有两个正态总体,
现有一个样品如图所示的A点,
A
距总体X的中心
远,距总体Y的中心

若按欧氏距离来度量,A点离总体X要比离总体Y近一些。但是,从概率论的
角度看,A点位于 点离总体Y近一些。
右侧的
而位于
左侧的
处,应该认为A
样品点x到
的马氏距离为:
(一)当

(二)当

虽然在两个总体有显著差异的条件下,误判概率很小,但当这种差异不很显著时,误判的 概率就很大。因此,只有当两个总体的均值有显著差异时,做判别分析才有意义。
-7.182 -4.379 -2.144 -9.440 -6.573 -6.906 -4.245
原分类 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
新分类 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3
第二节 贝叶斯(Bayes)判别
判别分析就是在研究对象用某种方法分好若干类(组)的情况下,确定新样品属 于已知类别中哪一类的多元统计分析方法。
判别分析和聚类分析不同,判别分析是在已知研究对象分成若干类型(或 组别) 并已取得各种类型的一批已知样品的观测数据 ,在此基础上根据某种准则建立 判别函数式,然后对未知类型的样品进行判别分类。而对于聚类分析,一批给 定样品要划分的类型事先并不知道,需要通过聚类分析来确定各样品所属的类 型。所以,判别分析和聚类分析往往结合起来运用。
第六章 判别分析
第一节 什么是判别分析
在科学研究和日常生活中,往往会遇到这样的问题,即根据观测数据对所研究的对象 进行分类(组)判别。例如,在经济学中可根据人均国内生产总值、人均消费水平等 多种指标来判别一个国家的经济发展程度所属类型;在气象学中,根据已有的气象资 料(气温、气压、湿度等)来判断明天是阴天还是晴天,有雨还是无雨等。以上各方 面的问题具有一个共同特点:就是事先已有“类”的划分,或事先已对某些已知样品 分好了“类”,需要判断那些还未分好的的样品究竟属于哪一类。

判别分析

判别分析

1 2
2
)T 1 ( 1 2 )

1 2
2
, u ( x) ( x )T 1 ( 1 2 ) ,则上述判别法则等价于:
若 u ( x) 0 ,则判 x 1 ,若 u ( x) 0 ,则判 x 2 。 令 a 1 ( 1 2 ) 则 u ( x) ( x )T a aT ( x ) 是 x 的一个线性函数, ˆ ( a1 , a2 , , a p )T , 称 u ( x) 为线性判别函数,而 a 为判别系数。上述判别规则相当于把 p 维空间划分 成二部分:
i i i i
由此得:
ˆ1
1 1 n1 1 ˆ2 xj ˆ x 1 , n2 n1 j 1
x x
j 1
2 j 2
n2
ˆ 1
n1
1 ˆ 1 W W1 , 2 2 n1 1 n2 1
n2
Hale Waihona Puke 其中 W1 ( xj1 x 1 )( xj1 x 1 )T , W2 ( xj2 x 2 )( xj2 x 2 )T 。
2 P (2 1) P (1 2) 1 2
从上式可知: 1 , 2 相差越大,误判概率越小。
在实际问题中 1 , 2 及 一般是未知的,设从 i 得到样本容量为 ni 的样本:
T i i i i i i T x1 ( x11 , x21 , , xpi1 )T , x2 ( x12 , x22 , , xpi2 ) , , xn ( x1 ni , x2 ni , , x pni ) (i 1, 2) i

判别分析Discriminant Analysis

判别分析Discriminant Analysis

(1)有无某种疾病 例:计算机用于胃癌普查,用于中风预报. (2)疾病的鉴别诊断 例:计算机用于对肺癌,肺结核和肺炎进行鉴别诊断. (3)患有某疾病中的哪一种或哪一型 例:鉴别诊断单纯性或绞窄性肠梗阻. 鉴别诊断阑尾炎中的卡他性,蜂窝织炎, 坏疽性和腹膜炎.
用一个实例来说明判别分析的基本思想
2. 判别分析步骤 欲用显微分光光度计对病人细胞进行检查以判断 病人是否患有癌症. (1)根据研究目的确定研究对象(样本)及所用指标 例:110例癌症病人和190例正常人. 指标:X1,X2和X3. X1: 三倍体的得分,X2: 八倍体的得分,X3: 不 整倍体的得分.(0-10分)
考虑事前概率可适当提高判别的敏感性. 事前概率可据于文献报道或以往的大样本研 究.但是困难在于事前概率往往不容易知道; 如果训练样本是从所研究的总体中随机抽取 的,则可用训练样本中各类的发生频率Q(Yj) 来估计各类别的事前概率q(Yj).如果事前概 率未知,而又不可以用Q(Yj)来估计q(Yj),就 只能将事前概率取为相等值,即取q(Yj)=1/g.
训练样本的数据内容与符号 ——————————————————————————————————— 解释变量 个体号 ——————————————————————— 类别变量(Y) X1 X2 … Xj … XP ——————————————————————————————————— 1 X11 X12 … X1j … X1P y1 2 X22 X22 … X2j … X2P y2 … … … … … … … … i Xi1 Xi2 … Xij … XiP y3 … … … … … … … … n Xn1 Xn2 … Xnj … XnP yP ————————————————————————————————————

判别分析解读 PPT

判别分析解读 PPT
判别分析
Discriminant Analysis
流行病与卫生统计学系
• 聚类分析:对(样本)总体进行分类 • 判别分析:对(样本)个体进行分类
判别与聚类
• 聚类分析可以对样本/指标进行分类,判别分析 只对样本进行分类。
• 聚类分析事先 不知道事物的类别,也不知道应 分几类;判别分析必须事先知道事物的类别, 也知道应分几类。
• 在农林害虫预报中,根据以往的虫情,多种气 象因子来判别一个月后的虫情是大发生,中发 生或正常
• 在体育运动中,判别某游泳运动员是适合练蛙 泳,仰泳还是自由泳
• 在医疗诊断中,根据某人多种检验指标来判断 此人是某病患者还是非患者
判别分析--诊断
• 临床诊断: • 急腹症的患者,需要诊断患病原因。 • 诊断阑尾炎时需要与其他急腹症作鉴别诊断;
• 聚类分析不需要分类的历史资料,能直接对样 本进行分类;判别分析需要历史资料去建立判 别函数,然后才能对样本进行分类。
• 判别分析:根据判别对象若干个指 标的观测结果判定其应属于哪一类 的统计学方法。
应用
• 在经济学中,根据人均国民收入,人均工农业 产值,人均消费水平等多个指标来判定一个国 家的经济发展程度所属等级
以p=q=k=2 来说明Fisher判别分析法的基本原理和计算方法
根据Fisher判别分析法的基本原理,就是要选择一组 适当的系数 c 1 , c 2 ,…, c k ,使得类间差异D最大 且类内差异V最小,即,使得下式的值 Q 达到最大。
根据多元函数求极值的原理和方法,使得 Q 取最大 值的点是Q 的一阶偏导函数等于0的方程组的解。 令上述方程组的解是: 那么,Fisher判别函数估计式是:
该类。 • 适合于多类的判别分析。

判别分析完整课件

判别分析完整课件
D ( y(1) y( 2) )(n1 n2 2) ( ci di )(n1 n2 2)
2 i 1 m
m为判别指标数,根据自由度查F(m,n1+n2-m-1)。
(三)确定判别临界值
确定两类的判别临界值(即两类的分界点)yc, 据此对未知样本作出判断。
yc
n1 y(1) n2 y( 2 ) n1 n2
在医学科研资料中经常遇到指标变量不呈正态分 布或难以满足参数判别分析的要求,特别是有些 变量是分类变量,不可能服从正态分布,可以用 Logistic回归分析的方法。
实际资料中一般含有较多的指标,有些指标可能 对鉴别不同的类别毫无用处,或指标间彼此相关的情 况时不应该用所有的指标都参与建判别函数。所以, 在建函数之前,先进行变量筛选是很有必要的,即逐 步判别分析,此法建立的函数更简洁,效果也更好。 此外,对于某些指标间存在彼此相关的情况时, 先对众多的指标进行聚类,从聚成的几大类中各挑选 一个最有代表性的指标,用这些典型指标建立判别函 数。 逐步回归、判别分析、聚类分析等方法可以联合 应用。
y ci xi
i 1 n
2
n1
(y
i 1
n2
i ( 2)
y( 2 ) )
2
y(1) ck xk (1)
k 1
n1
y( 2) ck xk ( 2)
k 1
n2
根据求极值的原理,求I对判别系数Ci的偏导数,使其等 于零,得到下列方程组:
f11C1+f12C2+……f1mCm=d1 f21C1+f22C2+……f2mCm=d2 ……… …… …… ……… ….. fm1C1+fm2C2+……fmmCm=dm 其中, di

判别分析

判别分析
判别分析
多变量统计分析方法
01 简介
03 判别函数
目录
02 基本思想 04 建立方法
05 判别方法
07 应用
目录
06 验证方法
基本信息
判别分析又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的 一种多变量统计分析方法。
其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待 定系数,并计算判别指标。据此即可确定某一样本属于何类。
3)Fisher判别:亦称典则判别,是根据线性Fisher函数值进行判别,通常用于梁祝判别问题,使用此准则 要求各组变量的均值有显著性差异。该方法的基本思想是投影,即将原来在R维空间的自变量组合投影到维度较低 的D维空间去,然后在D维空间中再进行分类。投影的原则是使得每一类的差异尽可能小,而不同类间投影的离差 尽可能大。Fisher判别的优势在于对分布、方差等都没有任何限制,应用范围比较广。
判别方法
判别方法
判别方法是确定待判样品归属于哪一组的方法,可分为参数法和非参数法,也可以根据资料的性质分为定性 资料的判别分析和定量资料的判别分析。此处给出的分类主要是根据采用的判别准则分出几种常用方法。除最大 似然法外,其余几种均适用于连续性资料。
1)最大似然法:用于自变量均为分类变量的情况,该方法建立在独立事件概率乘法定理的基础上,根据训 练样品信息求得自变量各种组合情况下样品被封为任何一类的概率。当新样品进入是,则计算它被分到每一类中 去的条件概率(似然值),概率最大的那一类就是最终评定的归类。
基本思想
基本思想
根据判别中的组数,可以分为两组判别分析和多组判别分析; 根据判别函数的形式,可以分为线性判别和非线性判别; 根据判别式处理变量的方法不同,可以分为逐步判别、序贯判别等; 根据判别标准不同,可以分为距离判别、Fisher判别、Bayes判别法等。

第六章 判别分析

第六章    判别分析
p
y = ∑cj xj
j =1
对于A类样品 yAi = ∑ c j x Aij
j =1
p
对于B类样品 y Bi = ∑ c j xBij
j =1
p
1 yA = nA 1 yB = nB
1 ∑ y Ai = n i =1 A 1 ∑ yBi = n i =1 B
nB
nA
∑∑c x
i =1 j =1 nB p j
第六章
判别分析
一、判别分析的概念
• • 引出 (1) 某勘探区已知有三层煤,已经分别取得 了这三层煤的若干个煤样(每个煤样是哪一层煤已 知),对这些煤样进行化验,取得了每个煤样的若干 项化验数据(称为属性或变量),现钻孔发现了煤, 但不知此煤是这三层煤中的哪一层,如何鉴别之。这 就是判别分析要解决的问题。 (2)一般的做法是,分别取已知为何层煤的煤样 若干,并取得每个煤层的若干项化验数据(变量), 建立用以判别未知煤样的关于此若干个变量的判别函 数。同样对未知煤样化验,取得同样项的化验数据, 利用判别方程,就可以判别出未知煤样属于些三层煤 中的哪一层。
nB nA 2 ( y Aij − y Aj ) + ∑ ( y Bij − y Bj ) 2 ∑ i =1 s jj = i =1 nA nB
2
( n A + n B − 2)
2
s jk j≠k
( y Aij − y Aj )( y Aik − y Ak ) + ∑ ( y Bij − y Bj )( y Bik − y Bk ) ∑ i =1 = i =1
经过整理得
c1 s11 + c 2 s12 + L + c p s1 p = bd1 c1 s 21 + c 2 s 22 + L + c p s 2 p = bd 2 LLLLLL c1 s p1 + c 2 s p 2 + L + c p s pp = bd p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、按判别准则的不同有距离判别、费歇尔 (Fisher)判别和贝叶斯(Bayes)判别。
15
判别分析的假设前提
每一个判别变量不能是其他判别变量的 线性组合
各组变量的协方差阵相等 各判别变量之间具有多元正态分布
16
第二节 距离判别
(一)马氏距离 距离判别的最直观的想法是计算样品到第i类总 体的平均数的距离,哪个距离最小就将它判归哪个 总体,所以,我们首先考虑的是是否能够构造一个 恰当的距离函数,通过样本与某类别之间距离的大 小,判别其所属类别。
y
=
-1
Σ2
x
-
μ
yy
=
-1
Σ2
x
-
μ
-1
Σ2
x
-
μ
=
x
-
μ
-
Σ
1 2
Σ
-
1 2
x
-
μ
= x - μ Σ-1 x - μ
20
3、若变量之间是相互无关的,则协方差矩阵为对角矩阵
1
11
Σ
22
11
1
O
pp
Σ1
22
O
1
pp
21
此时的马氏距离为
1
Hale Waihona Puke 111d2
(x,
G)
在自然科学和社会科学的各个领域经常遇 到需要对某个个体属于哪一类进行判断。如动 物学家对动物如何分类的研究和某个动物属于 哪一类、目、纲的判断。
判别
有一些昆虫的性别很难看出,只有通过解剖 才能够判别;
但是雄性和雌性昆虫在若干体表度量上有些 综合的差异。于是统计学家就根据已知雌雄 的昆虫体表度量(这些用作度量的变量亦称 为预测变量)得到一个标准,并且利用这个 标准来判别其他未知性别的昆虫。
13
判别分析举例:
根据发掘出来的人类头盖骨的高、宽等特征来 判断其是男性还是女性。
在税务稽查中,要判断某企业是否偷漏税。 医生对病情的诊断。 信用风险的判定。 成功概率的判定。 企业运行状态或财务状况的判定。
14
二、判别分析的种类
1、按判别的组数分有两组判别分析和多组 判别分析
2、按区分不同总体所用的数学模型分有 线性判别和非线性判别
(x
-
μ)
22
(x - μ)
O
1
pp
x1 1 2 x2 2 2 L xp p 2
11
22
pp
22
(二)两个总体距离判别法
1、方差相等
先考虑两个总体的情况,设有两个协差阵相同 的p维正态总体,对给定的样本X,判别一个样本X到 底是来自哪一个总体,一个最直观的想法是计算X到 两个总体的距离。故我们用马氏距离来给定判别规 则,有:
分类
俗语说,物以类聚、人以群分。 但什么是分类的根据呢? 比如,要想把中国的县分成若干类,就有很多
种分类法; 可以按照自然条件来分, 比如考虑降水、土地、日照、湿度等各方面; 也可以考虑收入、教育水准、医疗条件、基础
设施等指标; 既可以用某一项来分类,也可以同时考虑多项
指标来分类。
分类学是人类认识世界的基础科学。聚类 分析和判别分析是研究事物分类的基本方法, 广泛地应用于自然科学、社会科学、工农业生 产的各个领域。
设x (x1, x2, , xm )和 y ( y1, y2, , ym ) 是从
期望μ= (1, 2, , m )和 方差阵Σ= ij mm 0
的总体G抽得的两个观测值,则 X与Y之间的Mahalanobis距离 d 2 (x,y) (x y)1(x y)
样本X和Gi类之间的马氏距离定义为X与Gi类重 心间的距离:
另外就分成多少类来说,也要有道理。只要你高 兴,从分层聚类的计算机结果可以得到任何可能 数量的类。但是,聚类的目的是要使各类距离尽 可能的远,而类中点的距离尽可能的近,而且分 类结果还要有令人信服的解释。这一点就不是数 学可以解决的了。
判 别 分 析
概述 距离判别法 贝叶斯判别法 费歇尔判别法 逐步判别法
未知样品 判别归类
判别分析利用已知类别的样本培训模型,为 未知样本判类的一种统计方法。
它产生于本世纪30年代。近年来,在自然科 学、社会学及经济管理学科中都有广泛的应用。 判别分析的特点是根据已掌握的、历史上每个类 别的若干样本的数据信息,总结出客观事物分类 的规律性,建立判别公式和判别准则。然后,当 遇到新的样本点时,只要根据总结出来的判别公 式和判别准则,就能判别该样本点所属的类别。
这样的判别虽然不能保证百分之百准确,但 至少大部分判别都是对的,而且用不着杀死 昆虫来进行判别了。
什么是判别分析
判别分析是根据观测到的某些指标对所研 究的对象进行分类的一种多元统计分析方法。 在医学研究中经常遇到这类问题;例如, 临床 上常需根据就诊者的各项症状、 体征、实验 室检查、病理学检查及医学影像学资料等对其 作出是否有某种疾病的诊断或对几种可能患有 的疾病进行鉴别诊断,有时已初步诊断为某种 疾病,还需进一步作出属该类疾病中哪一种或 哪一型的判断。
聚类分析是根据事物本身的特性研究个体分类 的方法,原则是同一类中的个体有较大的相似 性,不同类中的个体差异很大。
判别分析是根据表明事物特点的变量值和它们 所属的类,求出判别函数。根据判别函数对未 知所属类别的事物进行分类的一种分析方法。
判别分析和聚类分析有什么不同呢?
主要不同点就是,在聚类分析中一般人们事 先并不知道或一定要明确应该分成几类,完 全根据数据来确定。
第一节 概述
一、什么是判别分析? 设有k个总体G1,G2,…,Gk,希望建立一
个准则,对给定的任意一个样本x,依据这个 准则就能判断它是来自哪个总体。应当要求这 种准则在某种意义下是最优的,如:错判概率 最小或错判损失最小等等。
11
判别分析的一般步骤
已知分类的 训练样本
判别分析方法
判别函数
建立判别准则
d 2 (x,Gi ) (x i )1(x i ) i 1,2, , k
18
马氏距离和欧式距离之间的差别
马氏距离 d 2(x,G) (x - μ)Σ-1(x - μ)
欧氏距离 d 2(x,G) (x - μ)(x - μ)
19
马氏距离有如下的特点:
1、马氏距离不受计量单位的影响;
2、马氏距离是标准化后的变量的欧式距离
而在判别分析中,至少有一个已经明确知道 类别的“训练样本”,利用这个数据,就可 以建立判别准则,并通过预测变量来为未知 类别的观测值进行判别了。
聚类分析
聚类要注意的问题
聚类结果主要受所选择的变量影响。如果去掉一 些变量,或者增加一些变量,结果会很不同。
相比之下,聚类方法的选择则不那么重要了。因 此,聚类之前一定要目标明确。
相关文档
最新文档